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Statistical significance testing is the cornerstone of quantitative research, but studies that fail to
report measures of effect size are potentially missing a robust part of the analysis. We provide a
rationale for why effect size measures should be included in quantitative discipline-based education
research. Examples from both biological and educational research demonstrate the utility of effect
size for evaluating practical significance. We also provide details about some effect size indices that
are paired with common statistical significance tests used in educational research and offer general
suggestions for interpreting effect size measures. Finally, we discuss some inherent limitations of
effect size measures and provide further recommendations about reporting confidence intervals.

INTRODUCTION

Quantitative research in biology education is primarily fo-
cused on describing relationships between variables. Authors
often rely heavily on analyses that determine whether the
observed effect is real or attributable to chance, that is, the
statistical significance, without fully considering the strength
of the relationship between those variables (Osbourne, 2008).
While most researchers would agree that determining the
practical significance of their results is important, statistical
significance testing alone may not provide all information
about the magnitude of the effect or whether the relationship
between variables is meaningful (Vaske, 2002; Nakagawa and
Cuthill, 2007; Ferguson, 2009).

In education research, statistical significance testing has
received valid criticisms, primarily because the numerical
outcome of the test is often promoted while the equally im-
portant issue of practical significance is ignored (Fan, 2001;
Kotrlik and Williams, 2003). As a consequence, complete re-
liance on statistical significance testing limits understanding
and applicability of research findings in education practice.
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Therefore, authors and referees are increasingly calling for
the use of statistical tools that supplement traditionally per-
formed tests for statistical significance (e.g., Thompson, 1996;
Wilkinson and American Psychological Association [APA]
Task Force on Statistical Inference, 1999). One such tool is the
confidence interval, which provides an estimate of the magni-
tude of the effect and quantifies the uncertainly around this
estimate. A similarly useful statistical tool is the effect size,
which measures the strength of a treatment response or rela-
tionship between variables. By quantifying the magnitude of
the difference between groups or the relationship among vari-
ables, effect size provides a scale-free measure that reflects the
practical meaningfulness of the difference or the relationship
among variables (Coe, 2002; Hojat and Xu, 2004).

In this essay, we explain the utility of including effect size
in quantitative analyses in educational research and provide
details about effect size metrics that pair well with the most
common statistical significance tests. It is important to note
that effect size and statistical significance testing (which we
will shorten to “significance testing,” also known as hypoth-
esis testing) are complementary analyses, and both should
be considered when evaluating quantitative research find-
ings (Fan, 2001). To illustrate this point, we begin with two
hypothetical examples: one in biology and one in education.

Effect Size and Statistical Significance Testing: Why
Both Are Necessary

Imagine that a researcher set up two treatment conditions: for
example, unfertilized and fertilized plants in a greenhouse
or, similarly, reformed and traditional teaching approaches
in different sections of an introductory biology course. The
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Table 1. Common measures of effect size

Effect size measure
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researcher is interested in knowing whether the first treat-
ment is more or less effective than the second, using some
measurable outcome (e.g., dried plant biomass or student
performance on an exam); this constitutes the research hy-
pothesis. The null hypothesis states that there is no difference
between the treatments. Owing to sampling variation in a
finite sample size, even if the two treatments are equally ef-
fective (i.e., the null hypothesis is true), one sample mean
will nearly always be greater than the other. Therefore, the
researcher must employ a statistical significance test to de-
termine the probability of a difference between the sample
means occurring by chance when the null hypothesis is true.
Using the appropriate test, the researcher may determine that
sampling variability is not a likely explanation for the ob-
served difference and may reject the null hypothesis in favor
of the alternative research hypothesis. The ability to make
this determination is afforded by the statistical power, which
is the probability of detecting a treatment effect when one
exists, of the significance test. Statistical power is primarily
determined by the size of the effect and the size of the sample:
as either or both increase, the significance test is said to have
greater statistical power to reject the null hypothesis.

