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Mutation is the key molecular mechanism generating phenotypic variation, which is the basis for
evolution. In an introductory biology course, we used a model-based pedagogy that enabled students
to integrate their understanding of genetics and evolution within multiple case studies. We used
student-generated conceptual models to assess understanding of the origin of variation. By midterm,
only a small percentage of students articulated complete and accurate representations of the origin
of variation in their models. Targeted feedback was offered through activities requiring students to
critically evaluate peers’ models. At semester’s end, a substantial proportion of students significantly
improved their representation of how variation arises (though one-third still did not include mutation
in their models). Students’ written explanations of the origin of variation were mostly consistent
with their models, although less effective than models in conveying mechanistic reasoning. This
study contributes evidence that articulating the genetic origin of variation is particularly challenging
for learners and may require multiple cycles of instruction, assessment, and feedback. To support
meaningful learning of the origin of variation, we advocate instruction that explicitly integrates
multiple scales of biological organization, assessment that promotes and reveals mechanistic and
causal reasoning, and practice with explanatory models with formative feedback.

INTRODUCTION

In Chapter 5 of On the Origin of Species, Darwin wrote:

Our ignorance of the laws of variation is profound. Not
in one case out of a hundred can we pretend to assign
any reason why this or that part varies more or less
from the same part in the parents. (Darwin, 1859, Ch.
5, p. 167)
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Although Darwin observed and described a great deal
of variation among and within species, his failure to ex-
plain the mechanisms underlying the origin of variation
and its inheritance contributed to skepticism about his work
(Charlesworth and Charlesworth, 2009). At the same time,
Gregor Mendel, unaware of Darwin’s work, had the keen
insight that heredity may be

the one correct way of finally reaching a solution to
a question whose significance for the evolutionary
history of organic forms cannot be underestimated.
(Mendel, quoted in Charlesworth and Charlesworth,
2009, p. 758)

As Mendel anticipated, genetics (and much later molec-
ular biology) clarified in great detail the biological mecha-
nisms of variation and inheritance, leading to development
of the modern synthesis (Gregory, 2009). Biologists’ current
understanding of why and how evolution by natural se-
lection occurs can be deconstructed into two fundamental
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principles: 1) new phenotypes arise within a population by
random genetic mutation; and 2) environmental factors se-
lect phenotypic variants that are best fit to their environment;
these variants become more frequent in the population over
time (Bishop and Anderson, 1990; Gregory, 2009). Despite
its centrality to all of biology, evolution remains conceptu-
ally difficult for biology learners at all grade levels (Smith,
2010), including college (Kalinowski et al., 2010). Efforts to
develop effective tools for assessing undergraduate students’
understanding of evolution have produced forced-choice in-
struments like the Concept Inventory of Natural Selection
(CINS; Anderson et al., 2002), constructed-response ques-
tions (Bishop and Anderson, 1990; Nehm and Reilly, 2007;
Nehm et al., 2012; Opfer et al., 2012), and oral interview
protocols (Nehm and Schonfeld, 2008). Beyond the format
differences, these instruments converge on testing students’
understanding of closely overlapping sets of five to 10 core
concepts traversing multiple levels of biological organization.
All these key concept sets invariably include three genetics
principles: 1) the genetic origin of variation, 2) heredity, and
3) change in heritable trait frequency in a population over
time.

In a previous study, we examined college introductory
biology students’ constructed explanations of evolution by
natural selection (Bray Speth et al., 2009). We observed that
students’ explanations were largely centered on mechanisms
operating at the organismal level, with little or no attention to
molecular-level causes and effects. The majority of students
explicitly referred to phenotypic variation among individu-
als as the starting point for evolution by natural selection, but
very few attempted to explain why and how that variation
came to exist in the first place. This finding was largely con-
sistent with analogous conclusions reported by Nieswandt
and Bellomo (2009). Even postinstruction, only a small frac-
tion of students (19%) explicitly referred to the molecular and
genetic causes of variation in their explanations (Bray Speth
et al., 2009). A similar observation was reported in a study
that compared novice and expert explanations of evolution
(Nehm and Ridgway, 2011). While the majority of experts
consistently included heredity and the genetic origin of vari-
ation in their explanations of natural selection, only 10% of
undergraduate biology students in the study incorporated
these concepts across multiple explanations. Kalinowski et al.
(2010) explicitly described the difficulty college students en-
counter when required to use molecular genetic concepts to
make sense of evolution. They advocated classroom prac-
tices that elicit students’ preconceptions and promote con-
ceptual change by helping students construct explanatory
frameworks that reveal explicit connections among concepts.
In addition, they proposed that students should apply their
explanatory frameworks iteratively to multiple contexts and
that these frameworks must include both genetics and evo-
lutionary concepts for students to make sense of the entire
process from genes to populations.

Models for Promoting and Assessing Understanding
of Evolution
Scientists routinely use models to organize and communi-
cate their knowledge and to represent complex processes and
systems in a simplified way. Models are abstractions or rep-

resentations of natural systems that have explanatory and
predictive power (Gilbert et al., 1998; Harrison and Treagust,
2000; Schwarz et al., 2009). Model-building and model-based
pedagogies were shown to promote deep and meaningful
learning in the science classroom (Gobert and Buckley, 2000;
Schwarz and White, 2005; Brewe, 2008) and have emerged in
recent years as effective approaches for teaching and learn-
ing physiology, ecology, and cell biology (Hmelo-Silver et al.,
2007; Verhoeff et al., 2008).

