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Biological problems in the twenty-first century are complex and require mathematical insight, often
resulting in mathematical models of biological systems. Building mathematical–biological models
requires cooperation among biologists and mathematicians, and mastery of building models. A new
course in mathematical modeling presented the opportunity to build both content and process
learning of mathematical models, the modeling process, and the cooperative process. There was little
guidance from the literature on how to build such a course. Here, I describe the iterative process of
developing such a course, beginning with objectives and choosing content and process competencies
to fulfill the objectives. I include some inductive heuristics for instructors seeking guidance in
planning and developing their own courses, and I illustrate with a description of one instructional
model cycle. Students completing this class reported gains in learning of modeling content, the
modeling process, and cooperative skills. Student content and process mastery increased, as assessed
on several objective-driven metrics in many types of assessments.

INTRODUCTION

Almost no domain of modern biology can be taught without
input and collaboration from mathematics. The success of
molecular biology results from collaboration with computa-
tional mathematicians, whose algorithms can extract solu-
tions from intractably large problems. Ecologists have ben-
efited from analytical and topological mathematics to model
the functioning and stability of complex ecosystems. Biolog-
ical systems are emergent systems, displaying complexity
across multiple levels of organization. Integration of math-
ematics and biology is not only useful but also essential to
understanding biological systems (Cohen, 2004). Biologists
and mathematicians, researchers and educators have echoed
this call for collaboration among mathematics and biology at
the undergraduate level and above (Jungck, 1997; Tanner et
al., 2003; Steen, 2005).

Mathematics and biology intersect in the sphere of mod-
els. Models are simplified representations of systems, and
mathematical models formalize such representations with
equations. Mathematical modeling is as important to biol-
ogy as it is to physics or chemistry, for similar reasons:
biological systems can span several orders of magnitude in
space and time, and mathematical models can provide in-
sight and focus where qualitative models cannot (Phillips
and Milo, 2009). In addition, ethical considerations make
mathematical models of some biological systems the only
option for gaining insight. However, few mathematicians
are formally trained as biologists, and few biologists have
rigorous mathematical backgrounds. Building robust mod-
els of biological systems requires both understanding of
existing models and mastering the process of modeling.

Science process learning supports students’ acceptance
and understanding of scientific concepts and ideas (Stamp et
al., 2006; Lombrozo et al., 2008) and works in a wide variety
of settings (Senocak et al., 2007). Process learning is impor-
tant for at least two reasons. First, although scholars and
learners can access many resources that describe what we
know about biology, mathematics, and models, there are
fewer resources that describe how we know. There is al-
ready far too much content to cover in the time allotted for
our courses. It is precisely because content knowledge of
biology and mathematics is increasing so rapidly that teach-
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ing and learning the processes of science and mathematics
are so important. Understanding complex biological systems
requires mastery of what Holling (1996) termed the science
of the integration of parts, or the interrelationships within
complex systems. Second, our students bring misconcep-
tions and predictable errors to our mathematics and science
classes (Gray et al., 2005; Stamp et al., 2006; Colburn, 2007;
Tariq, 2008). Misconceptions can be very resistant to modi-
fication and can obstruct higher learning. Teacher-centered
strategies for countering misconceptions are notoriously in-
effective. Instead, students must confront their own concep-
tions and errors, understand them, construct a new frame-
work of understanding, and replace the faulty concepts
(Nazario et al., 2002; Lombrozo et al., 2008). In other words,
they must learn science process skills.

Likewise, collaboration among biologists and mathemati-
cians can result in richer, more sophisticated understanding
of complex biological systems (Cohen, 2004; May, 2004; Phil-
lips and Milo, 2009). An analysis of �190 studies (reported
in Johnson et al., 2000) strongly demonstrates that empha-
sizing processes of cooperative learning increases students’
academic achievement, higher-level reasoning, retention,
and motivation more than competitive or individual learn-
ing. The American Association for the Advancement of Sci-
ence (1991); many professional associations, such as the
Mathematical Association of America (Steen, 2005) and the
Ecological Society of America; and the two principal finan-
cial grantors in the United States (National Science Founda-
tion and National Institutes of Health) urge researchers and
educators to foster interdisciplinary collaborative experi-
ences at the undergraduate level. However, undergraduate
biology majors are infrequently exposed to and taught how
to collaborate effectively.

