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This study examined the historical performance of students at Michigan State University in 12 life
sciences courses over 13 yr to find variables impacting student success. Hierarchical linear modeling
predicted 25.0–62.8% of the variance in students’ grades in the courses analyzed. The primary
predictor of a student’s course grade was his or her entering grade point average; except for the
second course in a series (i.e., Biochemistry II), in which the grade for the first course in the series
(i.e., Biochemistry I) was often the best predictor, as judged by β values. Student gender and major
were also statistically significant for a majority of the courses studied. Female students averaged
grades 0.067–0.303 lower than their equivalent male counterparts, and majors averaged grades
were 0.088–0.397 higher than nonmajors. Grades earned in prerequisite courses provided minimal
predictive ability. Ethnicity and involvements in honors college or science residential college were
generally insignificant.

INTRODUCTION

There have been many calls to improve the quality of un-
dergraduate science education. BIO2010 (National Research
Council, 2003) and the Boyer Commission (1998) focused
on the enhancement of research opportunities at universi-
ties in order to improve science education, increase diverse
experiences, and prepare the next generation of scientific re-
searchers. Rising above the Gathering Storm (National Academy
of Sciences, National Academy of Engineering, and the In-
stitute of Medicine, 2007) suggested that similar actions be
taken in higher education and research to restore the scientific
and technological foundation of the U.S. economy. Answer-
ing these calls requires a better understanding of approaches
that lead to student success and enhanced learning.

A number of studies have focused on understanding the
factors that lead to student success and subsequently enhance
student learning (Cheng and Ickes, 2009; Miyake et al., 2010).
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Elaine Seymour postulated that students internalize experi-
ences about their success in science, and this internalization
starts early in a student’s academic career and builds up to
create a perception that often negatively affects a student’s
persistence in the sciences (Seymour and Hewitt, 1997). This
phenomenon is known as the “leaky pipeline.” The num-
ber of students who pursue sciences throughout their under-
graduate education has been found to decrease by 40–60%
(Seymour and Hewitt, 1997), with life sciences having a net
loss of nearly 50% (Astin, 1993). Many students have diffi-
culty transitioning from introductory and advanced science
courses and are met with negative experiences. Science fac-
ulty at many universities have been known to teach in a more
authoritarian style, with little encouragement of classroom
discussion; to use only multiple-choice exams; and to exhibit
less interest in students’ personal development (Astin, 1993).
Students who meet with these negative experiences through-
out their undergraduate years are more likely to feel they
are unable to compete in the sciences and often switch to a
different field (Griffith, 2010).

Recent studies indicate that students receive a variety of
these negative signals in introductory courses. Variation in
the grades earned in introductory science courses is one fac-
tor that affects students’ persistence in science-related majors;
a lightly graded introductory course versus a harshly graded
one has a different effect (Ost, 2010). Other factors include
performance in prerequisite courses (Seymour and Hewitt,
1997; Turner and Lindsay, 2003), overall academic achieve-
ment, ethnicity (Seymour and Hewitt, 1997), and other
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experiences, including participation in residential and hon-
ors colleges (Astin, 1993). Factors such as motivation, consci-
entiousness, or confidence (Brownlow et al., 2000) can also
impact student performance, but these are more challenging
to measure. Gender is another factor in the leaky pipeline
(Seymour and Hewitt, 1997), since male and female students
are impacted differently in similar situations (Fox and Fire-
baugh, 1992; Beyer, 1999). One might imagine that students
who are persistent and academically successful enough to
navigate introductory science courses might be expected to
meet with equivalent success in upper-level courses, regard-
less of gender, major, ethnic, and background differences.
Nonetheless, not all of the factors listed would be expected
to have equal significance. Despite compelling research find-
ings in specific courses, little has been done to systematically
compare male and female students’ performance in large-
enrollment, upper-level science courses across an entire uni-
versity. Although students may ignore one undesirable grade,
repeated low grades are likely to encourage them to leave
the sciences due to lack of confidence in their own abilities
and/or a decrease in motivation (Astin, 1993).

We have previously reported a performance difference in
a single biochemistry course at Michigan State University
(MSU; Rauschenberger and Sweeder, 2010). Using hierarchi-
cal linear modeling (HLM), we found that the most important
factor was cumulative grade point average (GPA), although
student gender and major also were significant. This study is
an extension of the biochemistry research using HLM to de-
termine the best predictors of student performance in many
life sciences courses.

