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Research in science education has documented achievement gaps between men and women in math
and physics that may reflect, in part, a response to perceived stereotype threat. Research efforts to
reduce achievement gaps by mediating the impact of stereotype threat have found success with a
short values-affirmation writing exercise. In biology and biochemistry, however, little attention has
been paid to the performance of women in comparison with men or perceptions of stereotype threat,
despite documentation of leaky pipelines into professional and academic careers. We used method-
ologies developed in physics education research and cognitive psychology to 1) investigate and
compare the performance of women and men across three introductory science sequences (biology,
biochemistry, physics), 2) document endorsement of stereotype threat in these science courses, and
3) investigate the utility of a values-affirmation writing task in reducing achievement gaps. In our
study, analysis of final grades and normalized learning gains on content-specific concept inventories
reveals no achievement gap in the courses sampled, little stereotype threat endorsement, and no
impact of the values-affirmation writing task on student performance. These results underscore the
context-dependent nature of achievement gaps and stereotype threat and highlight calls to replicate

education research across a range of student populations.

INTRODUCTION

Despite decades of active recruitment, women remain under-
represented in science, technology, engineering, and math
(STEM) disciplines both in the United States and globally
(Hewlett et al., 2008; Simard et al., 2008). Women leave STEM
fields at all stages of their careers—as undergraduates, grad-
uate students, professionals, and in the transitions between
each stage, a phenomenon described as the leaky pipeline. In
biology, for example, although women have reached parity
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with men when graduating from undergraduate and post-
graduate schooling, women represent approximately one-
third of the academic workforce (National Science Foun-
dation [NSF], 2011). In contrast, the physics pipeline leak
begins much earlier and is more substantial. Despite the fact
that women and men are nearly equally represented in high
school physics classes (44% vs. 56%), the pipeline turns into a
“gaping hole” when they reach college (McCullough, 2002).
Women comprise only 21% of physics undergraduate de-
grees, 22% of master’s degrees, and 16% of PhDs (Mulvey
and Nicholson, 2008). As these women move into academic
and professional roles, they comprise 11% of the workforce
(NSEF, 2011).

The underlying causes of this disparity between men and
women are numerous, complex, and pervasive. However, a
recent meta-analysis of research on the gender gap in STEM
(Hill et al., 2010) found bias, stereotype threat, and social fac-
tors as prime driving forces contributing to the loss of women
from STEM fields. In fact, recent work by Moss-Racusin et al.
(2012) found science faculty across disciplines and regard-
less of gender exhibited an unconscious gender bias against
undergraduate women, underscoring the pervasive and



persistent nature of cultural stereotypes regarding women
in science.

Gender and Achievement in Undergraduate Science
Courses

The disparity between women and men in STEM disciplines
may extend to achievement at the college level, resulting
in a gender achievement gap—the persistent and pervasive
underperformance of women as measured by exam scores,
course grades, and learning gains on validated concept in-
ventories.

Evidence for an achievement gap in biology and biochem-
istry at the undergraduate level is largely missing, in part be-
cause the fields are young. Women routinely underperform
their male counterparts on the Medical College Admission
Test, a pattern that can be traced back atleast a decade (Amer-
ican Association of Medical Colleges, 2012). Further, a recent
study by Willoughby and Metz (2009) found mixed evidence
of a gender gap in an introductory biology course: women
had significantly lower normalized learning gains as mea-
sured by a biological diagnostic test, but this result was not
reproducible with any other measure, including alternative
learning gain calculations, overall course grades, and individ-
ual exam scores. Many students from introductory biology go
on to take introductory biochemistry. Yet there are few diag-
nostic tests for biochemistry (e.g., American Chemical Society
Biochemistry Exam, Biochemistry and Cell Biology Graduate
Record Examinations), and, to date, none have been used to
explore the existence of a gender gap. Such limited results
underscore the need for additional studies of how women
and men perform in undergraduate life sciences courses, a
need echoed by the recently released report on the status of
discipline-based education research (DBER) by the National
Academies of Science (2012).