The basis for rejection of the null hypothesis is provided
by the p value, which is the output of statistical significance
testing that is upheld as nearly sacred by many quantita-
tive researchers. The p value represents the probability of
the observed data (or more extreme data) given that the null
hypothesis is true: Pr(observed data | Hy), assuming that the
sampling was random and done without error (Kirk, 1996;
Johnson, 1999). A low value of p, typically below 0.05, usu-
ally leads researchers to reject the null hypothesis. However,
as critics of significance testing have pointed out, the abuse of
this rather arbitrary cutoff point tends to reduce the decision
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to a reject/do not reject dichotomy (Kirk, 1996). In addition,
many researchers believe that the smaller the value of p, the
larger the treatment effect (Nickerson, 2000), equating the out-
come of significance testing to the importance of the findings
(Thompson, 1993). This misunderstanding is likely due to the
fact that when sample size is held constant, the value of p cor-
relates with effect size for some statistical significance tests.
However, that relationship completely breaks down when
sample size changes. As described earlier, the ability of any
significance test to detect a fixed effect depends entirely on the
statistical power afforded by the size of the sample. Thus, for
a set difference between two populations, simply increasing
sample size may allow for easier rejection of the null hypothe-
sis. Therefore, given enough observations to afford sufficient
statistical power, any small difference between groups can be
shown to be “significant” using a statistical significance test.

The sensitivity of significance testing to sample size is an
important reason why many researchers advocate reporting
effect sizes and confidence intervals alongside test statistics
and p values (Kirk, 1996; Thompson, 1996; Fan, 2001). Kotrlik
and Williams (2003) highlight a particularly clear example
in which statistical and practical significance differ. In their
study, Williams (2003) was interested in comparing the per-
cent time that faculty members spend teaching with the per-
cent time that they would prefer to spend teaching. Despite
the fact that the mean differences between actual and pre-
ferred teaching time were statistically significant (t;54 = 2.20,
p = 0.03), the effect size (Cohen’s d = 0.09) was extremely
small (see Tables 1 and 2 for effect size metrics and interpre-
tations). As a result, the author did not suggest that there
were practically important differences between actual and
preferred teaching time commitments (Williams, 2003). Re-
porting the confidence interval would have also illustrated
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Table 2. Interpreting effect size values®
Small Medium Large Very large
Effect size measure  effect size effect size effect size effect size
Odds ratio 15 2.5 4 10
Cohen’s d 0.20 0.50 0.80 1.30
(or one of its variants)
r 0.10 0.30 0.50 0.70
Cohen’s f 0.10 0.25 0.40 —
Eta-squared 0.01 0.06 0.14 —

aCohen, 1992, 1988; Rosenthal, 1996.

the small effect in this study: while the confidence interval
would not have contained zero, one of its end points would
have been very close to zero, suggesting that the population
mean difference could be quite small.

Although Williams (2003) presents a case in which a small
“significant” p value could have led to an erroneous conclu-
sion of practically meaningful difference, the converse also
occurs. For example, Thomas and Juanes (1996) present an
example from a study of juvenile rainbow trout willingness
to forage under the risk of predation (Johnsson, 1993). An im-
portant part of the study tested the null hypothesis that large
and small juveniles do not differ in their susceptibility to the
predator, an adult trout. Using eight replicate survivorship
trials, Johnsson (1993) found no significant difference in the
distribution of risk between the two size classes (Wilcoxon
signed-rank test: T+ = 29, p = 0.15). However, the data sug-
gest that there may in fact be a biologically significant effect:
on average, 19 + 4.9% (mean + SE) of the large fish and 45
=+ 7% of the small fish were killed by the predator (Johnsson,
1993). This difference likely represents a medium effect size
(see Table 2; Thomas and Juanes, 1996). Not reporting effect
size resulted in the researchers failing to reject the null hy-
pothesis, possibly due to low statistical power (small sample
size), and the potential to erroneously conclude that there
were no differences in relative predation risk between size
classes of juvenile trout.

Thus, metrics of effect size and statistical significance pro-
vide complementary information: the effect size indicates the
magnitude of the observed effect or relationship between
variables, whereas the significance test indicates the likeli-
hood that the effect or relationship is due to chance. There-
fore, interpretations derived from statistical significance test-
ing alone have the potential to be flawed, and inclusion of
effect size reporting is essential to inform researchers about
whether their findings are practically meaningful or impor-
tant. Despite the fact that effect size metrics have been avail-
able since the 1960s (Huberty, 2002) and have been recognized
as being a potentially useful aspect of analyses since the 1990s
(e.g., Cohen, 1994; Thompson, 1996; Wilkinson and APA Task
Force on Statistical Inference, 1999), the adoption of effect
size as a complement to significance testing has been a slow
process, even in high-impact research (Tressoldi et al., 2013).
Nevertheless, many journals are beginning to develop edito-
rial policies requiring some measure of effect size to be re-
ported in quantitative studies (e.g., Royer, 2000). In response
to this need for implementation, we next discuss the various
methods used to calculate effect sizes and provide guidance
regarding the interpretation of effect size indices.
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Effect Size Analysis in Research

Measures of Effect Size: Two Categories

We concentrate on parametric tests and group effect sizes
into two main categories: those for 1) comparing two or more
groups and 2) determining strength of associations between
variables. The most frequently used statistical tests in these
two categories are associated with specific effect size indices
(see Table 1; Cohen, 1992), and we will discuss some of the
more common methods used for each below. Refer to Figure 1
for a general guide to selecting the appropriate effect size
measure for your data.