We developed a model-based pedagogy to teach genetics,
evolution, and ecology in a large-enrollment introductory bi-
ology course for life sciences majors at a research university
with very high research activity (Long et al., 2014). Students in
our course constructed models as paper-and-pencil artifacts
visually similar to concept maps (semantic networks of con-
cepts, represented in boxes, interconnected by arrows indi-
cating the relationships among them). Concept maps, widely
used in educational settings as effective ways of organizing
and representing domain knowledge (Novak, 1998; Novak
and Canas, 2008; Jonassen, 2006), are traditionally not in-
tended as tools for modeling dynamic systems or for explain-
ing how systems accomplish their functions.

Drawing from a theoretical framework on systems
(structure–behavior–function [SBF]; Goel et al., 1996) derived
from artificial intelligence, we articulated a set of conventions
that supported student-generated diagrams that, in essence,
are models of biological systems (Dauer et al., 2013). The SBF
framework was originally designed to describe complex en-
gineered systems (Goel et al., 1996) and was later used for
facilitating systems thinking and analyzing students’ con-
ceptual representations of biological systems and processes
(Jordan et al., 2008; Liu and Hmelo-Silver, 2009; Vattam et al.,
2011). According to SBF theory, a system has structures (the
parts or elements of the system), behaviors (the mechanisms
operating within a system), and functions (the overall roles
or outputs of the system).

On several occasions throughout the course, students were
required to construct SBF-based models (see Methods) repre-
senting the origin of genetic variation, the resulting pheno-
typic variation, and the effect of phenotypic variation on fit-
ness in populations subject to natural selection; we referred
to these as gene-to-evolution (GtE) models. Students’ GtE
models changed over the course of the semester: individual
propositions within models became increasingly more cor-
rect, while models grew in complexity during the first half
of the semester but became more parsimonious and accurate
toward the end (Dauer et al., 2013).

In this study, we focus on analyzing how students artic-
ulated the function of their GtE models, specifically how
they represented variation and the origin of variation. As stu-
dents’ models became more complex and individual propo-
sitions became more accurate, we hypothesized that stu-
dents’ ability to convey the overall model function would
also improve. We analyzed models constructed by students
on their midterm and final exams to investigate 1) whether
students’ GtE models represented variation and its molec-
ular origin, 2) how accurately students incorporated the
concept of mutation into their models, and 3) whether
students consistently articulated the mechanism of muta-
tion across different types of assessment (models and short
answers).
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METHODS

Study Context
We conducted this study in one section (n = 182) of a
large-enrollment introductory biology course for life sciences
majors at a research university with very high research ac-
tivity (McCormick and Zhao, 2005). The course was one
semester of a two-semester introductory biology sequence
that students could complete in a nonprescribed order. Stu-
dent attendance was 86.7 ± 10.2% across the entire semester,
based on course enrollment (n = 182). Two instructors team-
taught the class and participated in all class meetings. The
class met three times a week for 50-min periods for 15 weeks.
Course content included principles of genetics, evolution,
and ecology. Evolution served as a thread throughout the
course, as students learned 1) how information contained
in genes is reflected in organisms’ phenotypes, 2) how phe-
notype determines the differential success of individuals in
different environments, and ultimately, 3) how evolutionary
mechanisms, including selection, lead to population change
over time. The instructional strategy was based on the iter-
ative practice of constructing, evaluating, and revising box-
and-arrow SBF-based models of biological systems. Students
learned early in the course to construct models of systems by
representing the physical components of a system (structures)
as nouns in boxes and interconnecting them with labeled ar-
rows indicating the mechanisms or relationships (behaviors)
that lead the system to produce a given output or function
(Figure 1). We adopted concept-mapping terminology to re-
fer to each box-arrow-box “sentence” as a proposition, which
is the smallest meaningful unit into which models can be
decomposed for analysis (Pearsall et al., 1997; Martin et al.,
2000). The SBF framework for creating and interpreting con-
ceptual models was explicitly communicated to students and
was referred to frequently throughout the course. A more

detailed description of how modeling was introduced to stu-
dents early in the semester, and how modeling activities be-
came increasingly more complex over time, is reported in
Dauer et al. (2013). Typically, modeling problems required
students to represent one or more outputs or functions of
the system under study and were scaffolded by providing a
minimum set of structures that needed to be included in the
model (Figure 1).

For the purpose of this study, we analyzed GtE models that
students produced in the context of the midterm and final
exams. We analyzed only data from students who completed
the modeling task on both exams (n = 170). The study was
reviewed and determined exempt by the local IRB (protocol:
IRB #X07-981).

Timeline of Instruction, Feedback, and Assessment
Data Collection
Instruction on principles of evolution started in week 6,
immediately following principles of genetics (Supplemen-
tal Figure S1). In week 7, instruction focused on mutation
as the origin of variation. Because a detailed overview of
different molecular types of mutation and of DNA repair
mechanisms was beyond the scope of the course, instruction
exclusively focused on point mutations as a mechanism for
random changes generating new alleles. Students engaged in
building and evaluating models that illustrated the origin of
variation in a population of snails displaying a wide variety of
shell colors and patterns. In class, students worked in groups
to develop models of the origin of variation in the snail pop-
ulation and turned the models in to the instructors. Instruc-
tors selected four representative student-generated models
for use in the following class meeting as the basis for group
and whole-class discussion. Students were tasked with evalu-
ating whether each of the four models represented the origin