Several researchers have published general prescriptive
models describing processes of implementing cooperative
learning (Johnson and Johnson, 1992; Smith, 1995; Johnson et
al., 1998a; Tanner et al., 2003). Accounts of what worked and
what did not during and after cooperative-learning imple-
mentation are few (but see Schlegel and Pace, 2004; Phillips
et al., 2007). The perceived trade-off between time spent
teaching content versus process favors measurable results
that content-teaching targets: facts and concepts checked off

a list, proportions of undergraduates scoring well on a class
exam or graduate school admissions test. On these kinds of
metrics, outcomes of process learning are perceived as in-
tangible or unmeasurable. For these and many other rea-
sons, professors, administrators, and even our students re-
sist cooperative-learning processes (Herreid, 1998).

To explore these issues, beginning in fall 2006, I designed
a new course in mathematical models of biology for under-
graduate biology majors in the School of Biology at the
Georgia Institute of Technology. The school’s purpose for
the course was to teach biology majors how to build math-
ematical models, by using a broad survey of mathematical
models from many domains of biology as the foundation.
Therefore, the school’s goals focused on both student knowl-
edge and skills from the outset. Trained as a mathematical
biologist, I was quite comfortable and familiar with many
models. The modeling process requires both science and
craft and an understanding of both the modeling and col-
laborative processes. I wondered whether the modeling pro-
cess could be effectively taught, and I also wondered
whether and how cooperative skills also might be taught.
Through iteration (four successive semesters), I developed a
set of heuristics (sensu Starfield et al., 1994), “plausible or
reasonable approach[es] . . . often proved to be useful,
rule[s] of thumb” for designing and implementing a
course that emphasized both content and process of math-
ematical modeling and cooperative learning. The pur-
poses of this article are to offer tools for other instructors
to prototype their own courses designed to incorporate
both content and process learning, and to demonstrate
how content and process learning support and comple-
ment each other.

BUILDING A COURSE: OBJECTIVES

A model of the course had to be built upon the School of
Biology’s objectives: to teach students models and a model-
ing process. Content and processes were undefined. There-
fore, the starting point was to identify existing guidelines
for modeling processes and cooperative processes (Table
1). We used learning outcomes, feedback, and assess-
ments (described below) in an iterated, dynamic process

Table 1. A prototype of curriculum choices to build both content and process competence in model-building and cooperative skills

Course objectives Content Process

Model competence Quantitatively representing hypotheses
Graphically and verbally representing

vague problems

Model components
Objective
Assumptions
Variables and parameters

Instructional model criteria
Accessibility
Ubiquity
Novelty factor

Scenarios
Heuristics
Incomplete information
Planning for mistakes
Frequent group presentations

(informal and formal)
Learning journal

Cooperative skills
competence

Communicating results targeted to
audience

Practicing collaboration

Ground rules
In-class problem solving and prototyping

Team projects

Whenever possible, curriculum choices addressed both content and process objectives, and both model and cooperative skill
competencies.
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of refining course objectives, which then helped us de-
velop and refine instructional model choices and model
exercises (Table 2).

The modeling process can be as fluid as the scientific
process; like the scientific process, there is broad agree-
ment on fundamental elements (Starfield et al., 1994;
Nicolson et al., 2002; Haefner, 2005). Because by definition
models are functional representations and simplifications
of complex biological systems, they should be built with
the target audience in mind, beginning with a clear objec-
tive, or purpose (Ralls and Starfield, 1995; Starfield et al.,
1995). Scenarios and observations need to be translated
into equations. Variables and parameters should be defined,
with forethought to both simplicity and tractability. Assump-
tions (simplifying hypotheses) should be made explicit. The
model should be tested for its sensitivity to changes in variable
and parameter inputs through multiple scenarios. Each
prototype should be verified against the model’s objec-
tive(s) (Starfield et al., 1994). The entire process should be
transparent (Nicolson et al., 2002; Gotelli, 2008), for the
sake of both the modelers and the intended audience. Like
the scientific process, the modeling process is flexible,
nonlinear, and iterative.

Building on the work of Johnson et al. (1998b), Johnson and
Johnson (2000), and Tanner et al. (2003), many researchers have
identified five essential elements of cooperative learning.

