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The choice of pedagogy in statistics should take advantage of the quantitative capabilities and
scientific background of the students. In this article, we propose a model for a statistics course
that assumes student competency in calculus and a broadening knowledge in biology. We
illustrate our methods and practices through examples from the curriculum.

INTRODUCTION

When considering quantitative training for the next generation
of scholars, the most persistently requested advanced skills
expressed by the research-active life scientists at the University
of Arizona are the use of statistics and comfort with calculus.
Consequently, one centerpiece for the curricular activities at
the University of Arizona is the development of three core
mathematics courses–a two-semester-long sequence that inte-
grates calculus and differential equations and, based upon that
knowledge, a one-semester-long course in statistics.

Benefiting from changes in approach in the calculus and
differential equations course, students enrolled in the sta-
tistics course are acquainted and have some facility with
open-ended questions. In addition, because these students are
typically juniors and seniors, they bring a much broader
knowledge base in the life sciences than they had when they
entered the calculus classroom for the first time.

Most life science students, presumed to be proficient in
college algebra, are taught a variety of procedures and stan-
dard tests under a well-developed pedagogy. This approach
is sufficiently refined so that students have a good intuitive
understanding of the underlying principles presented in the
course. However, if the needs presented by the science fall
outside the battery of methods presented in the standard

curriculum, then students are typically at a loss to adjust the
procedures to accommodate the additional demand.

On the other hand, mathematics students frequently have
a course in the theory of statistics as a part of their under-
graduate program of study. In this case, the standard cur-
riculum repeatedly finds itself close to the very practically
minded subject that statistics is. However, the demands of
the syllabus provide very little time to explore these appli-
cations with any sustained attention.

Our goal for life science students at the University of Ari-
zona is to find a middle ground. In their overview “Under-
graduate Statistics Education and the National Science Foun-
dation,” Hall and Rowell (2008) note that statistics education
reformers have until recently overlooked the issues associated
with an introductory postcalculus statistics curriculum. Their
notable exceptions are the data-oriented active-learning ap-
proach of Rossman and Chance (2004), Virtual Laboratories in
Statistics by Siegrist (2004), and case studies–based approaches
to teach mathematical statistics (Nolan and Speed, 1999, 2000).

Despite the fact that calculus is a routine tool in the devel-
opment of statistics, the benefits to students who have learned
calculus are very rarely used in the statistics curriculum for
undergraduate biology students. Our objective is to meet this
need with a one-semester course in statistics that moves for-
ward in recognition of the coherent body of knowledge pro-
vided by statistical theory having an eye consistently on the
application of the subject. Even though such a course may not
be able to achieve the same degree of completeness now pre-
sented by the two more standard courses described above, the
question is whether it leaves the student capable of under-
standing what statistical thinking is, understanding how to
integrate this with scientific procedures and quantitative mod-
eling, how to ask statistics experts productive questions, and
how to implement their ideas using statistical software and
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other computational tools. For a thoughtful essay on these
issues, see Nolan and Lang (2009).

The efforts described above, despite having similar goals,
arrive at very different approaches. In this article, we shall
introduce the course at the University of Arizona with an
annotated syllabus and through classroom examples, take
home assignments, and end-of-the-semester projects.

AN ANNOTATED SYLLABUS

The four parts of the course—organizing and collecting
data, an introduction to probability, estimation procedures,
and hypothesis testing—are the standard building blocks of
many statistics courses. This section highlights some of the
features of a calculus-based course.

Organizing and Collecting Data
Much of this is standard and essential—organizing categor-
ical and quantitative data, appropriately displayed as bar
charts, histograms, boxplots, time plots, and scatterplots,
and summarized using medians, quartiles, means, weighted
means, trimmed means, standard deviations, and regression
lines. We use this as an opportunity to introduce students to
the statistical software package R (R Development Core
Team, 2009) and to add additional summaries like the em-
pirical cumulative distribution function and the empirical
survival function. One example integrating the use of this is
the comparison of the lifetimes of wild-type and transgenic
mosquitoes and a discussion of the best strategy to display
and summarize data if the goal is to examine the differences
in these two genotypes of mosquitoes in their ability to carry
and spread malaria. A bit later, we will do an integration by
parts exercise to show that the mean lifetime of the mosqui-
toes is the area under the survival function.

Collecting data under a good design is introduced early in
the course, and discussion of the underlying principles of
experimental design is an abiding issue throughout this
course. With each new mathematical or statistical concept
comes an enhanced understanding of what an experiment
might uncover through a more sophisticated design than
what was previously thought possible. The students are
given readings on design of experiment and examples using
R to create simple and stratified random samples. The rec-
ommended lecture is to tell a story that illustrates how these
issues appear in personal research activities.

Introduction to Probability
Probability theory is the analysis of random phenomena. It
is built on the axioms of probability and is explored, for
example, through the introduction of random variables. The
goal of probability theory is to uncover properties arising
from the phenomena under study. Statistics is devoted to the
analysis of data. The goal of statistical theory is to articulate
as well as possible what model of random phenomena un-
derlies the production of the data. The focus of this section
of the course is to develop those probabilistic ideas that
relate most directly to the needs of statistics.

Thus, we must study the axioms of probability to the
extent that the students understand conditional probability
and independence. Conditional probability is necessary to

develop Bayes formula, which we will later use to give a
taste of the Bayesian approach to statistics. Independence
will be needed to describe the likelihood function in the case
of an experimental design that is based on independent
observations. Densities for continuous random variables
and mass function for discrete random variables are neces-
sary to write these likelihood functions explicitly. Expecta-
tion will be used to standardize a sample sum or sample
mean and to perform method of moments estimates.