Figure 1. Example of a student-generated SBF model (transcribed in cMapTools), labeled to illustrate the model components (in italics). The
example illustrates how an SBF model is a semantic network of structures (in boxes, highlighted in green) linked by behaviors (on arrows,
highlighted in blue). Each box-arrow-box group (such as the one highlighted in orange) should be readable as a stand-alone unit of meaning
(a proposition). This model was developed in response to a prompt asking students to represent the origin of genetic variation and resulting
phenotypic variation in a mosquito population that evolved resistance to DDT. The assignment was scaffolded by providing the structures:
gene, allele, nucleotides (or nucleotide sequence), protein, and phenotype.
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Table 1. Prompts for the midterm and final exam models

Midterm exam Final exam
Case study of DDT resistance in mosquitoes Case study of vertebrae malformations in wolves

Model prompt: Model prompt:
In the space below, construct a box-and-arrow model with the

function: origin of genetic variation and resulting phenotypic
variation in the context of this problem about DDT resistance in
mosquitoes. Use language in the structures and behaviors of your
model that is specific to this case.

In the space below, construct a box-and-arrow model (structures
linked by behaviors) that shows the relationships among
concepts that are relevant to the incidence of malformed
vertebrae in wolves.

Include the following structures in your model: Your model will have three functions. It will show:
gene, allele, protein, phenotype, nucleotides (or nucleotide

sequence)
1. The origin of genetic variation among wolves;

To make your model specific to this problem, you may:

2. The relationship between genetic variation and phenotypic
variation in wolves, and

• Use structures more than once; 3. The consequence of phenotypic variation on wolf fitness.

• Add additional structures not included in the list; and, Include the following structures in your model, but modify your
language to make them specific to the case of wolves’
vertebrae. You may use structures more than once and add
additional structures not in the list.

• Modify structures to make them specific to this case.

gene, allele, DNA, protein, phenotype, nucleotides
(or nucleotide sequence), fitness

of variation and what possible modifications might add to
or correct a model. Groups were called to report on the four
models and were encouraged to propose alternative ways of
representing the overall function or individual relationships.
During the in-class discussion, the instructors annotated the
slides to capture key points of the conversation and to un-
derscore 1) the importance of incorporating mutation and
2) structures to which the mutation should connect. The dis-
cussion on students’ models was immediately followed by
direct instruction on the molecular mechanisms of mutation.
The annotated slides were made available to students after
class (Supplemental Figure S2).

Midterm Exam. The midterm exam in week 8 followed in-
struction, modeling practice, and feedback on the origin of
variation. The entire exam was structured around the case of
evolution of DDT resistance in mosquito populations (Hem-
ingway and Ranson, 2000) and included questions on ge-
netics and evolution and a GtE modeling problem (Table 1).
Students were provided with background information on the
emergence of DDT-resistant mosquito populations following
widespread spraying of DDT promoted in the 1950s by the
World Health Organization in an effort to eradicate malaria.
To simplify the problem, we attributed DDT resistance to a
single locus (R), with the recessive allele (r) causing resistance
to DDT.

Instruction and Feedback Following the Midterm Exam. In
the class meetings following the midterm exam (week 8), in-
struction on evolution continued with case studies and activ-
ities on fitness and natural selection. The midterm exam was
returned in week 9, and the class received specific formative
feedback on the exam GtE models. Feedback was provided in
a classroom activity focused on peer evaluation of a set of four
models produced by students on the exam. Student models
were scanned and presented to the class as PowerPoint slides.
For each model, students needed to evaluate whether and
in what part of the model the origin of variation was rep-
resented (Supplemental Figure S4). Students answered each

question individually with their clickers and then discussed
their choices in small groups. Instructors facilitated follow-up
classroom discussion to elicit the reasoning behind the con-
sensus answers and offered clarifications when necessary.

Final Exam. A cumulative final exam followed the unit
on ecology and was structured as a series of problems
based on the case of the wolves of Isle Royale, Michigan
(www.isleroyalewolf.org; Räikkönen et al., 2009). Students
were provided with information on an isolated population
of wolves living on an island in Lake Superior. Some of the
wolves have malformed vertebrae, a hereditary condition due
to a change a gene (G) that regulates vertebrae formation. The
allele responsible for the malformed vertebrae phenotype is
recessive (g) (Bray Speth et al., 2010; Dauer et al., 2013). On the
basis of this information, students were asked to construct a
box-and-arrow GtE model specific to this case (Table 1). In
addition, students completed a blank table by writing short
answers explaining how each of five key concepts of evolu-
tion by natural selection applied to the same case. The five
key concepts were: phenotypic variation, origin of variation,
inheritance, fitness, and change in the population (Bray Speth
et al., 2009).

