Table of Contents

FEATURES

WWW.Life Sciences Education
Darwin on the Web: Resources for Darwin 200 and Beyond
Louisa A. Stark ... 1–6

Educator Highlight
Ron Hoy
Interviewed by Laura L. Mays Hoopes .. 7–8

Current Insights
Recent Research in Science Teaching and Learning
Erin Dolan .. 9–10

Book Review
It Isn’t Easy Glowing Green
Jennifer Loertscher .. 11–12

Book Review
A Crash Course in Evolution
Karen Kalumuck .. 13–14

ESSAY

Enhancing Interdisciplinary, Mathematics, and Physical Science in an Undergraduate Life Science Program through Physical Chemistry
David P. Pursell ... 15–28

ARTICLES

A Combination of Hand-held Models and Computer Imaging Programs Helps Students Answer Oral Questions about Molecular Structure and Function: A Controlled Investigation of Student Learning
Michelle A. Harris, Ronald F. Peck, Shannon Colton, Jennifer Morris, Elias Chaibub Neto, and Julie Kallio 29–43

Minimal Impact of Organic Chemistry Prerequisite on Student Performance in Introductory Biochemistry
Robin Wright, Sehoya Cotner, and Amy Winkel ... 44–54

Can an Inquiry Approach Improve College Student Learning in a Teaching Laboratory?
Steven W. Rissing and John G. Cogan ... 55–61

High School Intervention for Influenza Biology and Epidemics/Pandemics: Impact on Conceptual Understanding among Adolescents
Nancy Dumais and Abdelkrim Hasni ... 62–71

Evaluation of the Redesign of an Undergraduate Cell Biology Course
Laura April McEwen, dik Harris, Richard F. Schmid, Jackie Vogel, Tamara Western, and Paul Harrison 72–78

Stem Cells and Society: An Undergraduate Course Exploring the Intersections among Science, Religion, and Law
Chris Pierret and Patricia Friedrichsen ... 79–87

On the Cover

Cover shows a hand-held physical model of a heterotrimeric G-protein, made from coordinates in the Protein Data Bank. The Go subunit is shown in white, the Gi subunit in blue, and the Gs subunit in yellow. The bound GDP is not visible in the picture angle shown. In the article on p. 29, Harris et al. demonstrate the learning value of such models in conjunction with 2D computer representations from a molecular imaging program in helping students understand the 3D protein structure-function relationships.