In contrast, gender achievement gaps are well documented
in physics at the undergraduate level (Lorenzo et al., 2006;
Pollock et al., 2007; Kost et al., 2009; Brewe et al., 2010; Kost-
Smith et al., 2010). The calculus-based introductory physics
sequence, a gateway to majors in physics and many other
STEM disciplines, is the most frequently studied in physics
education research (PER). A distinct gender gap exists on con-
ceptual surveys among students before instruction (Lorenzo
et al., 2006; Pollock et al., 2007; Brewe et al., 2010), but some
of this disparity may be due to gender bias in the instru-
ments themselves (McCullough and Meltzer, 2001; Docktor
and Heller, 2008; Willoughby and Metz, 2009; Dietz et al.,
2012). In courses with traditional instructional methods, this
gap appears to persist; however, when instruction consists of
highly interactive, research-validated instruction, the preva-
lence of an achievement gap is less consistent. Although
learning gains are significant regardless of gender, some re-
search finds the achievement gap reduced (Lorenzo et al.,
2006), while other research finds the gap persists (Pollock
et al., 2007; Brewe et al., 2010). As noted previously, the pres-
ence of an achievement gap may be an artifact of overreliance
on potentially biased conceptual surveys, especially when as-
sociated course grades and final exams do not reveal such a
significant gap (Docktor and Heller, 2008; Willoughby and
Metz, 2009).

In many instances, the gender gap in physics is attributed
to disparities in mathematical preparation and ability. While
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a strong and persistent belief in a gender achievement gap in
mathematics has prevailed for decades (e.g., Kane and Mertz,
2012), evidence for its existence is less conclusive (e.g., Hyde,
2005; Guiso et al., 2008). In a meta-analysis of six large sur-
vey studies, Hedges and Nowell (1995) documented a small
mean difference in mathematics achievement between men
and women and modest differences in variance. More re-
cent data in the United States refute a mathematics gender
achievement gap, at least in the general populace grades 2
through 11 (Hyde et al., 2008). Analyses of international data
collected through studies such as the 2003 Trends in Inter-
national Mathematics and Science Study (TIMMS) and 2003
Program for International Student Assessment (PISA) reveal
significant variability between nations in the presence and ef-
fect size of a gap (Guiso et al., 2008; Nosek et al., 2009). While
there seems to be some agreement that, in some contexts, the
gender achievement gap is narrowing or may no longer exist,
the implications for such a gap, no matter how small, are still
of import. Hedges and Friedman (1993) predict that even a
difference as small as 0.3 SD coupled with modest variance
can account for as much as 2.5 times as many men in the top
scoring percentiles than women.

In instances in which an achievement gap has been docu-
mented, the underlying causes of these differences in math
performance are likely multiple and the relationships be-
tween them complex. Contextual factors play a key role in
predicting differences in achievement. Analyses of TIMMS
and PISA data identified sociocultural indicators of gender
equality within a nation as a strong predictor of differences in
achievement (Guiso et al., 2008; Nosek et al., 2009). Niederle
and Vesterlund (2011) provide evidence that women perform
differently than men on mathematics-related tasks when the
situation is perceived to be highly competitive.

Stereotype Threat

Stereotype threat, described as a “risk of confirming ... a
negative stereotype about one’s group” (Steele and Aronson,
1995), may undermine achievement in the STEM classroom.
Stereotype threat is not limited to gender and can apply to
many intrinsic characteristics, including race, ethnicity, in-
come level, and academic ability (Allport, 1954; Steele, 1997);
however, we focus here on the impact of stereotype threat on
the performance of women in undergraduate STEM courses.