Random variables are developed for a variety of reasons.
Some, like the Poisson random variable or the gamma random
variable, arise from considerations based on Bernoulli trials or
exponential waiting. The hypergeometric random variable
helps us understand the difference between sampling with and
without replacement. The F, t, and �2 random variables will
later become test statistics. Uniform random variables are the
ones simulated by random number generators. Because of the
central limit theorem, the normal family is the most important
among the list of parametric families of random variables.

The flavor of the course returns to becoming more authen-
tically statistical with the law of large numbers and the
central limit theorem. These are largely developed using
simulation explorations and first applied to simple Monte
Carlo techniques and importance sampling to evaluate inte-
grals. One cautionary tale is an example of the failure of
these simulation techniques when applied without careful
analysis. If one uses, for example, Cauchy random variables
in the evaluation of some quantity, then the simulated sam-
ple means can appear to be converging only to experience an
abrupt and unpredictable jump. The lack of convergence of
an improper integral reveals the difficulty.

The central object of study is, of course, the central limit
theorem. It is developed both in terms of sample sums and
sample means and used in relatively standard ways to esti-
mate probabilities. However, in this course, we can intro-
duce the delta method, which adds ideas associated to the
central limit theorem to the context of propagation of error.

Estimation Procedures
In the simplest possible terms, the goal of estimation theory
is to answer the question: What is that number? An estimator
is a statistic (i.e., a function of the data). We look to two types
of estimation techniques—method of moments and maxi-
mum likelihood and several criteria for an estimator (e.g.,
bias and variance). Several examples including capture-re-
capture and the distribution of fitness effects are developed
for both types of estimators. The variance is estimated using
the delta method for method of moments estimators and using
Fisher information for maximum likelihood estimators. An
analysis of bias is based on quadratic Taylor series approxima-
tions and the properties of expectations. R is routinely used in
simulations to gain insight into the quality of estimators.

The point estimation techniques are followed by interval
estimation and, notably, by confidence intervals. This brings
us to the familiar one- and two-sample t intervals for pop-
ulation means and one- and two-sample z intervals for pop-
ulation proportions. In addition, we can return to the delta
method and the observed Fisher information to construct
confidence intervals associated, respectively, with method of
moment estimators and maximum likelihood estimators.
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Hypothesis Testing
For hypothesis testing, we begin with the central issues—
null and alternative hypotheses, type I and type II errors,
test statistics and critical regions, significance, and power.
We begin with the ideas of likelihood ratio tests as best tests
for a simple hypothesis. This is motivated by a game. Ex-
tensions of this result, known as the Neyman Pearson
lemma, form the basis for the t test for means, the �2 test for
goodness of fit, and the F test for analysis of variance. These
results follow from the application of optimization tech-
niques from calculus, including Langrange multiplier tech-
niques to develop goodness of fit tests.

The desire of a powerful test is articulated in a variety of
ways. In engineering terms, power is called sensitivity. We
illustrate this with a radon detector. An insensitive instru-
ment is a risky purchase. This can be either because the
instrument is substandard in the detection of fluctuations or
poor in the statistical test that results in an algorithm to
announce a change in radon level. An insensitive detector
has the undesirable property of not sounding its alarm when
the radon level has indeed risen.

The course ends by looking at the logic of hypotheses
testing and the results of different likelihood ratio analyses
applied to a variety of experimental designs. The delta
method allows us to extend the resulting test statistics to
multivariate nonlinear transformations of the data.

EXAMPLES FROM THE CURRICULUM

In this section, we describe three examples from the Univer-
sity of Arizona course. These examples are presented to
highlight how a calculus-based course differs from an alge-
bra-based course. These abbreviated descriptions cannot
bring the same sense of background preparation or the
breadth of issues under consideration that a student experi-
ences in the classroom. Consequently, more detailed notes
are available from the author upon request.

For the first two examples, we begin with the presentation
seen in a typical algebra-based statistics course and then
provide extensions of these ideas that are possible for those
students who have good calculus skills. The third example
describes a strategy to introduce the concept of likelihood. In
subsequent classes, the students will use this as motivation
for the rationale for the optimization problems in the devel-
opment of likelihood ratio tests.

Extensions on Regression
Given observations (x1, y1), (x2, y2), …(xn, yn), ordinary linear
regression has as its goal to find the best linear fit g(x��, �) �
� � �x to the data. The least squares criterion refers to the
minimization of the sum of squares

SS��, �� � �
i � 1

n

�yi � g �xi � �, ���2

over all real parameter values � and �. Calling �̂ and �̂ the
values that achieve this minimum, we obtain the regression
line

ŷi � �̂ � �̂xi

fit to the response �i. Ordinary linear regression is a staple of
any introductory statistics course [see, e.g., Moore et al. (2007)
or Agresti and Franklin (2008)]. Students compute regression
lines using software or a formula and learn to check the ap-
propriateness of the regression line by examining the residuals
(i.e., the differences between the data and the fit). In-
formally, a good fit would show no structure in the residual
plot. Two departures from this are common. Either

• the size of the residuals depends on x, or
• the sign of the residuals depends on x.

The goal here is to have the ability to extend the use of
regression beyond the formulas and qualitative reasoning.
To address the first case above, we can modify the least
squares criterion and solve a weighted least squares regres-
sion with weight function w,

SSw��, �� � �
i � 1

n

w�xi��yi � g�xi � �, ���2.

Later in the course, after the students have learned about
maximum likelihood estimation, they learn that the weights
should often be chosen to be inversely proportional to the
variance of the residual.