METHODS

With the approval of the MSU Institutional Review Board
(IRB #07-446), student data were collected from the 21,688 stu-
dents who completed upper-level science courses at Michi-
gan State University from 1997 to 2010. The science courses
used were Physiology I (PHY 431) and II (PHY 432), Basic
Biochemistry (BC 401), Biochemistry I (BC 461) and II (BC
462), Introductory Microbiology (MB 201), Advanced Intro-
ductory Microbiology (MB 301), Genetics (Gen 341), Organic
Chemistry I (Orgo 251) and II (Orgo 252), and Advanced Or-
ganic Chemistry I (Orgo 351) and II (Orgo 352). The data
set consisted of grades in upper-level science courses, intro-
ductory courses (biology, chemistry, and organic chemistry),
entering GPA by semester, major, honors college or Lyman
Briggs College (LBC), and demographic information (gender
and ethnicity). Students were considered LBC students if they
were enrolled in any of the introductory LBC courses.

Student performance in life sciences courses was measured
by the grade achieved during the student’s first enrollment
in each course. HLM analyses (using SPSS 19; SPSS, 2010)
created mathematical models to predict student performance
in different life sciences courses based on specific elements.
Different combinations of independent variables (italicized
throughout) used as modeling predictors were Entering GPA
for the course, Course Grade for General Chemistry I and II,
Biology I and II, Organic I and II, and the first of a series of
courses (e.g., PHY 431 performance was used as a predictor
for performance in PHY 432). Categorical variables included
Gender (Seymour and Hewitt, 1997), Ethnicity (Seymour and

Hewitt, 1997), Major (Ost, 2010; Solnick, 1995), enrollment in
LBC (Inkelas et al., 2008; Stassen, 2003) or Honors College, and
enrollment in specific prerequisite science courses. Categor-
ical variables were used to split all students into one of two
groups using dummy variables (e.g., female and nonfemale
for the Gender variable). All models included Entering GPA
as a predictor, and most models included all of the listed
categorical variables.

HLM created a model for predicting students’ life sciences
grades by fitting the following equation for each student:

Grade = b1x1 + b2x2 + ...bi xi + ε

where the bi values are the coefficients determined by the
model, the xi values are the factors entered into the model,
and ε represents the residual error in the prediction for the
specific student. This method fits the coefficients to minimize
total error, which leads to the amount of variance predicted,
R2. The advantage of the model is that it will statistically
account for incoming differences in student abilities among
groups. Because coefficients scale inversely with the range of
their factors, direct examination of the values are created by
subtracting the sample mean from a score and subsequently
dividing it by the SD. These new values are then used in a re-
gression analysis to determine the β coefficient, which allows
us to compare the relative significance of a variable in con-
tributing to the model by measuring all variables on an equiv-
alent scale. β coefficients range from −1 to +1, with the sign
indicating a positive or negative relationship. In the stepwise
analysis, t tests are used to indicate whether a variable has a
significant impact independent of the other variables already
present in the model. Variables are added in order of great-
est significance, until no additional factors have a significant
influence on the predictive power of the model (Rauschen-
berger and Sweeder, 2010). HLM used our raw data and was
executed stepwise, excluding cases list-wise; therefore, not all
students who were enrolled in a particular course were used
in all analyses.

With HLM, factors known to affect the prediction of stu-
dent performance are used to create a model. A second set of
factors are then added to determine if they provide any ad-
ditional explanation of variance. Graphical representations
of the data were created through SPSS 19 to highlight cate-
gorical differences in the data. Average grades for different
student groups in a specific course are compared as clusters
and are based on Entering GPA using scatter plots. Students’
GPAs were clustered to the nearest quarter grade in the plots,
and the error bars represent a 95% confidence level.

RESULTS AND DISCUSSION

Entering GPA tended to be the variable most highly corre-
lated to student grades in each course studied (Table 1), sim-
ilar to previous results (Wright et al., 2009; Rauschenberger
and Sweeder, 2010). When each class was analyzed using our
HLM, Entering GPA was the single best predictor, accounting
for the most variance in all models (22.3–58.0%), followed
frequently by Gender (1–3%). Entering GPA was used in the
HLM, because of its strong predictive ability in performance;
it represents many important characteristics that demonstrate
student success, such as academic aptitude, study skills, back-
ground, and motivation. For the most basic of our models,

Vol. 11, Winter 2012 387



L. R. Creech and R. D. Sweeder

Ta
b

le
1.