Stereotype threat may be highly contextual, triggered by
a survey item (Steele and Aronson, 1995), the gender of
the instructor (Delisle ef al., 2009), or instructional practices
(Kreutzer and Boudreaux, 2012), and can undermine aca-
demic success in several ways. First, stereotype threat can
produce stress and induce anxiety, causing a student to be-
come more self-conscious about his or her performance and
to actively try to suppress those emotions, which may tax
working memory and lead to decreased performance (Steele
and Aronson, 1995; Schmader et al., 2008; Delisle et al., 2009).
Second, prolonged exposure to stereotype threat can result
in disidentification, wherein a student stops associating with
a given stereotyped group and avoids situations likely to
be perceived as threatening (Aronson et al., 2002; Steele et al.,
2002). In science, stereotype threat may contribute to the leaky
pipeline, causing the attrition of women from science-related
majors.
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While stereotype threat has become a popular explanation
for differences in performance between men and women in
STEM disciplines, recent work by Stoet and Geary (2012) calls
into question the strength of empirical evidence supporting
this hypothesis. They reviewed the research on gender differ-
ences in mathematics and performance and achievement to
determine the strength of evidence supporting results from
the original, critical study documenting activation of stereo-
type threat in mathematics (Spencer et al., 1999). Stoet and
Geary (2012) concluded that the evidence for activation of
stereotype threat as the mediating factor of a gender achieve-
ment gap is far from robust. Although they identified 141 ar-
ticles related to stereotype threat in mathematics, 20 of these
were replication studies. Of these, just 11 (55%) were able
to replicate the activation of stereotype threat as presented
in the original paper. While they do not dismiss stereotype
threat as a valid hypothesis, they do call into question the
strength of the effect on achievement and performance, and
they caution researchers and policy makers alike to consider
the vast array of other possible contributing factors to the
gender achievement gap.

Reducing the Impact of Stereotype Threat

Empirical work focused on ways to reduce or eliminate the
effects of stereotype threat has revealed a number of simple
yet effective measures, including educating at-risk popula-
tions (Johns et al., 2005) and manipulating test-taking instruc-
tions (Steele and Aronson, 1995; Spencer et al., 1999; Johns
et al., 2005). Social psychologists have also reduced the effects
through mediation of contextual and societal factors related
to stereotypes. Individuation has proved effective by explic-
itly distinguishing between the stereotyped individual and
the stereotype to minimize stereotype usage (Locksley ef al.,
1980; Langer et al., 1985) and allowing stereotyped students
to distance themselves from the stereotype in question, while
remaining engaged in the task or course (Ambady et al., 2004).
Finally, because women are more likely to endorse the stereo-
type that science is for men when suitable female role models
are largely absent (i.e., few female faculty; Delisle et al., 2009),
simply increasing the visibility of and engagement with posi-
tive female role models has proven efficacious (McIntyre et al.,
2004). In fact, simply having a competent woman administer
a mathematics exam was sufficient to reduce the achievement
gap in one study (Marx and Roman, 2002).

Values-affirmation tasks have recently received a great deal
of attention (e.g., Cohen et al., 2006; Miyake et al., 2010) for
their ability to reduce or eliminate stereotype threat. In this
type of intervention, individuals take 10-15 min to write
about values that are personally important but unrelated
to the course. Such writing tasks appear effective in reduc-
ing or eliminating stereotype threat for African Americans
(Cohen et al., 2006; Walton and Cohen, 2007) and women
(Martens et al., 2006, Miyake et al., 2010), with effects that
may persist over time (Cohen et al., 2009; Walton and Cohen,
2011). Although short and simple, values-affirmation writ-
ing tasks draw directly on students’ experiences to actively
engage each student as an individual (Yeager and Walton,
2011) and may promote deep processing to effect powerful
results (Schwartz and Martin, 2004; Chase et al., 2009). Thus,
although simple, values-affirmation writing tasks have the
potential to profoundly impact students experiencing stereo-
type threat (Yeager and Walton, 2011).
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Testing the Efficacy of Values-Affirmation Tasks in
Introductory Science

The work of Miyake et al. (2010) and Cohen et al. (2006) is
encouraging, but each study represents only a single course
or cohort of students at one institution. Given the complex
nature of the classroom and the myriad factors that contribute
to learning, it is necessary to replicate the values-affirmation
study across institutions, semesters, and courses; indeed, this
lack of replication studies is a serious deficit of current DBER
practices (Singer ef al., 2012).

This study addresses this deficiency and specifically inves-
tigates the gender achievement gap across introductory sci-
ence courses and tests the efficacy of a values-affirmation task
in improving student performance. Specifically, we 1) char-
acterized and compared the performance of women and men
across three introductory science sequences (biology, bio-
chemistry, and physics) at a large, public, research-intensive
university; 2) documented endorsement of stereotype threat
in these science courses; and 3) determined the utility of a
values-affirmation writing task in reducing achievement gaps
that may exist.