1. Students share collective goals and an individual stake in
the group’s success (positive interdependence). They un-
derstand that these goals can only be achieved when each
group member succeeds and contributes.

2. Students interact in person. Introductory classes and stu-
dents who are inexperienced in academic discourse need
structured “face time,” typically during class times.

3. Students must be both individually and collectively ac-
countable.

4. Students must be given opportunities to assess whether
the group is meeting its common goals, how group mem-
bers are contributing, and what adjustments should be
made.

5. Students actually need to be taught cooperative skills
with the same attention and rigor as academic content.

Cooperative groups are therefore much more than stu-
dents divided among groups working on a common project.
Cooperative groups must be deliberately and thoughtfully

Table 2. Course progression (top to bottom) showing how targeted model competencies drive the resulting choices of instructional
models used and exercises (e.g., in-class problem solving, homework)

Model competencies builta Model choice Model exercises

Build discrete models. Generate descriptive
figures. Plan for sensitivity analysis.
Understand how probabilities influence
models.

Single-species population models: density-
independent (assumes paradise),
density-dependent

First model: a discrete population viability
analysis with missing information and
variable ranges; Second model: same
population/system with a probabilistic
PVA.

Turn words into equations. Build
continuous models. Check assumptions.
Graphical analysis.

Multispecies population models: Lotka–
Volterra (L-V) predator–prey (P-P),
interspecific competition

Read Volterra (1926) and generate the two
difference equations from description.
Build a model of two-species
competition.

Turn words into equations. Interpret
equations in plain language. Understand
systems of ordinary differential
equations (ODEs). Analyze a model’s
stability.

Compartment models: S-I-R (susceptible-
infected-recovered; Anderson and May,
1979)

Generate mathematical models of measles,
human immunodeficiency virus,
tuberculosis, and teach the class your
variant. Build vaccination into your model.

Interpret equations in plain language.
Master systems of ODEs. Seek common
ideas and notation among models.

Michaelis–Menten enzyme kinetics; revisit
L-V, P-P

Come up with a procedure to find VMAX.

Understand Markov processes. Build
spatial models. Explore scenarios.

Spatially explicit, contagious process
models (e.g., forest fires, infectious
diseases, invasive species)

Prototype a contagious-process model.

Master Markov processes. Check
assumptions. Explore scenarios.
Compare evidence to model prediction.

Sequence evolution WHIPPO (BioQUEST Curriculum
Consortium, 2010).

Compare evidence to model prediction.
Turn words into equations. Analyze
stability.

Game theory: Chicken, Hawk-Dove,
Prisoner’s dilemma, evolutionarily stable
strategies

Write a payoff matrix for the final scene
in The Good, the Bad, and the Ugly.
Explain how cooperation could arise.

Explain model results in plain language.
Use models to make decisions.
Recognize caveats and cautions. Explore
scenarios.

Decision analysis Roundtable exercise: students read a
paper about a conservation problem
addressed with a model and then
adopted roles for a stakeholder meeting
where objective was to reach a
consensus solution �based on Ralls and
Starfield (1995) and Starfield et al. (1995)�.

a Most model competencies were targeted many times because repetition reinforces learning.
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constructed, their objectives well defined, and their dynam-
ics attended to (Phillips et al., 2007). Instructors must think
deliberately about structuring cooperative activities into the
curriculum and assessing the individual and group out-
comes. Just as important, instructors must teach interper-
sonal skills and structure group interactions in ways that
allow students to practice listening, critiquing, questioning,
and demonstrating skeptical scientist skills (Tanner et al.,
2003; Phillips et al., 2007).

Course objectives that emphasize students mastering both
content and processes of modeling and cooperation facili-
tated focus on students and their learning, rather than
lengthy lists of content to cover (Wiggins and McTighe,
2005). Choosing course objectives using questions about
learning outcomes also meant that anyone teaching the
course in the future could choose models (content) with
which he or she was familiar, as long as chosen content
fulfilled the course objectives. Over the four semesters this
course was offered, the learning outcomes evolved to in-
clude knowledge and skills in the following areas.