Data Analysis
We developed a set of rubrics to analyze students’ models in
response to three research questions:

Do Student Models Represent Variation and Its Origin? A
model function rubric (Table 2) was developed to assess
whether students’ models addressed the prompt questions,
meaning that they explicitly represented 1) the presence of
genetic and phenotypic variation in a population and 2) the
molecular mechanism leading to variation (mutation). Two
raters independently applied the rubric to more than 30%
of the students’ midterm models; raters had 95% interrater
reliability (calculated as percent of agreement) after coding
the first 30 models. Following discussion, the two raters
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Table 2. Model function rubric, developed for analyzing students’ models (midterm and final) for presence/absence of concepts regarding
phenotypic variation and its genetic origina

1. The model explicitly represents variation at the genetic level (different alleles).
2. The model explicitly represents variation at the phenotypic level (different phenotypes).
3. Phenotypic variation is directly connected to genetic variation (e.g., there is a direct flow of information from alleles, or genotypes, to the

corresponding phenotypes).
4. The model includes the concept of mutation (as a structure or as a behavior).

a. The concept of mutation is linked to appropriate molecular-level structure/s (nucleotides, nucleotide sequence, DNA, gene, and/or
allele);

b. Mutation is appropriately incorporated (4a above is true) and is used to explain the origin of different alleles (e.g., mutation alters a
gene sequence to cause the origin of a new allele).

aItems 4, 4a, and 4b were also used to analyze students’ short answers about the origin of variation on the final exam.

independently coded another 30 models; the cumulative in-
terrater agreement for all 60 models was 97%. Given the high
degree of agreement, a single rater coded the remainder of the
models. We calculated a total “function” score for each stu-
dent model as the sum of all six items in the model function
rubric (Table 2). A model that completely conveyed the re-
quired functions (represented genetic variation, phenotypic
variation, and mutation as the cause of variation) would have
a total score of 6.

How Accurately Do Students Connect Mutation to Other
Concepts? We analyzed the models that included mutation
to evaluate how accurately students incorporated the con-
cept into their models. We used grounded theory (Glaser and
Strauss, 1967) to develop an analytical rubric. Several biol-
ogists (including the authors E.B.S., A.R., R.T., J.L.M., and
T.L.) independently rated all behaviors cited by students in
their GtE models (Dauer et al., 2013). The group had multi-
ple rounds of discussion to reach a consensus over the rubric
criteria. The rubric (Figure S3) assigned: 3 points to a behav-
ior that was correct and as accurate as we would expect after
instruction in an introductory biology course; 2 points to a be-
havior that was imprecise, poorly worded, or ambiguous but
not obviously incorrect; 1 point to a biologically incorrect, un-
acceptable behavior or to an unlabeled arrow. For this study,
we extracted, transcribed, and analyzed all the “structure-
behavior-structure” propositions that included the concept
of mutation as either a structure or a behavior. Two raters
independently coded mutation-containing propositions for
30% of all models that incorporated mutation (n = 176 mod-
els, including 66 from the midterm exam and 110 from the
final exam). Each rater scored each behavior used by students
to link mutation to other biological concepts; the two raters
independently assigned the same score to 92.8% of the indi-
vidual propositions analyzed. Because student models had
a variable number of propositions containing mutation, we
calculated mean accuracy scores for each model as the sum
of all points assigned to mutation-containing propositions
divided by the number of propositions (e.g., Student A used
mutation in two propositions, rated 2 and 3 points; her mean
score was (2 + 3)/2 = 2.5). Two raters calculated mean accu-
racy scores for 30% of all models that incorporated mutation.
Because these values were ratios, we estimated interrater reli-
ability with a Spearman rank-order correlation coefficient test
(rs = 0.85, p < 0.000001), rather than as percent of agreement.
Due to the high degree of agreement, a single rater coded the
remaining models.

Are Students’ Models of the Origin of Variation Consistent
with Their Short Answers? On the final exam, students com-
pleted a table with short explanations of how each of five
key concepts of evolution by natural selection (phenotypic
variation, origin of variation, heredity, fitness, and change in
population) applied to the case of the wolves of Isle Royale.
Students had previously practiced completing a similarly
structured table (on an in-class quiz). We applied the “mu-
tation” part of our function rubric (Table 2, items 4, 4a, and
4b) to code students’ short answers for the “origin of varia-
tion” concept on a 0–3 scale (0 = no mention of mutation; 1 =
mutation is mentioned; 2 = mutation is mentioned and con-
nected to genetic structures like DNA, nucleotide sequence,
etc.; 3 = mutation is articulated as the causal event leading to
new alleles). For example, a statement like “a random muta-
tion sometime in the population” would receive 1 point; “a
mutation in the nucleotide sequence” would receive 2 points;
“The origin of variation came from a random mutation in the
nucleotide sequence which resulted in the g allele” would re-
ceive 3 points. Interrater reliability was established as 95.6%
(percent agreement) between two raters for more than 30%
of student answers, and a single rater coded the remaining
answers.

RESULTS

Do Student Models Represent Variation and Its
Origin?
We analyzed students’ midterm GtE models to determine
what proportion of our students explicitly represented alter-
native alleles (genetic variation) and phenotypes (phenotypic
variation) in a population of mosquitoes undergoing natural
selection for DDT resistance. Sixty-nine percent of students
represented genetic variation and 60% represented pheno-
typic variation, but only 53% of students’ midterm models
illustrated a direct flow of reasoning (possibly including
“protein” as intermediate structure) from the specific allele/
genotype to the corresponding phenotype. At midterm, most
students failed to represent mutation as the mechanism caus-
ing variation: only 39% of all models included the concept of
mutation, and an even smaller subset of these clearly repre-
sented mutation as the origin of variation (Table 3).