METHODS

University and Course Context

This land-grant, research university serves more than 14,000
undergraduate and graduate students. Women comprise 42%
of the undergraduate population and 50% of the graduate
population. Across the university, incoming freshmen have
an average composite ACT score of 23.8 and an average high
school grade point average (GPA) of 3.37.

This study targeted four science courses considered intro-
ductory for majors in the discipline, including introductory
calculus-based physics 1 and 2, introductory biology, and in-
troductory biochemistry. Introductory physics 1 is a lecture-
based course taught by a male faculty member, and intro-
duces Newtonian mechanics of translational and rotational
motion, energy, work, power, momentum, conservation of
energy and momentum, periodic motion, waves, sound, and
heat and thermodynamics. Enrollment is typically 90-100
students. Introductory physics 2, taught by a female fac-
ulty member, is also a lecture-based course, and focuses on
conceptual understanding of topics including electric charge;
electric field; potential and current; magnetic field; capac-
itance, resistance, and inductance; circuits; electromagnetic
waves; and optics. Enrollment is typically around 200 stu-
dents. Introductory biology is a very large (300-400 students),
lecture-based course taught by a female faculty member, and
introduces students to cellular and molecular biology, genet-
ics, and evolution. Biochemistry is also a large, lecture-based
course with average enrollments of 300 students taught by
a female faculty member, and focuses on biomolecules, gen-
eration and use of metabolic energy, biosynthesis, metabolic
regulation, storage, transmission, and expression of genetic
information.

Gender Achievement Gap

To investigate the presence and persistence of a gender
achievement gap, we collected data, specifically final course
grades by gender, from iterations of these courses taught in
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Table 1. Participants in the values-affirmation task, as distributed
among treatment groups

Males (T/C)? Females (T/C)?  Total
Introductory biology 138 (74/64) 131 (85/46) 269
Biochemistry 97 (61/36) 122 (74/48) 218
Physics 1 52 (29/23) 13 (9/4) 65
Physics 2 111 (66/45) 15 (9/6) 126

2T /C, treatment group vs. control group.

the 2010-2011 academic year. We also collected these data
from Fall 2011, the same semester in which the values-
affirmation writing task was implemented.

Values-Affirmation Exercise

We followed the protocol described by Miyake et al. (2010)
to implement the values-affirmation exercise in four differ-
ent introductory science courses in the Fall 2011 semester.
This exercise was unrelated to the content of any of the
courses included in this study. The exercise was distributed
in a double-blind manner within the lecture component of
each course. Given the predicted benefits of the task, we
randomly assigned ~60% of students in each course to the
values-affirmation treatment group and ~40% to the control
group (Table 1). The first writing exercise was distributed the
second week of classes, following students’ completion of
a discipline-appropriate concept inventory (Figure 1). A re-
search assistant unaffiliated with any of the courses included
in this study implemented the writing task following a well-
defined script. Students were given 15 min to complete the
writing task.

In the week prior to the second exam, students were asked
to again complete the values-affirmation writing exercise.
This “booster shot” was intended to help students reaffirm
their values. This time, the writing exercise was administered
online through a class Web page as a regular homework as-
signment. Students were invited individually to follow a link
to an online replica of the writing exercise done in class, and
the treatment conditions were kept the same as the firstimple-
mentation. The instructions were the same, suggesting that
students spend ~15 min on the exercise.

Pre Concept

Table 2. Discipline-specific concept inventories

Course Concept inventory

Physics 1 Force and Motion Conceptual
Evaluation®

Brief Electricity and Magnetism
Assessment?

Concept Inventory of Natural
Selection®

Introductory Molecular and Cell
Biology Assessment?

Physics 2
Introductory biology

Introductory biochemistry

aThornton and Sokoloff, 1998.
Ding et al., 2006.

¢Anderson et al., 2002.

dShi et al., 2010.