Here, we focus on the second case in which the scatter-
plots display a curved relationship. With the tools of college
algebra, this relationship can be transformed to be suitable
for linear regression by guessing the relationship and apply-
ing the inverse transformation to the response variable. This
is seen most frequently in scatterplots of a quantity over
time exhibiting exponential growth or decay. Thus, we take
the logarithm of the response variable and proceed.

This strategy is sometimes too superficial to be successful.
For students who have been acquainted with differential
equations, we can consider a common chemical reaction,

E � S^
k � 1

k1

ES3
k2

E � P

Here E is an enzyme, S is the substrate, ES is the substrate-
bound enzyme, and P is the product. The production rate,
V � d[P]/dt, of the product is measured for five different
concentrations [S] of the substrate to obtain the following
data: (See Figure 1.)

Naive attempts to give a transformation that yields a linear
relationship are unlikely to succeed. Despite intense specu-
lation, students have never been able to guess correctly. A
model-based approach is needed. With this in mind, we
begin with the law of mass action to obtain differential
equations for the concentrations

d�ES�

dt
� k1�E��S� � �k � 1 � k2��ES� and

d�P�

dt
� k2�ES�.

The strategy used by Michaelis and Menten applies to situ-
ations in which the concentration of the substrate-bound

J. C. Watkins

CBE—Life Sciences Education300



enzyme (and hence also the unbound enzyme) change much
more slowly than those of the product and substrate. If, by
measuring the change of [ES] directly over time or by argu-
ing that if the concentration of enzyme [E] is small compared
with the concentration of substrate [S], we find that

0 �
d�ES�

dt
and, thus, �E��S� � Km�ES� where Km �

k � 1 � k2

k1
,

the Michaelis constant. Equipped with these ideas, we find
after some algebraic manipulation, the well-known Line-
weaver-Burk double reciprocal plot

1
V

�
Km � �S�

Vmax�S�
�

Km

Vmax

1
�S�

�
1

Vmax
.

In this way, we have found that the desired linear relation-
ship is between 1/V and 1/[S]. We can now perform ordi-
nary least squares on the transformed data and estimate
Vmax, the maximum rate of production, and Km. [See, for
example, Nelson and Cox (2005), pp. 204–210.]

However, this classical approach to estimation is no
longer considered satisfactory (Piegorsch and Bailer, 2005).
Examination of residual plots reveals the drawback—the
residuals measured as the reciprocal of the concentration
become magnified for very small concentrations. Conse-
quently, the preferred method is to use a nonlinear least
squares criterion. In this case, given data (V1, [S]1), (V2, [S]2),
… (Vn, [S]n), find the values of Vmax and [S] that minimize

SS�Vmax, Km� � �
j � 1

n

�Vj � g��S�j � Vmax, Km��2

where

g��S� � Vmax, Km� � Vmax

�S�

Km � �S�
.

This minimization problem does not yield explicit equations
for the estimators and Rather than embarking

on a minicourse on numerical techniques for optimization,
we use this opportunity to discuss the intricacies of the
nonlinear regression analysis and strategies to engage an
expert in statistical science on the science, the experimental
protocol, and the data.

One of the aspects of any new course is the understand-
able uncertainty by the students that the approaches pre-
sented in class have applicability to questions of their own
concern. Thus, in the problem sets, we ask the students to
use the ideas presented in lecture and make substantial use
of them in another biological context. In this case, the ideas
on nonlinear transformations are further explored by the
students in the following question addressed by Wiehe and
Stephan (1993):

Due to selection, neutral sites near genes are hitchhiked
along with the gene to higher levels in the population until
a recombination event separates the neutral site from the
selected gene. This reduces the diversity of the genome near
genes. The nucleotide diversity � versus recombination rate
	 is given for 17 gene regions in Drosophila melanoganster.
After a short amount of reasoning based on the nature of
recombination and selection, the students learn the relation-
ship

� �
�	

� � 	
.

This expression is also amenable to a Lineweaver-Burk dou-
ble reciprocal plot. Thus, we rewrite this expression as

1
�

�
�

�

1
	

�
1
�

,

a linear expression in the variables 1/� and 1/	. As the
scatterplot of these reciprocal variables in Figure 2 shows,
we can see that the correlation is not very high. In this case,
strength of selection is a good candidate for a hidden or
lurking variable. In this data set, we are likely looking at
genes that range from small selection that will not reduce
diversity much to large selection that will. In the same way
that estimated value of Vmax gives the reaction rate at high
concentration of the substrate, the estimated value of � gives
the nucleotide diversity at recombination distances 	 far
away from genes. This value gives a sense of the intrinsic
diversity of the Drosophila genome due solely to the effects of
neutral mutation and demographic history.

The Central Limit Theorem, Propagation of Error,
and the Delta Method
George Polya (1920) used the phrase the central limit theo-
rem because of its centrality to the theory of probability. In
simple terms, the central limit theorem states that, irrespec-
tive of the distribution of the observations from a simple
random sample, its sample mean has, for sufficiently

many observations, approximately a normal distribution.
Many of the commonly used hypotheses rely on a test
statistic that is based on the normal distribution. Thus, the
use of the t test, the �2 test, and the analysis of variance F test
depends on the appropriateness of the normal distribution

Figure 1. Michaelis–Menten kinetics. Measurements of production
rate V � d[P]/dt versus [S], substrate concentration.
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as an approximation for the distribution of sample means
computed from the data. So, understanding the use of these
statistics depends in part on grasping the logic behind the
central limit theorem.