The proportion of students who explicitly represented ge-
netic variation, phenotypic variation, and a direct genotype-
to-phenotype connection increased on the final exam,
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Table 3. Percentage of students (n = 170) who represented variation and its origin in their box-and-arrow modelsa

Model included: Midterm exam Final exam

1. Genetic variation (different alleles) 69% 76%
2. Phenotypic variation (different phenotypes) 60% 68%
3. Direct genotype–phenotype connection 53% 55%
4. Mutation: 39% 65%*

a. linked to genetic concepts 17% 26%
b. linked to genetic concepts and used to explain the origin of new alleles 20% 35%*

aModels were coded with the function rubric in Table 2. Student models improved in all four categories; however, only the increase in the
overall use of mutation (item 4) and in the use of mutation to explain genetic variation (item 4b) are statistically significant (chi-square test of
independence, n = 170, α = 0.05).

although not significantly. The number of student models
incorporating mutation, however, increased significantly on
the final compared with the midterm (from 39 to 65%; chi-
square test of independence, p < 0.0001). Concurrently, we
observed a significant increase in the proportion of models
conveying that mutation was the causal event directly re-
sponsible for a new allele in the population (from 20 to 35%;
chi-square test of independence, p = 0.0024).

The mean function score for the class was 2.78 ± 1.85 (SD)
at midterm and increased to 3.62 ± 1.92 (SD) on the final.
For ease of representation, we grouped models that had very
low function scores (0–1 points), average models (2–3 points),
above-average models (4–5 points), and excellent models (6
points). From the midterm to the final exam, we observed
a decrease in models scoring 0–1 and 2–3 points and an in-
crease in models scoring 4–5 and 6 points (Figure 2). Most
students remained in the same competency group or ad-
vanced to the next group. Several students (23.5%), however,
jumped up two levels or more, while a smaller subset (14%)
regressed to a lower score. As expected, the overall improve-
ment in students’ model function from the midterm to the fi-
nal exam was significant (Wilcoxon signed-rank test, n = 170,
p < 0.0001).

Figure 2. Change over time in student models’ function. The pro-
portion of higher-scoring models increased on the final exam.

How Accurately Do Students Connect Mutation to
Other Concepts?
During the course, students received explicit feedback on the
importance of including mutation in their models to explain
origin of variation but were not specifically instructed on
whether to incorporate mutation as a structure or as a behav-
ior. When students included the concept of mutation, they
determined how to represent it. Mutation, as a mechanism,
would be most appropriately represented as a behavior (on
an arrow); however, students were never instructed to in-
corporate mutation as a behavior nor were they penalized
for choosing to represent mutation as a structure (a physi-
cal component of the system). We recorded students’ choice
to use mutation as a structure or as a behavior. We identified
only a very small number of instances in which mutation was
represented neither as a structure nor as a behavior; rather, it
was used as an adjective to qualify a structure (e.g., “mutated
gene” or “mutant allele”), or it was left “floating,” meaning
that the student placed it in the model but did not connect it to
any other concept. Parallel to the increase in overall use of the
mutation concept from the midterm to the final, we observed
a decrease in the percentage of models representing mutation
as a structure and an increase in the percentage of models rep-
resenting mutation as a behavior (Table 4). This shift aligns
with the finding that accuracy of individual propositions in
students’ models grew throughout the semester (Dauer et al.,
2013) and contributes an additional dimension by which we
can characterize this improvement.

In our analyses of students’ models, we were particularly
interested in characterizing the propositional accuracy of the
connections between mutation and genetic structures (such
as allele, gene, nucleotides, DNA, or nucleotide sequence). Each
model earned a single score, calculated as the mean score
of all propositions including mutation (see Methods and Fig-
ure S2). To compare students’ performances on the midterm
and final exam models, we binned students into four groups

Table 4. Representation of mutation as a structure or a behavior

Mutation Midterm exam Final exam
represented as: (n = 66) (n = 110)a

Structure 47 (71.2%) 65 (59.1%)
Behavior 19 (28.8%) 43 (39.1%)

aTwo out of 110 models included mutation but used it as an adjective
(neither a structure nor a behavior).

534 CBE—Life Sciences Education



Student Models of the Origin of Variation

Table 5. Students’ use of mutation in their midterm and final models

Groupa n Percent of 170 Midterm (mean ± SD) Final (mean ± SD)

1 52 30.6 2.46 ± 0.64 2.34 ± 0.66
2 58 34.1 n/a 2.10 ± 0.69
3 14 8.2 2.08 ± 0.73 n/a
4 46 27.1 n/a n/a

aStudents are binned into four groups based on whether they incorporated mutation into their models on both the midterm and the final
exam (group 1), on the final only (group 2), on the midterm only (group 3), or on neither exam (group 4). For each group, we report the mean
accuracy of the relationships used to link mutation to other concepts within the models.

(Table 5). Students in group 1 (30.6% of the class) incorpo-
rated mutation into their models on both the midterm and
the final exam; group 2 students (34.1% of the class) repre-
sented mutation only on the final exam model, but not on the
midterm. A smaller percentage of students (group 3, 8.2%)
used the concept of mutation only on the midterm, but not
on the final. Finally, 27.1% of all students (group 4) did not
incorporate mutation into their models on either exam.

Group 1 students maintained consistent propositional ac-
curacy between the two tests, with no statistical difference be-
tween their midterm and final scores (mean midterm score =
2.42; mean final score = 2.31; Wilcoxon signed-rank test, p =
0.48). Group 2 and 3 students only incorporated mutation into
one of the two tests (the final or the midterm, respectively),
and both groups did so with a lower propositional accuracy
than their group 1 peers. Specifically, the mean accuracy score
achieved by group 2 students on the final exam model was
lower than that of group 1 students on the same exam (Mann-
Whitney test, p = 0.06). The few students who incorporated
mutation on the midterm but not on the final exam (group 3)
also had a mean score that was lower than that of their group
1 peers on the same exam (Mann-Whitney test, p = 0.06).