Stereotype Endorsement Measures

Again, following the protocol of Miyake et al. (2010), we also
distributed a survey to measure students’ endorsement of
gendered stereotype threats, namely that men are generally
better at a particular science (e.g., physics, biochemistry, or bi-
ology). Within the 45-item survey, we distributed two stereo-
type endorsement prompts, customized to each course: 1) ac-
cording to my own personal beliefs, I expect men to generally
do better than women in physics (or biochemistry or biology),
and 2) according to my own personal beliefs, I expect women
to generally do better than men in physics (or biology or
biochemistry). The participants were asked to indicate their
agreement on a 5-point Likert scale ranging from 1 (strongly
disagree) to 5 (strongly agree). This approach does not specif-
ically prime students’ stereotype threat (e.g., by asking them
to identify as female); rather, stereotype threat is activated
by situational pressure, that is, being aware of the stereotype
threat and being a member of the threatened group (e.g.,
women perform more poorly than men in science and I am a
woman; e.g., Marx and Stapel, 2006).

Outcome Measures

The main outcome measures for this study included final
course grades and learning gains (Hake, 1998), the latter mea-
sured by student performance on a discipline-appropriate
concept inventory (Table 2). To test for differences between
the performance of men and women, we used a chi-square
analysis, with Fisher’s exact test when sample sizes were too

Inventory
|
First Writing
Exercise Booster Shot
Stereotype Post Concept
Endorsement Inventory
Survey
l | | | |
! . Figure 1. General timeline of the intervention
Gl Exeimit Exama Exam 3 Final Exam and data collection.
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Table 3. Chi-square analysis of final course grade distributions by
gender

Course Year df n x2 p value
Introductory biology 2010 4 323 1.83 0.78
2011 4 269 5.06 0.28
Biochemistry 2010 4 264 2.26 0.69
2011 4 219  10.05 0.04
Physics 1 2010 4 74 3.14 0.56%
2011 4 65 5.41 0.272
Physics 2 2010 4 188 2.52 0.712
2011 4 126 1.28 0.942

2Fisher’s exact test used when the data set violated the assumption
that each expected cell count was greater than five.

small to meet the assumptions of the chi-square analysis. To
compare learning gains of men and women in treatment and
control groups, we used Student’s t test. Where appropriate,
we calculated effect sizes using Cohen’s V or d and included
confidence intervals. Analyses were conducted using SAS
(Cary, NC) software.

RESULTS

Gender Achievement Gap

There was no significant relationship between the distribu-
tion of final course grades and gender in biology or physics
for any semester or section (Table 3). For biochemistry, how-
ever, there was significance, which shows a relationship be-
tween gender and letter grade for Fall 2011; however, women
seemed to outperform men in this class and semester, al-
though the effect size was small (V = 0.2, 95% CI [0.14, 0.3]).
Further, we found no significant differences between nor-
malized learning gains of men and women for any course
(Table 4).

Stereotype Threat Endorsement

In all courses, students overwhelmingly rejected the claim
that men do better than women in biology, biochemistry, or
physics, with more than two-thirds of students strongly dis-
agreeing or disagreeing with the statement (Figure 2). The
distribution of responses for men differed significantly from
women only inbiology (x? (4) = 23.29,p < 0.001), with women
more likely to disagree with this claim.

Table4. Comparingnormalized learning gains for men and women
in Fall 2011

Mean
Course difference® df t p value
Introductory biology —-0.01 17118 —0.20 0.84
Biochemistry 0.01 183 0.14 0.89
Physics 1 -0.17 42 -1.27 0.21
Physics 2 —-0.10 89 —1.46 0.15

2A negative mean difference value indicates higher learning gains
for the treatment group.

34

Values-Affirmation Writing Task

In all courses but one, physics 2, learning gains were higher
for the treatment group over the control group, significantly
so for only physics 1 (Table 5), with a moderate effect size (d =
—0.7,95% CI [—1.3, —0.09]). Further, in all courses but physics
1, final course grades were higher for the control group
over the treatment group, significantly so for only physics 2
(Table 6), although the effect size was small (d = 0.4, 95% CI
[0.04, 0.8]). Further, there was no significant difference in the
distribution of final grades between treatment and control
groups for women or men in any course (Table 7).