Pa
rt

ia
ls

um
m

ar
y

of
H

L
M

fo
r

12
lif

e
sc

ie
nc

es
co

ur
se

sa

Ph
ys

io
lo

gy
B

io
ch

em
is

tr
y

M
ol

ec
ul

ar
bi

ol
og

y
O

rg
an

ic
ch

em
is

tr
y

G
en

et
ic

s

43
1

43
2

40
1

46
1

46
2

20
1

30
1

25
1

25
2

35
1

35
2

34
1

R
2

0.
39

0
0.

62
8

0.
31

6
0.

46
5

0.
60

0
0.

42
9

0.
41

2
0.

36
8

0.
51

6
0.

25
0

0.
52

2
0.

38
1

N (a
pp

ro
xi

m
at

e
cl

as
s

si
ze

)
57

28
(3

50
–5

00
)

51
85

(3
00

–5
00

)
41

61
(1

50
)

63
81

(3
50

)
57

68
(3

50
)

14
66

(3
00

)
48

90
(2

00
)

13
,4

94
(3

50
)

11
,3

13
(3

50
)

20
68

(2
00

)
20

83
(1

75
)

73
37

(2
50

)
β

va
lu

es
fo

r:
E

nt
er

in
g

G
PA

0.
56

5
0.

31
5

0.
56

8
0.

66
2

0.
33

6
0.

63
6

0.
62

3
0.

53
8

0.
38

1
0.

42
8

0.
38

7
0.

58
0

Fi
rs

ts
er

ie
s

of
co

ur
se

N
/

A
0.

52
8

N
/

A
N

/
A

0.
49

1
N

/
A

N
/

A
N

/
A

0.
38

9
N

/
A

0.
39

2
N

/
A

Fe
m

al
e

−0
.1

33
−0

.0
32

−0
.0

53
−0

.0
67

IN
SI

G
IN

SI
G

−0
.0

74
−0

.0
92

−0
.0

26
−0

.0
61

IN
SI

G
−0

.0
21

M
aj

or
0.

11
4

0.
03

6
N

/
A

0.
07

2
0.

02
7

N
/

A
0.

08
5

N
/

A
N

/
A

N
/

A
N

/
A

N
/

A
U

ns
ta

nd
ar

d
iz

ed
co

ef
fi

ci
en

tf
or

:
Fe

m
al

e
−0

.3
03

−0
.0

72
−0

.1
17

−0
.1

35
IN

SI
G

IN
SI

G
−0

.1
65

−0
.2

24
−0

.0
67

−0
.1

39
IN

SI
G

−0
.0

44
M

aj
or

0.
28

9
0.

08
8

N
/

A
0.

39
7

0.
13

0
N

/
A

0.
29

3
N

/
A

N
/

A
N

/
A

N
/

A
N

/
A

a A
d

ju
st

ed
R

2
re

pr
es

en
ts

th
e

d
ec

im
al

pe
rc

en
to

fv
ar

ia
nc

e
ex

pl
ai

ne
d

.M
aj

or
re

pr
es

en
ts

th
os

e
st

ud
en

ts
w

ho
ar

e
m

aj
or

in
g

in
th

at
su

bj
ec

t(
e.

g.
,b

io
ch

em
is

tr
y

m
aj

or
s

fo
r

B
C

46
1

or
ph

ys
io

lo
gy

m
aj

or
s

fo
rP

H
Y

43
1)

.B
ot

h
G

en
de

ra
nd

M
aj

or
ar

e
d

um
m

y
va

ri
ab

le
s,

so
th

e
un

st
an

d
ar

d
iz

ed
co

ef
fic

ie
nt

re
pr

es
en

ts
th

e
d

if
fe

re
nc

e
be

tw
ee

n
be

in
g

in
th

e
ca

te
go

ry
or

no
t.

N
/

A
=

N
ot

ap
pl

ic
ab

le
.

IN
SI

G
=

N
ot

si
gn

ifi
ca

nt
.

all students who took a given class were included. How-
ever, when examining the impact of introductory courses,
students who met the prerequisites through Advanced Place-
ment exams or transfer credit were not included, and the
results should not be applied to this student subpopulation.

Ethnicity did not show any clear impact on performance
prediction in any HLM. Occasionally, certain ethnic groups,
such as African Americans or Asians, had a significant impact
on performance prediction in a specific class, but no trends
in one ethnic group emerged in the modeling. Similarly, High
school GPA and ACT/SAT scores also did not show any sig-
nificance in the HLM once GPA was accounted for and were
removed from the subsequent models.