Is the Representation of the Origin of Variation
Consistent across Student Models and Short
Answers?
On the final exam, students filled out a blank table listing five
fundamental evolutionary concepts, including the origin of
variation. Overall, 58% of students consistently incorporated
the mutation concept across the two assessments, while 16%
of all students lacked it in both (Figure 3A). Interestingly,
nearly 19% of students included the concept of mutation in
their short answers but not in their models, and 7% included
mutation in the model but not in the short answer.

We coded the short answers on a 0–3 scale, applying the
same rubric we had used to code the models for the con-
cept of mutation (see Methods and Table 1, items 4, 4a, and
4b). Using the same rubric allowed us to directly compare
aggregate and individual students’ scores across two distinct
assessments of the same concept (Figure 3, B and C). Aggre-
gate score analysis (Figure 3B) revealed that the concept of
mutation appeared significantly more frequently in students’
short answers than in their models (Fisher’s exact test, p =
0.017). However, students incorporated mutation in short an-
swers at a basic level (1 or 2 points) significantly more often
than they did in models. Conversely, mutation was correctly
incorporated as the source of new alleles in the population

Figure 3. Use of mutation in students’ models and short answers
on the final exam. (A) Consistency in the use of the mutation concept
across two different assessments of the origin of variation, a model
and a short-answer (SA) explanation. (B) Distribution of scores at-
tributed to student models and short answers (SA) for their use of
the mutation concept. The same rubric was applied to both assess-
ments (Table 1, items 4, 4a, and 4b). (C) A cross-tabulation illustrating
how individual student’s scores were distributed in the class. Each
cell indicates the number of students who had a given combination
of scores on their two assessments; individuals on the red diagonal
performed consistently across the two assessment questions.
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(3 points) significantly more frequently in students’ models
than in short answers (Fisher’s exact test, p < 0.0001).

Analysis of individual students’ scores on models and short
answers (Figure 3C) indicated their scores on the two assess-
ments were significantly correlated (Spearman’s rs = 0.439,
p = 0.01). Overall, 45% of the students had the same score on
both assessments (these students are represented in red on the
diagonal of the table in Figure 3C). The two largest groups
that strayed from the diagonal were students who used the
term “mutation” or “genetic mutation” in their short answer
at a basic level (meaning they had a score of 1 or 2 on their
short answers) but either failed to incorporate mutation into
their model (17.6%; highlighted by the shaded box marked
“a” in Figure 3C) or represented mutation in their model as
the causal mechanism leading to new alleles, earning a score
of 3 (23.5%; highlighted by the shaded box marked “b” in
Figure 3C)

DISCUSSION

This study adds to the body of evidence that college introduc-
tory biology students struggle to integrate molecular genetic
concepts within their evolutionary reasoning. Specifically, we
uncovered students’ difficulty incorporating the molecular
basis of variation in their explanatory frameworks of evolu-
tion by natural selection.

The literature on evolution teaching and learning is rich
with evidence that evolution as a whole is conceptually dif-
ficult for students (Bishop and Anderson, 1990; Anderson
et al., 2002). A recent metastudy of introductory biology stu-
dents’ learning of natural selection across multiple courses
and institutions reported that students achieved only modest
learning gains (Andrews et al., 2011), measured by an abbre-
viated version of the CINS (Anderson et al., 2002) and a short
constructed response (Bishop and Anderson, 1990; Nehm and
Reilly, 2007).

The results of our study align with previous reports show-
ing that students’ explanations of natural selection largely
fail to incorporate molecular genetic concepts like genetic
variation and heredity (Nehm and Schonfeld, 2008; Nehm
and Ridgway, 2011; Bray Speth et al., 2009; Nieswandt and
Bellomo, 2009). We further extend these findings with ad-
ditional evidence that college introductory biology students
consistently struggle to integrate the molecular basis of varia-
tion in their explanatory frameworks of evolution by natural
selection. After a semester-long introductory biology course
on genetics, evolution, and ecology, and despite instruction
that emphasized the mechanisms underlying variation and
included formative assessment and targeted feedback, nearly
one-third of our students still did not incorporate mutation
into their models.

Students Struggle to Represent the Origin of Variation
In week 7 of class, before the midterm exam, instruction
focused extensively on mutation as the causal mechanism
that generates variation. Despite modeling practice in class
and explicit feedback, only 39% of all students included
the concept of mutation in their midterm exam models
(Table 3). Moreover, only 20% incorporated mutation as
the causal mechanism explaining the origin of new alleles
(Table 3). Instructors immediately identified this gap in stu-

dents’ midterm models and designed a second targeted
round of feedback following the midterm exam (see Methods
and Figure S3). The proportion of students who incorporated
mutation into their models of the origin of variation increased
significantly (to 65%) on the final exam.