Unfortunately, the best proofs of the central limit theorem
rely on indirect and sophisticated methods. Moreover, these
proofs yield very little insight into the emergence, with an
increasing number of observations, of the bell curve for the
distribution of Consequently, rather than proving the

central limit theorem in an introductory statistics course at
this level, the typical pedagogical choice is to use graphical
and other empirical methods to convey the key ideas (see
Ross (2009) or Pitman (1999) for a proof).

Most elementary courses dedicate a week to the under-
standing of the central limit theorem. This development
might culminate with a graph like that seen in Figure 3. This
shows the standardization of random variables and relates it

to the test statistics that the students will later encounter in
the study of hypothesis testing. This can then be used to
estimate probabilities for X� by evaluating z scores.

The extension we can have in a calculus-based course is
motivated by interest in nonlinear transformations of the
measured quantities. Some physics, chemistry, and engi-
neering students have seen a bit of this in the study of
propagation of error (see, e.g., Meyer [1975], Bevington and
Robinson [2002]). Having investigated the properties of vari-
ance and covariance in the context of the independence of
random variables, the goal is to combine the benefits of the
central limit theorem and the propagation of error analyses.

After investigating some one-dimensional examples like
those seen in Figure 4, the students are prepared to examine
a more sophisticated example. For this, we consider a sug-
gestion by Powell (2007) to questions in avian biology. To
introduce one of his examples, define the fecundity B as the
mean number of female fledglings per year. Then, B is a
product of three quantities,

B � F � p � N,

where F equals the mean number of female fledglings per
successful nest, p equals nest survival probability, and N
equals the mean number of nests built per female per year.
Let’s collect measurements on n1 nests to count female fledg-
lings in a successful nest, check n2 nests for survival proba-
bility, and follow n3 females to count the number of success-
ful nests per year. To begin, assume that the experimental
design is structured so that measurements are independent.

A critical value for B is 1. If B is greater than 1, then the
population grows over time. If it is less than 1, then the
population is headed toward extinction. So, for example, if
our estimate B̂ � 1.03, then we may or may not be confident
that the actual value of B is greater than 1 depending on the
way the estimator B̂ distributes its values.

The central limit theorem can directly determine appropriate
normal distributions to approximate F� , the sample mean of the
number of female fledglings per successful nest, p̂, the sample
proportion of surviving nests, and N� , the sample mean number
of nests built per female per year. If our estimate B̂ of the
fecundity is the product of these three numbers, then what is a
good approximation for the distribution of this statistic?

Propagation of error analysis suggests that we find a
linear approximation to B. Because the measurements for F,

Figure 2. Double reciprocal plot for genetic hitchhiking. 1/�
versus 1/	. The regression line y intercept is 277.8, giving an
estimate � 1/ 277.8 � 0.0036.

Figure 3. Displaying the central limit theo-
rem graphically. Density of the standardized
version of the sum of n independent exponen-
tial random variables for n � 2 (dark blue), 4
(green), 8 (red), 16 (light blue), and 32 (ma-
genta). Note how the skewness of the exponen-
tial distribution slowly gives way to the bell
curve shape of the normal distribution.
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p, and N are independent, then 
B
2, the variance of B̂ is easy

to approximate. This solution give us the size of the error,
but we do not yet know its distribution.

The delta method extends the propagation of error analysis
by noting that, by the central limit theorem, the random quan-
tity given by the linear approximation can be approximated by
a normal distribution. Returning to the question of estimating
fecundity, the delta method tells us that B̂ can be approximated by
a normal distribution. The variance can be determined from 
F

2,
the variance in the fecundity measurement and 
N

2, the variance in
the number of nests built per adult female per year. By combining
this information, we derive in the class an expression that high-
lights in the contribution to the variance in the estimate of fecun-
dity originating from each of the three measurements:


B̂
2

B2 �
1
n1


F
2

F2 �
1
n2

1 � p
p

�
1
n3


N
2

N2.

This formula now plays an essential role in settling on a data
collecting protocol. With a goal to bring the standard devi-
ation 
B down as much as possible given available resources,
the choices of n1, n2, and n3 are under control of the biolo-
gists. In addition, if independence of observations between the
estimation of F, p, and N is an issue, we can extend the prop-
agation of error and with it the delta method by including the
covariances between the pairs of the sets of observations.

This application of the calculus greatly extends the appli-
cability of the central limit theorem in the practical applica-
tion of statistics. This idea is explored by the students who
apply the delta method to describe the estimator for the focal
length f of a convex lens based on repeated measurement of
the distance, s1, to an object and the distance, s2, to its image
using the thin lens formula,

1
f

�
1
s1

�
1
s2

.

(See Figure 5.)
The appearances of the delta method do not end here. We

shall use this technique to determine the variance for a
method of moments estimator. Later, we can use these ideas
to construct test statistics for hypothesis tests beyond those
generally encountered in more elementary courses.

Likelihood Ratios
The study of statistical hypotheses begins with a shot of
jargon that will take a student some time to absorb. Under-
standing the terminology is important because it codifies the

Figure 4. Illustrating the delta method. Here the mean � � EX �
1.5 and the blue curve h(x) � x2. Thus, is approximately normal

with mean close to 2.25 and . The bell curve on the y axis

is the reflection of the bell curve on the x axis about the (black)
tangent line y � h(�) � h�(�)(x 	 �).

Figure 5. Simulating a sampling distribution for the estimate of
focal length. In this example, the distance from a convex lens to an
object s1 � 12 cm and to its image s2 � 15 cm. The standard
deviation of the measurement is 0.1 cm for s1 and 0.5 cm for s2.
Based on 25 measurements each for s1 and s2, the delta method gives
0.0207 for the standard deviation of the estimate for f. This agrees to
three decimal places with the value based on the 1000 simulations
summarized in the histogram above. The bell curve shape shows the
quality of an approximation to a normal random variable.
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relationship between hypothesis testing and scientific advance-
ment. Under a simple hypothesis, we write the test as:

H0 : data are from distribution 0

versus H1 : data are from distribution 1.