Major Factors
The best predictive factor in this study was, not surprisingly,
the student’s cumulative GPA (Entering GPA) upon entering
the course under analysis. Gender was the second most im-
portant factor for all courses examined, except BC 462, MB
201, Gen 341, and Orgo 352, which showed no significant dif-
ferences between genders. The β value of Gender ranged up to
one-quarter of the value of Entering GPA, indicating it is up to
one-quarter as important (Table 1). BC 462 and Orgo 352 may
have showed no gender differences because BC 461 grade and
Orgo 351 grade, respectively, were used as predictors; these
grades already include the gender differences from the first
course in the series. However, female students continued to
display lower performance in PHY 432 and Orgo 252, even
though the PHY 431 grade or Orgo 251 grade was used as a
predictor.

When course performance was analyzed using HLM, PHY
431 had the greatest gender performance differences, fol-
lowed by Orgo 251 (Table 1). A graph of average GPA in
PHY 431 versus students’ Entering GPA provides visual rep-
resentation to better demonstrate the impact of Gender (Figure
1a). This graph highlights that the gender performance dif-
ferences span the entering GPA spectrum and are not just
present in either high- or low-performing students. By con-
trast, a similar graph of MB 201, a class with insignificant
gender differences, shows both genders performing equiva-
lently over the span of Entering GPAs (Figure 1b).

Role of Student Major
Students in classes closely linked to their major may be expec-
ted to have higher levels of motivation and interest in the sub-
ject, which may result in higher performance. To evaluate this
possibility, we included a variable to identify students based
on their college major (Table 1). Major resulted in a β value
that was up to one-fifth the value of Entering GPA, slightly
less than the impact of gender. The unstandardized coeffi-
cients in the models indicate that being a major in the field
of a course yields a positive boost that is on par with or lar-
ger than the negative adjustment for being female (Table 1).

The impacts of gender and major may be linked due to
uneven distribution of male and female students across the
majors. For testing this hypothesis, human biology, physi-
ology, biochemistry, microbiology, and zoology majors were
individually analyzed, yet typically still showed the gender
gap (Table 2). Human biology and physiology majors exhib-
ited the gender gap in certain classes (PHY 431, BC 461, Orgo
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Figure 1. Gender performance differences in PHY 431 vs. MB 201: (a) Average course GPA in PHY 431 compared with average Entering GPA
for PHY 431, separated by Gender. (b) Average course GPA in MB 201 compared with average Entering GPA for MB 201, separated by Gender.
In both models, blue represents male students and red represents female students.

251), while biochemistry majors showed no gender gap in
any of the courses analyzed (Table 2).

Impact of Honors College, Residential College,
Introductory Courses, and Math Readiness
It is possible that highly motivated students may exhibit dif-
ferent trends than the population as a whole. Students in the
honors college or the residential college may fit this category,
yet HLM analysis yielded little evidence of performance dif-
ferences. Similarly, we examined the performance differences
in introductory classes and found that they had relatively lit-
tle impact on performance in upper-level courses. This result
is similar to the work of Wright et al. (2009), which indicated

that an organic chemistry prerequisite had no impact on a
biochemistry grade. Mathematics and physics courses were
not analyzed in our model, and it is possible that gender
was acting as a proxy for this variable, as females have been
found to not perform as well in prerequisite math courses
(Brownlow et al., 2000). However, when ACT/SAT subscores
were included as a surrogate for student math readiness, both
showed up as insignificant in modeling when Entering GPA
was used, which led us to reject this hypothesis.

Historical Trends of Gender Differences
We examined the gender gap in each course between 1997
and 2009. Although the gap in most classes seemed to be

Table 2. Female performance compared with males within life sciences majorsa

Course Physiology Human biology Microbiology Biochemistry Zoology

Physiology 431 −0.311 −0.289
Physiology 432 −0.069
Biochemistry 401 N/A
Biochemistry 461 −0.146 −0.116 −0.145 −0.335
Biochemistry 462 0.203
Molecular Biology 201 N/A N/A N/A
Molecular Biology 301 −0.113 −0.162 −0.255
Organic 251 −0.285 −0.185 −0.187 −0.155
Organic 252
Organic 351 N/A
Organic 352
Genetics 341 −0.088

aHLM coefficients representing female performance relative to male students within a single major (column headings). Blank spaces indicate
that Gender was an insignificant variable. N/A: students in the major are not required and typically do not take the course listed; therefore
no HLM could be produced. Red coefficients indicate HLMs for which Gender explained 1–3% of the variance; black coefficients indicate that
<1% of variance was added.
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Figure 2. Historical trend of deteriorating fe-
male performance in PHY 431. The HLM coef-
ficient represents the model’s performance gap
between male and female students. No significant
difference was found in 1998.