Quantitatively Representing Hypotheses
(Jungck, 1997)
Both students and some professors think of biology as the
least quantitative of the sciences, but fields such as genom-
ics, ecosystem dynamics, bioinformatics, and drug and vac-
cine discovery are driven by breakthroughs in quantitative
understanding (Cohen, 2004). This course objective included
practicing skills in prototyping, model parameterization,
sensitivity analyses, calibration and validation, analysis and
interpretation of results, and choosing appropriate scenarios
and simulations.

Graphically and Verbally Representing Vague
Problems
This may be especially important in the emergent biological
sciences (Steen, 2005). It is often challenging for novices,
who are unfamiliar with the assumptions behind vague
problems.

Communicating Model Experiment Results Targeted
to the Audience, in the Most Economic and Efficient
Ways Possible
Models, with their simplifying assumptions and uncertain-
ties, make for particularly skeptical recipients (Starfield and
Bleloch, 1991; Ralls and Starfield, 1995). Students need prac-
tice in simplifying both the mathematics and biology of their
models and in presenting their results orally and in writing.

Cooperation and Collaboration
Science is a collaborative practice. Students need repetition
and feedback from instructors and peers about how to ac-
complish shared goals.

CONTENT

Model Choices
Once course objectives were defined, I chose mathematical–
biological models for the course based on three criteria:

accessibility for novices, ubiquity, and a paradox or novelty
factor (Table 1). The School of Biology’s primary objective of
this course was to expose biology majors to a quantitative
survey of mathematical models from many domains of bi-
ology, so accessibility was important.

I began each semester with single-species population
models because both the models and modeling software
(spreadsheets) were accessible to novice modelers. The ad-
vantages of using spreadsheets as a modeling environment
with novice modelers include having short ramp-up time
and facilitating communication, both among team members
and by the team to their audience. Students grasped mod-
eling fundamentals (define the objective, identify variables,
parameters, and assumptions) of these simple discrete and
continuous models, and simple continuous models also fa-
cilitated a review of differential and integral calculus. It was
also easy for instructors to model the modeling process by
having students question a single assumption and then find
out how the model and its output changed. For example, a
key assumption of density-independent population models
is paradise: space, food, and water do not limit population
growth. By asking what happened when space, food, or
water did limit population growth, students could see the
biological and mathematical consequences of assumptions.
Multispecies interactions were then introduced by removing
the assumption of no interaction from single-species models.

I also identified common themes among mathematical
models from different domains of biology. For example,
mass action is a property of many different biological mod-
els (in addition to models in chemistry, physics, and sociol-
ogy). In the Lotka–Volterra predator–prey model, the mass-
action term describes how predators encounter prey and
convert them to more predators by consuming them. In
epidemiological models, mass action describes how a dis-
ease spreads within a population from infected to suscepti-
ble individuals. In the Michaelis–Menten model of enzyme
kinetics, substrate–enzyme complex formation is governed
by mass action. Although the three different models have
very different objectives focused on biological systems that
can differ by orders of magnitude, mass action terms are
mathematically similar, with similar biological interpreta-
tions. Giving students many opportunities to move between
biological and mathematical insight was important to devel-
oping their modeling process skills.

Finally, I chose some models to illustrate paradoxes, ab-
surdities, or limitations of mathematical models. For exam-
ple, graphical analysis of a simple linear model of obligate
mutualisms shows an unstable two-species equilibrium.
However, obligate mutualisms are common and persistent
in nature. When students connected the mathematical model
to the biological realities, they were able to examine their
modeling process and identify model assumptions as over-
simplifying the system. In game theory, the classic Prison-
er’s dilemma seems to preclude the rise of cooperation;
clearly, cooperation operates at many scales of interaction—
within humans and within other species—and can even
spread rapidly (Fowler and Christakis, 2010). Conversely,
the Prisoner’s dilemma, with its assumption that agents
have perfect and complete knowledge of one another’s
choices, can be found in the most unlikely system: strains of
RNA viruses (Turner and Chao, 1999), which certainly can-
not know anything. Both these examples force students to
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confront naïve conceptions about mathematics, models, and
biology and to replace misconceptions with robust knowl-
edge.

Over four semesters, I added or dropped some models,
but generally progressed from single-species population
models, multispecies models (predation, competition, and
mutualism), epidemiological models, enzyme kinetics, game
theory and evolutionary dynamics, and spatial models
(summarized in Table 2).