H0 is called the null hypothesis. H1 is called the alternative
hypothesis. The possible actions are:

• Reject the hypothesis. Rejecting the hypothesis when it is
true is called a type I error or a false positive. Its proba-
bility � is called the size of the test or the significance level.

• Fail to reject the hypothesis. Failing to reject the hypoth-
esis when it is false is called a type II error or a false
negative. If the false negative probability is �, then the
power of the test is 1 	 �.

The rejection of the hypothesis is based on whether or not
the data X land in a critical region C. Thus,

reject H0 if and only if X � C.

Given a choice � for the size of the test, a critical region C is
called best or most powerful if it has the lowest probability
of a type II error among all regions that have size � (Table 1).

� � P
X � C � H1 is true}

To see whether the students can discover on their own the
best possible test, we play a game. The goal here is to
establish a foundation for the fundamental role of likelihood
ratios. This will form the rationale behind the optimization
problems that must be solved in order to derive likelihood
ratio tests. Both the null hypothesis (our side) and the alter-
native hypothesis (our opponent) are given 100 points
among the values for the data X that run from 	11 to 11.
These are our likelihood functions. These can be created and
displayed quickly in R using the commands:

� x�-c(	11:11)
� L0�-c(0,0:10,9:0,0)
� L1�-sample(L0,length(L0))
� data.frame(x,L0,L1)
Thus L1 is a random rearrangement of the values in L0.

Here is the output from one simulation.
The goal of this game is to pick values x so that your

accumulated points increase as quickly as possible from

your likelihood L0, keeping your opponent’s points from L1
as low as possible. The natural start is to pick values of x so
that L1 (x) � 0. Then, the points you collect begin to add up
without your opponent gaining anything.

Being ahead by a score of 23–0 can be translated into a best
critical region in the following way. If we take as our critical
region C all the values for x except 	2, 3, 5, and 7, then, the size
of the test � � 0.77 and the power of the test 1 	 � � 1.00
because there is no chance of type II error with this critical
region.

Understanding the next choice is crucial. Candidates
are

x � 4, with L0�4� � 6 against L1�4� � 1 and

x � 1, with L0�1� � 9 against L1�1� � 2.

After some discussion, the class will come to the conclusion
that having a high ratio is more valuable than having a high
difference. The choice 6 against 1 is better than 9 against 2
because choosing 6 against 1 twice will put us in a better
place than the single choice of 9 against 2. Now we can pick
the next few candidates, keeping track of the size and the
power of the test with the choice of critical region being the
values of x not yet chosen (see Table 2).

From this exercise we see how the likelihood ratio test is
the choice for a most powerful test. This is more carefully
described in the Neyman-Pearson lemma [See Hoel et al.
(1972) and Hogg and Tanis (2009)].

Neyman Pearson Lemma
Let L0 denote the likelihood function for the random vari-
able X corresponding to H0 and L1 denote the likelihood
function for the random variable X corresponding to H1. If
there exists a critical region C of size � and a nonnegative
constant k such that

L1�x�

L0�x�
� k for x � C and

L1�x�

L0�x�
 k for x�C,

then C is the most powerful critical region of size �.
Using R, we can complete the table for L0 total and L1 total.
� o�-order(L1/L0)
� sumL0�-cumsum(L0[o])
� sumL1�-cumsum(L1[o])
� alpha�-1-sumL0/100
� beta�-sumL1/100
� data.frame(x[o],L0[o],L1[o],
� sumL0,sumL1,alpha,1-beta)
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Completing the curve, known as the receiver operator
characteristic (ROC), is shown in Figure 6. The ROC can be
used to discuss the inevitable trade-offs between type I and
type II errors. For example, by the mere fact that the graph
is increasing, we can see that by setting a more rigorous test
achieved by lowering the level of significance (decreasing
the value on the horizontal axis) necessarily reduces the
power (decreasing the value on the vertical axis) [see, e.g.,
Zweig and Campbell (1993)].

Now the students are prepared to understand the rea-
soning behind the use of critical values for the t statistic,
the �2 statistic, or the F statistic as related to the critical
value k in extensions of the ideas of likelihood ratios
and can extend the likelihood ratio tests to more novel
situations.

These examples have been presented here in such a way as
to emphasize transitions from the use of algebra to the use of
calculus in the learning of concepts in statistics. However,
students do not notice such a shift in the sense that they
do not see calculus as a special tool. Limits need to be
evaluated, rates change, areas under curves need to be
determined, functions need to be maximized, and their
concavity needs to be assessed. Moreover, calculus is

more than a powerful computational tool: it provides a
way of thinking that enhances the students’ view of what
is possible. I asked a student how much is calculus used in
the course. The answer she gave, “So much we don’t think
about it,“ is a goal for this course.

For many years, quantitative subjects as diverse as physics
and economics have developed distinct pedagogies for an
algebra-based and for a calculus-based course. For example,
Newton’s second law applied to projectile motion or to the
motion of springs gives, for the calculus student, simple
differential equations from which the basic algebraic or trig-
onometric relationships for the variables position, velocity,
acceleration, and time can be derived. For the algebra stu-
dent, these relationships have to be taken on faith. In a
similar way, students can receive a more comprehensive and
elegant understanding of the fundamental principles of sta-
tistical science if they are equipped with a working knowl-
edge of calculus.