Mutation is an inherently difficult concept for various rea-
sons. To begin with, it is a molecular-scale mechanism that
explains organism- and population-scale outcomes. The sci-
ence education literature has shown that constructing causal
explanations of biological phenomena is difficult for learn-
ers. Students often resort to teleological and anthropomor-
phic explanations or fail to recognize the need to include
causal or mechanistic reasoning when asked to articulate an
explanation of biological change, particularly in the context
of adaptation and evolution (Abrams and Southerland, 2001;
Southerland et al., 2001; Russ et al., 2008). Studies on learning
about systems have shed further light on students’ appar-
ent difficulty with reasoning about underlying mechanisms,
as these studies demonstrate that novice learners tend to fo-
cus on the perceptually salient, structural aspects of systems
(Hmelo et al., 2000; Hmelo-Silver and Pfeffer, 2004), rather
than their functions and behaviors. Micro-level components
and implicit mechanisms pose a substantial learning chal-
lenge, especially when learners must infer them (Chi et al.,
1994; Hmelo-Silver et al., 2007) and connect causal processes
across multiple levels. An additional issue further compli-
cating the understanding of mutation is that it is a random
event; students often hold deep misconceptions about the
role of random processes in the natural world (Garvin-Doxas
and Klymkowsky, 2008). On the basis of this understanding,
we argue that articulating the role of random mutation as
the underlying source of variation, unless explicit cues are
provided or elicited, is an inference that requires retrospec-
tion: students need to recognize that the observable, heritable
phenotypic variation within a population is caused by the ex-
istence of multiple alleles and that mutation events must have
occurred at the molecular level in the past, causing the new
alleles to exist. A systems-thinking skills hierarchy developed
in the context of learning about natural systems places ret-
rospection (with prediction) at the top, as one of the most
advanced cognitive characteristics of systems thinking (Ben-
Zvi Assaraf and Orion, 2005).

It is possible that the improvement we observed in stu-
dents’ ability to incorporate mutation into their models on
the final exam was due, at least in part, to their develop-
ing systems-thinking skills and ability to reason causally and
mechanistically about evolution. Of course, we cannot ex-
clude that students were simply repeating information they
obtained during feedback. Our data do not allow discrimi-
nating between these alternative explanations, nor do they
allow us to separate students’ gains in conceptual under-
standing from their possible increased familiarity and pro-
ficiency with model building. However, it is evident that a
single cycle of modeling, instruction, and feedback was not
sufficient for the majority of the class, and after two cycles, we
still observed that 35% of our students did not include mu-
tation in their explanatory frameworks. It is noteworthy that
in other reported assessments of students’ understanding of
natural selection (Nehm and Reilly, 2007; Nehm and Schon-
feld, 2008; Bray Speth et al., 2009), students were not explicitly
prompted to incorporate mutation, and we have no evidence
of whether they had received feedback on how to include this
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concept in their explanations. In the course described in this
study, instructors repeatedly emphasized the importance of
representing mutation as the source of variation; yet after re-
peated opportunities for practice and feedback, only 65% of
students in the course incorporated mutation into their final
exam models, and only 35% appropriately used it to explain
the origin of new alleles (Table 3). We recognize that not all
strategies for providing feedback are equally effective (Hattie
and Timperley, 2007) and that it may be necessary to critically
evaluate the efficacy of different mechanisms of feedback that
help students incorporate this concept into their explanatory
frameworks.

Student Models of the Origin of Variation Become
More Meaningful over Time
Students’ final models, overall, better conveyed the function
that was required in the prompt (representing variation in a
population and the origin of this variation; Figure 2). Previ-
ous comprehensive analysis of all propositions in students’
models had revealed that the biological accuracy of indi-
vidual propositions within models increased throughout the
semester (Dauer et al., 2013). Our results support the hypothe-
sis that, as students’ language in defining individual relation-
ships among structures became more accurate, their ability
to represent the overall system function also improved.

These results were not uniform across student groups. For
students who incorporated mutation into both models (group
1), the accuracy of propositions containing the mutation con-
cept did not significantly change between the midterm and
the final exam (Table 5). We observed, however, that students
who did not incorporate mutation on the midterm but only
on the final exam (group 2) used less accurate propositions
than their group 1 peers. While this difference did not appear
to be statistically significant, the p value was close enough to
significance level (p = 0.06, α = 0.05) to warrant discussion of
this outcome. It is possible that students who added mutation
to their models late in the semester were still tentative on how
to incorporate it. We may interpret this difference in terms of
stages of cognitive structure development, which proceeds by
accretion—addition of new concepts to existing knowledge—
followed by restructuring and tuning, major rearrangements
and minor refinements of the network of relationships among
new and old concepts (Vosniadou and Brewer, 1987; Pearsall
et al., 1997; Dauer et al., 2013). At midterm, group 1 students
had already added mutation to their cognitive structure and
accommodated it within the network of relationships among
concepts in their evolution reasoning framework. Group 2
students added mutation later, and at the time of the final
exam, they were still possibly tuning or restructuring their
conceptual models to accommodate the new concept; their
propositions, thus, were less accurate than those of group 1.

In this study, we compared students’ GtE models of two
different systems with clearly distinct surface features. At
midterm, students modeled evolution of DDT resistance in
mosquito populations (an instance of trait gain); on the final
exam, the model context was that of a deleterious mutation in
wolves, causing loss of ability to effectively walk and hunt (an
instance of trait loss), which persisted due to isolation and in-
breeding. Surface item features have been shown to affect the
frequency of naı̈ve and key concepts of evolution in students’
constructed explanations (Nehm and Ha, 2011). Generally,

students tend to include fewer key concepts and more naı̈ve
conceptions in cases of trait loss than in cases of trait gain, al-
though the differences are less pronounced in within-species
contexts. On the basis of this evidence, we would have pre-
dicted that students may incorporate mutation with similar
or lower frequency in their final (wolf, trait loss) than in their
midterm (mosquito, trait gain) model. The higher frequency
that we observed on the final exam’s models, therefore, may
be attributed to learning. It is possible, however, that the fre-
quency of the mutation concept may have been even higher
on the final exam, had a trait-gain problem been presented.
Future studies with a split-plot design in which distinct sur-
face features are tested simultaneously may provide further
insight.