Assessment
I used frequent assessments—individual and group, infor-
mal and formal (for grade), formative, and summative—to
gauge content and process knowledge (course objectives).
The first purpose of assessments was to gauge student mas-
tery of the modeling process. Formative assessments in-
cluded cold-calling on a student to identify the objective,
and then another student to identify an assumption, and so
on. I chose the responders (instead of calling on a raised
hand) but kept anxiety low by moving rapidly. There was no
score attached to a cold call. Much class time was devoted to
students formulating solutions in small groups, so I also
visited groups and questioned group members about their
process. These frequent formative assessments of student
process invited students to be responsible for their learning
(Nicol and Macfarlane-Dick, 2006). A summative assessment
of modeling process mastery was an exam question asking
students to develop and apply a list of criteria to evaluate
modeling papers.

The second kind of assessment was to evaluate student
mastery of the mathematical models themselves. For exam-
ple, student learning was evaluated by whether each could
choose and justify whether to use a discrete versus contin-
uous models (i.e., population models). Another evaluation
asked students to explain systems of differential equations
to other group members or to the class (i.e., disease and
other compartment models, enzyme kinetics). Modeling as-
signments built on in-class problem-solving exercises. Each
student practiced turning plain language into equations,
interpreting systems of equations, suggesting starting points
for sensitivity analysis, or summarizing the group’s findings
for the rest of the class. By practicing interpretation and
making short presentations, students received frequent feed-
back from instructors and peers about their individual mas-
tery of the models. The summative assessment for model
mastery was a final project, conceived by each group. The
final project was an original mathematical (differential or
integral) model of a biological phenomenon. They parame-
terized their models, chose scenarios and experiments, ran
their models, gathered results, and presented their results in
a 15-min group presentation.

We (co-instructors and I) used results of our frequent
assessments to gauge our teaching effectiveness and make
adjustments when necessary. For example, the first semester
the course was taught, one of us introduced Leslie matrices
to support age-structured models in the second week of
classes, beginning with matrix theory. From that day’s
minute-papers, we learned that the level of instruction was
too sophisticated and students learned little but felt intimi-
dated. In subsequent semesters, we delayed Leslie matrices
until several weeks later, in age-structured models.

Ground Rules
Class ground rules were posted on the syllabus and dis-
cussed the first day. The syllabus included two instructor-
defined ground rules: 1) all members of a group are respon-
sible for all of the group’s product; and 2) members assist
each other in learning, e.g., software, models, graphing,
writing, and listening. Part of the first class was invested in
helping students define other class ground rules. These
helped foster cooperative skills such as patience, transpar-
ency, compassion, and assertiveness. Students on a team all
earned the same score for the single project report (cooper-
ative learning element 1: group and individual accountabil-
ity). In the first two semesters, I neglected opportunities for
group processing during the course. As a result, there were
many more group problems requiring instructor interven-
tion when students began working on student-selected final
modeling projects. In the third and fourth semesters, I made
structured group processing the final component of all
group projects (cooperative learning element 4).

Learning by Doing
To support model and model-building mastery, I built prob-
lem-solving and rapid prototyping into the instruction cur-
riculum. Approximately half the instructional time (totaling
3 h/wk) was devoted to solving problems and generating
rapid prototypes of models. Because students worked in
small cooperative groups of three or four, instructors pro-
vided student-centered feedback and adjustment on model
development, the modeling process, and cooperative pro-
cesses. Like many curriculum strategies, this tool benefited
both content and process goals.

PROCESS

Team Projects
Because one course objective was for students to learn and
practice cooperative skills, all work for this class except an
individual midterm examination occurred in groups of three
or four members. Group sizes of three or four maximized
the potential for each team member to contribute. In the
second semester offered, course enrollment temporarily in-
creased to 60 and I tried group sizes of five and six but found
that one member frequently dominated the proceedings or
freeloaded. After the second semester the course was of-
fered, enrollment returned to a maximum of 40, and group
size did not exceeded four. Contrary to students’ (and some
colleagues’) conceptions of group work and scores, individ-
ual differences in proficiency do emerge, especially when
group members shuffle after every one or two assignments.