PROJECT DESCRIPTIONS

One important feature of the course is the end-of-the-semes-
ter project. Typically for this assignment, students work in
pairs. All of the suggested projects are based on research
activities that have taken place at the University of Arizona,
and all of the projects require statistical analyses beyond the
methods presented in the course. This gives the students the
opportunity to work as a team on a project and to work with
one of the scientists (typically a graduate student or post-
doctoral fellow) who was involved in the original research.
This way, the students obtain a first-hand account of the
fundamental questions that are meant to be addressed by
the research and learn how to use the ideas from their
statistics course and apply them to new situations. They
certainly see the nature of open-ended questions that are a
part of a research scientist’s daily life.

We describe two projects to give a sense of the breadth of
the choices from the point of view of both biology and
statistics.

Language and Genes in Sumba
Human populations and the languages that they speak
change over time. The movement of people and the inno-
vations they make in their languages are difficult to ob-
serve and quantify over short periods and impossible to
witness over long periods. Consequently, researchers
have been forced to undertake indirect approaches to
infer associations between human languages and human
genes. Many well-known studies focus their questions on
the movement of people on continental scales. These stud-

Figure 6. Receiver operator characteristic. The graph of
� P
X � C � H0 is true} (significance) versus 1 	 � � P{X �

C � H1 is true} (power) in the example. The horizontal axis � is also
called the false positive fraction (FPF). The vertical axis 1 	 � is also
called the true positive fraction (TPF).

Table 2: Results for Neyman-Peason game.
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ies led Diamond and Bellwood (2003) to suggest that
many of the correlations that we presently see in lan-
guages and genes result from the movement of prehistoric
farmers from the places in which these agricultural tech-
niques first arose.

Using the Indonesian island of Sumba as a test case,
Lansing et al. (2007) look to see the degree in which these
correlations can be seen at much smaller scales. Both genetic
and archeological evidence place the first migration of ana-
tomically modern humans in Southeast Asia and Oceana
between 40,000 and 45,000 years ago. Further archeological
evidence places the transition on Sumba from the original
hunter-gatherer technology to the neolithic technology be-
tween 3500 and 4000 years ago. At that time, a small number
of farmers speaking an Austronesian language likely came
into contact with resident foragers speaking presumably a
Papuan language.

To investigate the paternal histories of the Sumbanese,
Lansing et al. (2007) obtained genetic samples from 352 men
inhabiting eight villages. Their genetic information is de-
rived from the Y chromosome. Based on the Y Chromosome
Consortium worldwide genealogical tree of paternal ances-
try, haplogroup O appears to be associated with the expan-
sion of Austronesian societies from southeast Asia to Indo-
nesia and Oceana.

The linguistic data consist of 29 200-word Swadesh lists
from sites well distributed throughout the island. Swadesh
lists are built from words ascribed to meanings that are basic
to everyday life. Using the methodology of comparative
linguistics, some words from different language lists can be
traced to a common ancestral word. These techniques have
been used previously to construct a Proto-Austronesian
(PAn) language. In addition, a phylogenetic tree built from
these 29 word lists branches to form five major language

subgroups and leads us to the conclusion that the present
day Sumbanese all speak a language derived from a single
common ancestral Proto-Sumbanese. From this we can
count the number of words on the Swadesh word lists that
are derived from the PAn language. This information is
summarized in Figure 7 (Lansing et al., 2007).

Statistical Procedures
The Mantel test (Sokal and Rohlf, 1994) computes the sig-
nificance of the correlation between two positive symmet-
ric n  n matrices. The ij entry in a matrix is meant to give
a distance between sites i and j. Distance matrices M and
N are square and the calculations for the test are carried
out on the entries above the diagonal. The computation
yields a statistic:

Z � �
i � 1

n �
j � i � 1

n

Mij Nij

similar to the correlation statistic well known to the stu-
dents. The null hypothesis is that the observed relationship
between the two distance matrices could have been obtained
by any random arrangement of the observations.

In this example, we have n � 8 villages and three
measures of distance— geographic, linguistic, and genetic.
In previous correlation computations, changing one ob-
servation was not at all prohibited by the structure of the
problem. However, distance matrices are highly con-
strained. For example, if we change one entry in the
matrix by altering distance from one village to the next,
then we must also change other entries in the matrix to
compensate. These constraints force us to look for a re-
finement in the standard hypothesis testing procedure for
correlation.

Figure 7. Phylogenetic and geographic distri-
bution of languages and Y chromosome haplo-
groups.
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To see whether the value of Z is bigger than what we
might find by chance, we perform a permutation on one of
the matrices. For example, if we were to keep the labels on
the villages geographic distances in M and rearrange the
distances in the N matrix with a permutation �, then we
have a new statistic:

Z� � �
i � 1

n �
j � i � 1

n

Mij N��i��� j�.

If the alternative hypothesis holds, then Z is likely to be
bigger than most of the Z�. Indeed, the P value of the test is
a fraction of the Z� that are larger than Z. The results of these
tests are summarized in Table 3.

We next test the null assumption of no correlation be-
tween the fraction of O haplogroup men and retained
Swadesh list PAn cognates among the eight villages. The
alternative is that these two quantities are positively corre-
lated. A naive strategy to analyze the correlation in Figure 8
is to perform simple linear regression using software and
report the P value for a test of zero slope. This method
wastes much of the effort in collecting the substantial
amount of genetic and linguistic information necessary to
plot each of the points in Figure 8. We can tell that the

method is not most powerful in that if we were to double the
amount of data and obtain the same regression line, then the
P value remains the same.