DISCUSSION

The existence of an achievement gap is often an assump-
tion of the undergraduate physics classroom, yet remains
an unknown in introductory biology and biochemistry
courses. However, across semesters and outcome measures,
we found no substantial evidence of an achievement gap
between men and women in either introductory calculus-
based physics courses or introductory biology and biochem-
istry. Although these findings align with studies in astron-
omy (Hufnagel et al., 2004; Willoughby and Metz, 2009) and
biology (Willoughby and Metz, 2009), they contradict what
is typically reported in physics (Lorenzo et al., 2006; Pollock
et al., 2007; Miyake et al., 2010). Such discrepancies may be
attributable to biases in how learning gains are calculated; in-
deed, normalized learning gains are particularly susceptible
to bias, because there is a strong relationship between pretest
scores and normalized learning gains (Coletta and Phillips,
2005; Brogt et al., 2007). For example, because men typically
have higher pretest scores than women on common physics
concept inventories (e.g., Force Concept Inventory or Force
and Motion Conceptual Evaluation), the subsequent calcu-
lation of normalized learning gains is particularly likely to
identify a gender achievement gap. Our results utilized nor-
malized learning gains, further underscoring the lack of an
achievement gap in the sampled science courses.

Explaining gender achievement gaps, however, goes be-
yond statistical biases. Stereotype threat can play a role in
student achievement, especially, as noted, on standardized
tests and concept inventories in science and math. Women
in science often ascribe to a negative stereotype regarding
women’s scientific competency. However, in this study, we
found little to support the claim that women in the sam-
pled population were endorsing a stereotype threat; rather,
our evidence suggests that most women, and even men, re-
ject this claim. We are cautious in our interpretation of these
data for several reasons. In physics, these results may re-
flect the small sample size of women, although in such cases
we might expect women would more readily self-identify
as female and thus face an increased risk of experiencing
stereotype threat. However, these results may reflect a stereo-
type reactance effect, wherein the stereotype is so blatant that
women respond by overperforming (Kray et al., 2001). Al-
though our sample sizes for introductory biology and bio-
chemistry are more robust, we believe this study is one of
the first to explicitly explore gender achievement gaps and
stereotype threat at the undergraduate level in either biology
or biochemistry. As such, this research represents a single time
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Figure 2. Frequency of student responses to the prompt: I expect men to generally do better than women in (a) biology (1 = 227),
(b) biochemistry (n = 243), (c) physics 1 (1 = 44), or (d) physics 2 (1 = 91). 1 = strongly disagree to 5 = strongly agree.

point and institution and is hardly representative of national
trends.

Still, these results are perplexing in light of the broader
research landscape, prompting us to question why these stu-
dents may not ascribe to gender-based stereotype threats.
One possible explanation emerges from self-efficacy litera-
ture, specifically, the role of vicarious experiences in shap-

Table 5. Comparison of normalized learning gains between treat-
ment and control groups

ing student’s beliefs regarding self-efficacy. Vicarious expe-
riences involve more than just a positive role model; they
reflect repeated observations of “others perform[ing] threat-
ening activities without adverse consequences” (Bandura,
1977). By extension, the observer can predict that her hard
work and persistence can result in success. In the under-
graduate setting, vicarious experiences for women include
observing women in roles of authority and as experts, such
as lab and recitation teaching assistants and course instruc-
tors. Given the institutional context of this study, vicarious

Mean
Course difference® df t p value
Introductory biology —0.07 130.13  —0.90 0.37
Biochemistry —0.06 183 —1.36 0.18
Physics 1 —0.25 42 —2.32 0.03
Physics 2 0.04 87.36 0.83 041

2A negative mean difference value indicates higher learning gains
for the treatment group.