Learning Journals
The course’s objectives focused on content and process mas-
tery, but students are strongly accustomed to content-rich
courses. Consequently, I heard frequently from students
(especially early in the semester) that they were unsure of
what they were learning. Because transparency helps learn-
ing, all students subsequently turned in a weekly observa-
tion about what they had learned, applied, or noticed that
week (ungraded). Some students had to be coached away
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from reporting about the week’s activities or the failings of
others and toward processing their understanding of what
they had learned. Typically, a few weeks into the semester,
students began to see the value of this metacognitive exer-
cise in their process of becoming skilled biological modelers
and collaborators. By the end of the semester, �90% of
students used the weekly learning journals to reflect on how
much they had learned about the content and processes of
modeling and cooperation.

Modeling Heuristics
Heuristics, or rules of thumb, for simplifying both models
and the modeling process, can be especially useful for nov-
ices (Nicolson et al., 2002). Novice modelers often struggle
with distinguishing the essential or important details of their
learning, and experts find it difficult to distill the fundamen-
tals. I distributed a list of modeling heuristics to students
and then frequently referred to these during the semester.
The heuristics for modeling included keeping the objective
in mind, keeping a list of assumptions, planning for sensi-
tivity analyses, keeping things simple without oversimpli-
fying, and several others. These helped students constrain
problems as they parameterized their models. They also
facilitated group and individual processing when stuck. The
sources for these heuristics were books, chapters, and papers
on modeling (Starfield, 1991; Starfield and Bleloch, 1991;
Nicolson et al., 2002; Haefner, 2005; Gotelli, 2008). Over the
four semesters, several students also contributed to the list—
Cut through Gordian knots became a favorite for finding a
simple way through a difficult problem.

MERGING CONTENT AND PROCESS

Over the four semesters, I explored how best to target con-
tent and processes of models and cooperation. In this sec-
tion, I offer several curriculum heuristics that served instruc-
tors and students well. In the next section, I illustrate these
steps in action with a narrative of one model cycle.

Map Out a General Learning Path
Drawing from field-specific knowledge, examples from pri-
mary literature, even our own experiences, each of us has
some knowledge of the big ideas in our field and how
students learn the processes of our disciplines. The purposes
of this heuristic are to make explicit the often implicit un-
derstandings and assumptions we have about what we
teach and how students learn, to emphasize student learning
over instructor knowledge, and to relieve the anxiety of
de-emphasizing content. Initially, this step was informal.
After the first and especially second semesters, when I had
both results of assessments and a feel for models, exercises,
and teaching practices that worked, I revisited this step to
clarify course objectives and content and process choices.

Decide Which Mistakes to Induce
One of the insights of process learning is that right answers
aren’t always possible. Certainly perfect recall of facts isn’t
ever possible, so process learning supports discipline mas-
tery. Students learn by getting predictable wrong answers,

discovering their mistakes, and correcting both the knowl-
edge and path to it. Using my map of a general learning path
in this course, I could see, and target, common mistakes that
novice modelers often make. I chose teaching examples and
assignment scenarios specifically so students could make the
mistakes I wanted them to make. Rather than seeming ma-
nipulative, I made this explicit on the first day of class and
reminded students often that one of my goals was to get
them to make as many mistakes in as short a time as possible
so that they could learn to correct themselves in a low-stakes
environment.

Simple Models, Complex Scenarios
Because one course objective was process mastery, I rede-
signed assignments that asked for exact solutions to models
that explored scenarios with certain (carefully chosen) ele-
ments of uncertainty. Groups had to define their model’s
objective, its variables, and its assumptions, build a model,
and use their model to make predictions or recommenda-
tions. This target encouraged basic model-process skills, and
group processing.

Incomplete Information
Modelers need to know what data they have, what data they
lack and need to find, and what data are extraneous in their
pursuit to build a model. By omitting key information, I
forced students to determine what they knew and didn’t
know. Students began to see the value of cooperative learn-
ing when team members thought of novel approaches and
scenarios.

Short Papers, Short Deadlines
Typical assignment deliverables were one to two pages of
text and one page of figures and tables per small group.
Under the space constraint, students were forced to negoti-
ate with another about and choose what would go into the
modeling report, and what would not. Typical turnaround
time for the modeling reports was 1 wk from the date
assigned.

Evaluation Rubrics Must Support Content and
Process
Over the four semesters, typical evaluation rubrics evolved
from very specific, solution-seeking to exploring scenarios.
Students were especially accustomed to lists of content to
memorize, so careful attention to including process criteria
and standards was important.