relatively consistent during this time, similar to previous
work (Nowell and Hedges, 1998), PHY 431 was an interest-
ing exception (Figure 2). The calculated negative coefficient
for females has increased over the past decade, reaching a
difference in grades of 0.5 between male and female students
in 2009. Other courses with a significant gender gap in the
HLM showed consistency in the gender gap over the past
decade. One possible explanation is that the enrollment in
PHY 431 has increased during this time span from around
300 students (1997–2001) to more than 525 students (2005–
2009). The greater difference may simply reflect that females
are more negatively impacted by large class size (Seymour
and Hewitt, 1997).

IMPLICATIONS OF RESULTS

The findings that better students perform better in life sci-
ences courses or that majors perform better in classes in their
discipline is not surprising. However, it is surprising that fe-
males were found to perform at a lower level in the classes
studied, given their better overall cumulative GPA. Simply
comparing the average score or grade in the course cannot
accurately assess whether the two genders are performing
equivalently. Instead, a more robust statistical approach, such
as HLM, is required to definitively identify gender perfor-
mance differences. Unlike most studies that highlight bias
within a single class, this study illustrates such disparity
across the curriculum, with male students outperforming
equivalently prepared females (as measured by Entering GPA
and previous science course grades). This trend is worrying,
as we consider the signals that we are sending to our highly
capable female students working toward a career in the sci-
ences. In a wide array of courses throughout their academic
career, they are earning lower grades compared with their
male counterparts and quietly receiving signals from this that
they are not as successful in the field. Given the results of this
study, how should we think about addressing this aspect of
the leaky scientific pipeline?

The first step to address the leaky pipeline is to iden-
tify the sources. There have been many factors known to
lead to the potential gender gap in science courses, includ-
ing: how the class is formatted (Astin, 1993), the professor’s
gender (Seymour and Hewitt, 1997), the size of the class
(Kokkelenberg et al., 2008), and the format of the assessment

(Seymour and Hewitt, 1997). It is interesting to note that what-
ever the reason for the bias in these classes, it cuts across the
range of students’ abilities and majors. There certainly are
indicators that the bias is artificial. For example, biochem-
istry majors are never observed to have a gender disparity.
Similarly, Gen 341 and Orgo 351 and 352 show no gender
bias for any of the majors. One similarity of these classes is
that the exams are predominantly free-response rather than
multiple-choice exams. Females typically do not perform as
well on multiple-choice exams, which are based on a more
algorithmic approach than free-response exams (Brownlow
et al., 2000). Similarly, active- and collaborative-learning ex-
periences could be added, which may benefit female and
racial minority students (Beichner et al., 1999; Springer et al.,
1999). The historical trend in PHY 431 hints at the role that
class size may play in gender disparity (Kokkelenberg et al.,
2008). As the size of the class increased, so did the difference
in performance between the genders. Although class size is
only a correlation in this example, it does remind us of the
importance that this factor may play in the atmosphere of the
classroom. It also suggests that the most efficient manner of
“teaching” students may not be related to the most efficient
student “learning” nor to retaining science majors.

LIMITATIONS OF THE STUDY

The models used in this study are not meant to predict in-
dividual students’ performance; rather, they generalize the
performances of a large group of students. The large uni-
versity setting and large-enrollment class sizes at MSU pro-
vide further limitations (Kokkelenberg et al., 2008). Smaller
universities with small-enrollment classes could yield drasti-
cally different results due to a different student experience
(Griffith, 2010). Another limitation specific to MSU is the
use of multiple-choice exams in almost all large-enrollment
courses, which makes the results less comparable to other
universities that may use short-answer or essay exams.

CONCLUSION

Entering GPA was the best predictor found in the HLMs (β
values of 0.315–0.662), followed by Gender (β values of −0.021
to −0.133) and Major (β values of 0.027 to −0.114), which
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together explain 25–60% of the variance across the courses
analyzed. Student involvement in Honors College or LBC and
Ethnicity did not provide significant predictive ability to the
models. A gender gap was consistently observed throughout
a subset of students and could be the result of many factors.
The gender variable may be acting as a proxy for the impact
of negative signals that accumulate throughout a student’s
experiences, but proof of the source cannot be determined
by this study. Further investigation of the specific sources
of the performance differences needs to be done in order to
fully understand and possibly correct the impacts of the leaky
pipeline present in large-enrollment universities.
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