Table 6. Comparison of final course grades between treatment and
control groups

Mean
Course difference df t p value
Introductory biology 1.70 257.94 0.96 0.34
Biochemistry 1.50 209.84 1.07 0.29
Physics 1 -3.96 63 -0.82 0.42
Physics 2 5.44 121.76 2.22 0.03
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Table 7. Comparison of final course grades for treatment and con-
trol groups by gender and course

Mean
Course Gender (£SD) df n  x? value?
Introductory biology F 743+151 4 131 7.67 0.11
M 73.7+144 4 138 3.03 0.57
Biochemistry F 80.0 + 8.8 4 122 221 0.80
M 774 +12.7 4 97 6,55 0.17
Physics 1 F 83.2+10.8 4 13 533 0.13
M 788 £20.7 4 52 1.72 0.80
Physics 2 F 829+111 4 15 285 0.60
M 802+ 155 4 111 3.28 0.55

2Fisher’s exact test used when the data set violated the assumption
that each expected cell count was greater than five.

experiences may play an important role in a student’s per-
ception of self-efficacy and stereotype threat. Introductory
biology and biochemistry are both taught by female instruc-
tors, and female graduate students often lead the associated
labs; thus, students are afforded multiple opportunities to
observe women doing biology and biochemistry and may
have greater self-efficacy when doing biology and biochem-
istry themselves. All women enrolled in biochemistry would
have successfully completed at least one course in biology,
and many would have also successfully completed a physics
course. Prior success in biology and physics might serve to
affirm women’s beliefs in biochemistry that they “belong” in
the field. Conversely, the physics department has only one fe-
male faculty member, and at the time of this study, no female
graduate students. Thus, opportunities to observe women
performing “threatening activities” were rare. However, we
note the somewhat anomalous result of physics 2, in which
91% of women disagree or strongly disagree with the claim
that men generally do better in physics. Taught by a fe-
male faculty member, instruction in this course regularly
offers women an opportunity to observe a woman doing
physics and may promote positive feelings of self-efficacy
in female students. Further, women enrolled in physics 2
had successfully completed physics 1 (or equivalent), which
is a prerequisite to physics 2, and therefore may have
already identified themselves as capable of doing well in
physics.

Just as vicarious experiences can influence endorsement of
stereotype threat, other contextual elements might explain
our inability to detect meaningful differences in achieve-
ment and stereotype threat endorsement. Schmader ef al.
(2008) presented a model postulating a link between stereo-
type threat and the activation of processes that tax other-
wise available cognitive resources (e.g., physiological stress,
suppression of negative emotions, and performance moni-
toring). When individuals endorse stereotypes, they are less
likely to perform well, because they have fewer cognitive re-
sources available. Alter et al. (2010) demonstrate that the way
in which a task is presented can affect the degree to which
an individual endorses or identifies with a given stereotype.
They demonstrated differential performance in stereotyped
groups dependent upon how a task was presented—either as
a task or as a challenge. When groups susceptible to stereo-
type threat were presented a task couched as a threat (e.g.,
a measure of intelligence or academic ability), their perfor-
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mance was significantly poorer than when the task was pre-
sented as a challenge (e.g., a potentially difficult task from
which much useful skills or knowledge could be learned). In
our study, the concept inventories were introduced as neither
a threat nor a challenge—rather the emphasis of the exercise
was placed on completion of the task. As a result, we may
have created an environment that reduced the activation of
stereotype threat, which could explain the lack of achieve-
ment gap between groups of students.

Finally, the changing demographic of undergraduate stu-
dents across the nation may impact the stereotypes students
identify, the subsequent stereotype threats they are at risk
of confirming, and ultimately, their performance and per-
sistence in science. For example, we note that the student
population sampled in this study differs substantially from
the population studied in Miyake et al. (2010), with weaker
academic preparation based on composite and subject area
ACT scores and high school GPAs of entering freshmen. As
a result, the aspirations, motivations, and self-efficacy of stu-
dents in this study may differ markedly from those students
attending a more competitive school, such as the one studied
by Miyake et al. (2010).

IMPLICATIONS

Introductory science courses are diverse, complex systems
with the potential to impact learning in multiple and some-
times unanticipated ways. Course context, including deci-
sions about instructional practices, in concert with the chang-
ing demographic of our undergraduates, may reduce or
enhance the prevalence of a gender achievement gap, as me-
diated by stereotype threat endorsement. As this research
shows, gender achievement gaps are not a certainty in the
science classroom, and stereotype threat endorsement may
reflect factors of which we are currently unaware. We be-
lieve that this research supports recent calls from the DBER
community (Singer et al., 2012) for replication studies that in-
vestigate the role of gender in learning undergraduate science
across a variety of course settings, time, and different outcome
measures.
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