An exact or even an approximate computation of the
distribution of correlation under the null hypothesis is dif-
ficult. Consequently a bootstrap analysis (Efron and Tib-
shirani, 1994) is used. Let p be the fraction of men through-
out all of Sumba typed as O haplogroup and let q be the
fraction of neutral words throughout all of Sumba that are
PAn cognates. Under the null hypothesis, the data from each
of the villages are independent Bernoulli trials based on
these parameters. The students know that, under these con-
ditions, the distribution of O haplogroup men and PAn
cognate words from each village will have binomial distri-
butions and can easily simulate them using R. What is
unknown are the actual values of p and q. The bootstrap
suggests that these two parameters should be estimated
from the actual data, estimations that the students have seen
in simpler contexts. Next, pseudodata should be simulated
repeatedly under the null hypothesis.

For each of the resulting bootstrap samples, the students
can compute the correlation. Repeat this procedure many
times to create the bootstrap distribution of correlation un-
der the null hypothesis. The bootstrapped P value, 0.047,
for the test of no correlation is simply the fraction of
bootstrap correlations greater than 0.627, the observed
value of correlation.

Force-dependent Kinetic Models for Single Molecules
One of the most widely used relations in chemistry is the
Arrhenius relation,

k � exp �
�G‡

kBT
.

Here k is a reaction rate, kB is Boltzmann’s constant, T is the
absolute temperature, and �G‡ is the free energy (see, Nel-
son and Cox [2005], pp. 489–506.) Svante Arrhenius could
not have imagined the development of micromanipulation
techniques that allow measurement and control of piconew-
ton size forces and nanometer size displacements with time
resolution as short as a millisecond (see Figure 9). Such
modern techniques have made it possible to probe, under

Figure 8. Scatterplot of PAn cognates versus the percentage of
sample from haplogroup O. The correlation is 0.627 (Lansing et al.,
2007).

Figure 9. Single molecule experiments. Set-up for kinesin attached
to a bead, translocating along a microtubule subject to optical twee-
zers pulling on bead. (Walton, 2002).
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mechanical load, the kinetics of biomolecular processes at
the single-molecule level. The goal of this research is to
examine the Arrhenius relationship at this level.

Taking displacement to be our reaction coordinate, the
free energy �G‡ may be split into the sum of the unloaded
free energy, and the work done against or assisted by

the external force, F,

�G‡ � �G0
‡ � F�

where � is the displacement to the transition state. The sign
of � depends on whether the applied force helps or hinders
the reaction. Setting k0 to be the zero-force rate, we have

k � k0eF�/kBT

for the form of the force-dependent rates in the system.
At the level of a single interaction, then for a simple reaction,

bound3 unbound,

describing an irreversible detachment of two molecules with
no substeps, the physics leads us to two assumptions:

• The dwell time is based on thermal fluctuations and thus
possesses the memorylessness property. In other words,
the dwell times are random and follow an exponential
distribution (see Ross [2009]). Thus, the density of dwell
times takes the form

f�t � �� � � exp���t�

for some rate � � 0. The mean of this random variable is 1/�.

• The Arrenhius relation holds at the level of a single mol-
ecule, i.e., the mean dwell time equals

�0e � F�/kBT, where �0 �
1
k0

.

Consequently, � � eF�/kBT/�0 and the density of dwell times
is

f�t � �0, �, F� �
1
�0

eF�/kBTexp ��
t
�0

eF�/kBT�.

The force F is under the control of the experimentalist. The
parameters �0 and � need to be estimated from data. More-
over, because we have no way of estimating either �0 or �
separately, they need to be estimated simultaneously.

Previously published methods used seat of the pants boot-
strapping techniques. The graduate student who brought
this problem to my attention performed some numerical
experimentation, and it appears that the estimators do not
even converge as the number of observations increases.
However, students can apply the concepts in the course to
design most powerful tests and with it asymptotically nar-
rowest possible confidence intervals.

Statistical Procedures
If our data are from an experiment with independently
measured forces F � (F1, F2, …, Fn) and corresponding
independent dwell times t � (t1, t2, …, tn), we have an
explicit expression for the likelihood function L(�0,��t, F).
The equations for the maximum likelihood estimators,

�

��
L��̂0, �̂ � t, F� � 0 and

�

��0
L��̂0, �̂ � t, F� � 0,

do not separate to produce closed forms for the maximum
likelihood estimators and However, they can be re-

arranged to obtain two algebraic relationships.

�̂0 �
1
n�

i � 1

n

tieFi �̂ ⁄ kBT and �̂0 �
1

nF� �
i � 1

n

tiFieFi�̂ ⁄ kBT.

This facilitates a simple graphical interpretation for and

as the intersection point of the curves determined by

these two relationships.
This experiment has not yet been performed (Kalafut,

Liang, Watkins, and Visscher, unpublished results), so we
ask the students to simulate data and find the maximum
likelihood estimates. This gives us the opportunity to dis-
cuss the value of generating data via simulation and test the
inference methods on these data before moving to the actual
data. To keep the situation simple, we take � � 1 and �0 � 1.
We also take the forces uniformly distributed between 0 and
kbT. As can be seen from the simulated data, any relationship
in Figure 10 between the dwell times and the force would be
difficult to discern by inspection.

To simulate the data with n � 1000:

� F�-runif(1000); t�-rep(0,1000)
� for(k in 1:1000){t[k]�-rexp(1,exp(F[k]))}
� plot(F,t)

If we solve numerically for the estimates in this simula-
tion, we obtain and for the intersection of the two

curves defined above. This is displayed graphically in Fig-
ure 11.