Course instructors did not specifically address whether
mutation should be represented as a structure or as a behavior
and did not evaluate students’ models differently based on
this choice. We observed, on the final exam model, a shift to-
ward using mutation as a behavior as opposed to a structure
(Table 4). One possible explanation for this shift is that the
student models shown as examples in the postmidterm feed-
back activity happened to have mutation placed on arrows
(Figure S3). Students may have interpreted that as a sug-
gestion for improvement. Alternatively, we could interpret
students’ later preference for placing mutation on arrows as
an indication of a better appropriation of the concept and of
biological language. Mutation is, in fact, a mechanism, and as
such, it is more appropriately represented as a behavior (not
as a physical structure) of the system. Although it is common
among practicing biologists to refer to an altered genetic se-
quence as a mutation, in the context of introductory biology,
we did not explore with students the nuances of the term in
its various applications. Moreover, we observed that when
using “mutation” as a structure, students typically would
construct propositions like “mutation changes the nucleotide
sequence” or “mutation creates a new allele,” wherein muta-
tion was represented as an abstract agent causing a change.
In this context, we interpreted students’ shift toward placing
mutation on arrows rather than in boxes as an example of
their progress toward a more accurate understanding.

Mechanistic Reasoning about Mutation Emerges in
Models More Than in Short Answers
A segment of the class population was consistent in the qual-
ity of their reasoning about mutation across their models and
short answers (Figure 3). The vast majority of students who
mentioned mutation in their short answers but not in their
models (Figure 3C) did so at a basic level. This suggests that
their understanding of mutation still may have been weak
and poorly integrated within their knowledge structure. Stu-
dents were able to use the word “mutation” in their short
answers without further qualifying the concept or explaining
how mutation led to variation, but could not do the same in
models. Incorporating a concept in a model, in fact, requires
building at a minimum one meaningful connection to another
concept.

At the other end of the spectrum, we observed a group of
students who incorporated mutation at the best possible level
in their models but failed to meet the same high explanatory
standard in their short answers. Again, this suggests that the
format of the modeling task is more conducive for eliciting
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causal and mechanistic reasoning than a short answer, even
in the presence of a solid understanding. Nieswandt and Bel-
lomo (2009) came to similar conclusions: students’ written re-
sponses about evolution had a fairly low explanatory power
and failed to display “schematic knowledge” (the why of a
system).

Our finding that students’ written responses tend to be
less conducive to mechanistic reasoning than models may
represent a limitation of this study, since we did not coach
students to write explanations. In an instructional context in
which explanations as a form of assessment are appropriately
scaffolded (McNeill et al., 2006), we might expect students to
better articulate causal and mechanistic reasoning.

Implications for Teaching and Learning
Despite numerous calls for integrating evolutionary reason-
ing across the curriculum (American Association for the Ad-
vancement of Science [AAAS], 2011; Olson and Labov, 2012),
evolution teaching and learning remains largely fragmented.
Traditional textbooks and curricula present evolution as a
discrete topic and provide few opportunities for students to
practice making the conceptual connections across levels of
biological organization necessary for a complete and accurate
understanding of evolution by natural selection (Nehm et al.,
2009). Instructional strategies that focus primarily on memo-
rizing content while following textbook-driven compartmen-
talization of concepts do not promote the kinds of reasoning
necessary to make sense of complex biological problems (Na-
tional Research Council, 2003).

Learning about biology from a systems perspective is in-
creasingly recognized as both a challenge and a priority
(AAAS, 2011). In this course, we implemented a model-based
pedagogy grounded in the cognitive sciences and aimed
at fostering integrative and systems thinking. SBF models
proved a suitable system representation tool, because this
syntax overcame several limitations of concept maps (Tripto
et al., 2013). The modeling approach we described in this and
other studies (Dauer et al., 2013; Long et al., 2014) promotes in-
tegrative thinking, as it requires students to repeatedly articu-
late the connections between genetics and evolution in a num-
ber of different contexts. Additional strategies that promote
integration of genetics and evolution are grounded in using
authentic DNA sequences (Kalinowski et al., 2010) and case
studies (White et al., 2013) incorporating well-characterized
genetic mutations, the resulting phenotypes, and known evo-
lutionary outcomes.

Along with instruction that promotes integrative thinking,
assessment needs to both elicit student reasoning across lev-
els of organization and serve as a source for frequent forma-
tive feedback in support of meaningful learning and pro-
gressive restructuring and tuning of students’ knowledge
frameworks. Using models as an assessment tool allowed in-
structors to rapidly gauge students’ understanding of mech-
anisms and functions and to provide timely and targeted
feedback. Student models illuminated aspects of their think-
ing we might have otherwise missed had we exclusively re-
lied on other types of constructed-response assessments such
as written explanations.

In summary, we advocate evolution instruction that 1) ex-
plicitly connects molecular-level processes to organism- and
population-level events in the context of multiple gene-to-

evolution cases; 2) relies on modes of assessment, such as
conceptual modeling, that promote and reveal student rea-
soning about the causes and mechanisms underlying evolu-
tion by natural selection; and 3) iteratively provides oppor-
tunities for students to practice constructing and using their
explanatory frameworks and to receive formative feedback
on their thinking.
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