Plan for Frustration
Even when structured well, process learning can be frustrat-
ing for students. The open-ended modeling scenarios were
similarly frustrating to them, as were instructors’ refusals
(for the most part) to tell students the answer, or how to do
it, or what we were looking for. There is dignity in this
academic struggle, and students must be allowed and in-
vited to be wrong. Students also need to know that we are
not trifling with their time, so I did not allow students to
wander too far astray if that detour wouldn’t help their
understanding of the model. Over the four semesters, I
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noticed that individual and group frustration peaked at
approximately the fifth week of the semester. I made it a
point to offer reassurance and a course-objective check-in.
Humor also was useful.

AN EXAMPLE MODEL CYCLE

Although model choices progressed both in complexity and
sophistication through the semester (Table 2), I modeled a
similar approach in teaching and learning cycles. I began
with an example, or a case, or data from papers to illustrate
the need for the mathematical model. That prefaced an
�10-min minilecture developing a model from the given
scenario:

“Suppose there are 100 mockingbirds on campus, and
they grow by 50% next year. How large will the population
be? How large will it be 50 years from now?”

From a starting question, students practiced turning
words into equations. They came up with operational defi-
nitions for objectives (to predict the population some time in
the future or past), variables (growth rate), and assumptions
(simplifying hypotheses, such as a closed population, equal
fitness among individuals, asexual reproduction). Rather
than lecture on these, I prompted for the concept with a
question or an example: “What are we assuming about birds
on the Georgia Institute of Technology campus and birds on
the Emory University campus?” This encouraged students
to move between the mathematical and biological worlds.
Through the semester, I followed the same modeling pro-
cess: finding or stating the objective, defining variables and
assumptions, validating and interpreting results, and plan-
ning for sensitivity analysis. Typically, students had 15–20
min in teams to explore a scenario or solve a problem. This
allowed me to visit each group and question or probe stu-
dents both for model understanding and cooperative pro-
cesses.

For the first assignment, I focused mostly on building
competence in the modeling process, such as clearly stating
a model objective and its nontrivial assumptions and explor-
ing scenarios by methodically choosing parameter and vari-
able ranges. The assignment objective for students was es-
sentially to perform a population viability analysis by using
a discrete, deterministic population model. In the first se-
mester, I used data from a real species (white-tailed deer in
Georgia) and asked a question (i.e., “What will the popula-
tion be in 10 yr?”). Students simply searched the Internet for
missing information, unaware of the assumptions behind
most data (i.e., sample sizes and confidence intervals) and
solved the problem. Most mathematical models of biolog-
ical systems are not built because the problem is easy or
solvable; often crucial information is missing. In subse-
quent semesters, I invented a fictitious species with fictitious
(but deliberately chosen) life-history traits. I deliberately
omitted key information about the species so that students
would explore a range of variable values. I constrained the
output to choosing among four recommended actions. Each
recommendation was constructed to invite a sensitivity
analysis of one of the four model variables. Groups had 1 wk
to build the model, run scenarios, and turn in a report.
Group members signed off, indicating their participation
and understanding of the product.

Each iteration of a model assignment (both within a se-
mester and among semesters) emphasized scaffolding of
model mastery, modeling process development, and devel-
opment of the cooperative process. Because I constrained
each modeling problem to address specific competencies,
most students in most groups made most of the expected
mistakes. This, in turn, made assessment more efficient:
instructors did not have to repeat all the same feedback to
each individual group separately. Instead, I developed short
lists of suggested model improvements for the next model
assignment (i.e., plan for a sensitivity analysis) and focused
group feedback on those deficiencies particular to the indi-
vidual group.

OUTCOMES

Throughout the four semesters this course was taught, I
used a variety of assessments to judge whether students
were learning both mathematical modeling content and pro-
cesses of modeling and cooperation. In spring 2008, I con-
tacted all current and former students via e-mail, asking for
their perceptions about what they had learned and retained,
both mathematical–biological and interpersonal (coopera-
tive). I used the Student Assessment of Learning Gains
(SALG) (Carroll et al., 2007), a web-based assessment tool
that focuses on whether and how a course has influenced
student learning. The SALG site is both anonymous and
confidential for students, and instructors can customize
questions to focus on specific curricular tools.