Figure 10. Force versus dwell time for the simulated data. The
Arrhenius relationship is not easy to visualize in the scatterplot of
1000 observations.
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The covariance matrix for � 1.008 and � 1.011 can

be approximated by the inverse of the Fisher information
matrix. In this case, we can compute this matrix explicitly
and take its inverse.

I��0, �� �1 �
1

nvar�F�� �0
2F� 2 �0kBTF�

�0kBTF� �kBT�2 �.

This information matrix is the fundamental object that di-
rects the design of an experiment. For example, we can
reduce the variance of our estimators and and hence

the length of confidence intervals by making the variance of
F as large as possible. This is accomplished by having the
force be as small as the laser trap allows and as large as
possible maintaining the stability for the single molecule. On
the other hand the variance depends on the product nvar(F).
Thus, the ability to perform many measurements may be an
easier experiment to perform to achieve a desired length for
confidence intervals.

The remaining three projects are drawn from questions on
bacterial growth and division, on otoacoustic emissions in
the human ear, and on flour beetle population dynamics.
The expectation is that if the student has a genuine interest
in the life sciences, then at least one of these projects will be
enticing.

ASSESSMENT AND IMPACT

At the University of Arizona, we are seeing a transformation
in the view that mathematics plays in the education of life
scientist students. To see this evolution reflected in the sta-
tistics class, we saw six students choose to add a mathemat-
ics minor during the first time the course was given. For the
second and third time, the students entered the class as
mathematics minors. The course, offered for a fourth time

this fall, is full and the capacity is being increased to accom-
modate demand.

The head of our math center is now writing to students
who have completed the first two years of mathematics
course work and is encouraging them to take the calculus-
based statistics course. In addition, more than a fourth of the
students (26 of 98) in the Undergraduate Biology Research
Program are either mathematics majors or minors. Several
researchers who have had statistics students in their lab are
recommending it to other students.

From the course evaluations, the students especially liked
“the applicability of statistics to multiple areas of interest,”
that “the homework sets were challenging and engaging,”
“relating course work to software used in research,” having
“taken stats classes before I feel like I actually learned some
of the basics of stats in this one,” “learn(ing) about the real
world,” “forc(ing) me to learn a subject I really didn’t enjoy
(I like stats now),” that “the study examples were particu-
larly effective as motivation to learn the material,” “using R
and relating everything to the real world,” and that “the
homework was nicely challenging.” Thus, we can see that
students are favorably impressed by the applicability of the
course and the ability of theoretical considerations to lead to
strategies for addressing practical problems. After some
gentle reminding, they recognize that the material in some
of the more mathy courses in their past were essential in
their ability to address life science questions with their
present level of understanding. Students are showing more
facility with software as they continue to use it and having
a general sense that mathematical and statistical issues are
aspects of the challenges that come with exciting research.

The students, especially those who are working in a lab-
oratory, were invited to select their own topic of interest.
About a third of the students picked this option. Yeast
genetics, earthquake prediction, rat behavior, fruit fly
behavior, strength of material, educational value of cer-
tain curricula and evaluation methods, land subsidence,
malaria prevalence, and the effects of monetary policy
were among the chosen topics. Most of these student-
generated projects resulted in a presentation in their re-
search group’s lab meeting.

To get a sense of the source and motivation of this trans-
formation, we are now systematically gathering information
on changes in student and educator attitude as a conse-
quence of a variety of experiences, including this course.
Analysis of these data will bring further insights into the
type of attitudes that students who choose this course have
and how their attitude is impacted by the experiences of the
course.

DISCUSSION

The National Research Council Committee on Undergradu-
ate Biology Education to Prepare Research Scientists for the
21st Century (2003) produced BIO2010: Transforming Under-
graduate Education for Future Research Biologists for the Na-
tional Research Council of the National Academies. They
remark that “Mathematics teaching presents a special case.
Most biology majors take no more than one year of calculus,
although some also take an additional semester of statistics.
Very few are exposed to discrete mathematics, linear alge

Figure 11. Maximum likelihood estimation. The two curves are the
two expressions for as a function of for the simulated data.

Here � 1.008 and � 1.011. The actual values, �0 � 1 and � � 1,

are indicated by the red .
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bra, probability, and modeling topics, which could greatly
enhance their future research careers.” The issues of the
synergies of these mathematics subjects are left largely un-
explored in BIO2010. Some connections are well known and
have become standard in the curriculum. Knowledge of
linear algebra is certainly essential in learning both linear
models in statistics and multidimensional differential equa-
tions. Students with a solid background in discrete mathe-
matics have an advantage in the early stages of a course in
probability. Any additional course will bring its comple-
ment of tools for a modeling course. Here we explore the
how the combined effect of the unfolding understanding of
biology and proficiency in calculus impact the students’
ability to gain a firm foundation in statistical science.

As the course described in this article settles on an ap-
proach and a curriculum, we can now see that the uses of
calculus in these contexts turn out to be neither particularly
difficult nor novel for a student comfortable with the subject.
In addition, after a couple of frustrating weeks with syntax,
students continue acquiring skills in the use of statistical
software. What is difficult for the students is the increased
maturity necessary to apprehend the breadth of applicability
that statistics brings to any carefully conceived data-rich
exploration. In the end, having the tools of algebra and
calculus, with probability as a frame of reference and ready
access to computational software, students can kindle excite-
ment in their new discoveries in the life science and bring
themselves to a level of understanding that is not accessible
absent the combined use of these quantitative tools.

Despite the aspiration inherent in the title BIO2010, we
still have much work to do to create the type of curriculum
in the quantitative sciences that suits the demands of the
next generation of life science researchers. This effort toward
a calculus-based statistics course as a small contribution
among many other efforts seems to be bringing us closer to
that goal.
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