Because I was interested both in whether students thought
they had learned content and process and whether they
thought those gains were durable, I used a different re-
sponse URL for each of the four semesters. All respondents
from all four semesters answered the same 43 questions on
a 1–5 Likert scale. I asked respondents about their skills and
knowledge of both mathematical–biological models, and
modeling and cooperative processes. Respondents also were
invited to leave comments if they chose. I invited all 175
students who completed the course to respond. Eighty-nine
students (51%; range, 43–58%) responded to the question-
naire invitation, a good response rate (Dommeyer et al.,
2004), especially given the delay of up to 16 mo.

Students reported strong gains in learning modeling con-
tent (mean of response to each question � 4.10/5, N � 89).
They reported similar gains in modeling process skills, in-
cluding applying the model-building steps (mean � 4.25/5)
and their abilities to approach vague problems (mean �
4.12/5). Finally, they reported gains in their cooperative
skills. Collaboration in modeling assignments and group
assignments helped them understand their roles in a group
and work with peers (mean � 4.13/5 and 4.18/5, respec-
tively). Although most responses to most questions showed
similarly strong endorsement of course curriculum and of
impact on both knowledge and skills, responses were not
unilaterally positive on any question in any semester. Nota-
bly, student opinions of curriculum and self-reported gains
in content and process were as strong for those who had
finished 12–16 mo before being surveyed as students just
finishing the course.

Another metric of course success came from student mid-
term exams—the single individual summative assessment
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each semester. In each of the four semesters, I asked two
questions. In the first, I asked students to define a short list
of criteria they would use to evaluate a model, to prioritize
their list, and to explain their top three criteria to a colleague
unfamiliar with models. The purpose of this question was to
gauge student mastery of the modeling process. More than
96% of students in each semester chose 1) model objective, 2)
variables, 3) assumptions, and 4) sensitivity analysis among
their top six criteria. I asked a second question designed to
gauge modeling content knowledge. Although the question
varied among semesters, students again showed high mas-
tery (�85% able to provide a response showing mastery).

The most significant metric of success was a final group
project and presentation. The final project was designed to
assess mastery of all four course objectives. Over the course
of �6 wk, student groups generated a biological question
that could be explored with a differential model, developed
and tested an original model, and then presented their find-
ings in an open seminar. Many students found it difficult or
intimidating to describe variables and formulas—much less
systems of differential equations—early in the semester. All
students were competent in explaining systems of differen-
tial equations in plain language by the final project.

CONCLUSIONS

Learning mathematics and biology is hard enough for stu-
dents, and our ability as instructors to manage the stagger-
ing volume of biological content knowledge is already im-
possible. Yet, the trade-off between teaching time devoted to
content and process is real. Here, I have presented the ra-
tionale for a course that combined both content and process
learning of mathematical–biological models. My objective
was to make the case that we can stop trying to cover the
mountain of content and instead make targeted, deliberate
choices about the content we teach while also teaching im-
portant and oft-forgotten process skills. Although my induc-
tive approach is different from the traditional deductive
approach of scientific reports, my intention was to offer a
way of imagining mathematical–biological curricula that are
effective, produce durable learning, and are energizing for
us to teach and for students to learn.

As scientists and instructors, we ask whether curriculum
innovations and student learning are linked. More than half
of all students who completed the course responded to
questions probing their content and process skills, despite
that the majority of those who completed the course had
graduated. Their perceptions of their own skills and knowl-
edge remained high, even at 1 yr postcompletion and be-
yond. Although most of the data presented here are student-
reported, therefore potentially biased, one of the process
skills they were taught was metacognition. Two intriguing
questions that emerge from this report are whether, and to
what degree, student perceptions of learning correlate to
objective measures of learning, and whether learning meta-
cognitive processes increases their accuracy at self-assess-
ment of learning.

I now teach the course at a different university, where
factors from the university’s mission to student population,
preparedness, and even life experiences differ from the orig-
inal institution’s views. I have had to adjust my expectations

about student performance and the pacing of the class, but
these are nearly universal curricular concerns among aca-
demics. Like many colleagues who continually seek to im-
prove their own teaching and students’ learning, I adjust
and improve (I hope) each time the course is taught. The
course objectives still drive content and process choices,
made to increase student competence in analyzing and
building models and in creating productive collaborations.
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