Comparing Two or More Groups. A common approach to
both biological and educational research questions is to com-
pare two or more groups, such as in our earlier examples
comparing the effects of a treatment on plant growth or stu-
dent performance. For these kinds of analyses, the appropri-
ate measure of effect size will depend on the type of data
collected and the type of statistical test used. We present here
a sample of effect size metrics relevant to x?, t, or F tests.
When comparing the distribution of a dichotomous vari-
able between two groups, for instance, when using a x? test
of homogeneity, the odds ratio is a useful effect size mea-
sure that describes the likelihood of an outcome occurring
in the treatment group compared with the likelihood of the
outcome occurring in the control group (see Table 1; Cohen,
1994; Thompson, 1996). An odds ratio equal to 1 means that
the odds of the outcome occurring is the same in the control
and treatment groups. An odds ratio of 2 indicates that the
outcome is two times more likely to occur in the treatment
group when compared with the control group. Likewise, an
odds ratio of 0.5 indicates that the outcome is two times less
likely to occur in the treatment group when compared with
the control group. Granger et al. (2012) provide an exam-
ple of reporting odds ratios in educational research. In their
study, the effectiveness of a new student-centered curriculum
and aligned teacher professional development was compared
with a control group. One of the instruments used to measure
student outcomes produced dichotomous data, and the odds
ratio provided a means for reporting the treatment’s effect
size on this student outcome. However, the odds ratio alone
does not quantify treatment effect, as the magnitude of the
effect depends not only on the odds ratio but also on the un-
derlying value of one of the odds in the ratio. For example, if
anew treatment for an advanced cancer increases the odds of
survival by 50% compared with the existing treatment, then
the odds ratio of survival is 1.5. However, if oddscntror = 0.002
and oddSgeatment = 0.003, the increase is most likely not prac-
tically meaningful. On the other hand, if an oddscentro = 0.5
and the oddsgeatment = 0.75, this could be interpreted as a sub-
stantial increase that one might find practically meaningful.
When comparing means of continuous variables between
two groups using a f test, Cohen’s d is a useful effect size
measure that describes the difference between the means nor-
malized to the pooled standard deviation (SD) of the two
groups (see Table 1; Cohen, 1988). This measure can be used
only when the SDs of two populations represented by the
two groups are the same, and the population distributions
are close to normal. If the sample sizes between the two
groups differ significantly, Hedges’ g is a variation of Cohen’s
d that can be used to weight the pooled SD based on sample
sizes (see Table 1 for calculation; Hedges, 1981). If the SDs
of the populations differ, then pooling the sample SDs is not
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What are you measuring?

Differences between
groups

What significance test
are you using?

X2 test ANOVA
t-test
Use odds es Use Cohen’s f
ratio or eta-squared

Are the sample sizes of
the two groups equal?

Yes No
Are the standard Use Hedges' g
deviations of the Yes
samples Use Glass's A
significantly
i ?
different? No e

Figure1.

independent variable
and continuous
dependent variable

Strength of associations
between variables

What significance test
are you using?

Linear Multiple
regression regression
Use 2 Correlation Use R2

What kind of
variables are you
) associating?
Dichotomous

Two continuous
variables

Non-

'
parametric Use Pearson’sr

User,,

Use Spearman’s p

A dichotomous key to selecting an appropriate measure of effect size. Because many quantitative researchers are already accustomed

to employing statistical significance tests but may want to begin reporting effect sizes as well, we suggest effect size metrics that are appropriate
for data analyzed using common significance tests. Although not intended to be a comprehensive guide to effect size indices, this key
indicates many of the measures relevant for common quantitative analyses in educational research. Researchers are encouraged to gather more
information about these metrics, including their assumptions and limitations.

appropriate, and other ways to normalize the mean difference
should be used. Glass’s A normalizes the difference between
two means to the SD of the control sample (see Table 1). This
method assumes that the control group’s SD is most sim-
ilar to the population SD, because no treatment is applied
(Glass et al., 1981). There are many relevant examples in the
educational research literature that employ variations on Co-
hen’s d to report effect sizes. Abraham et al. (2012) used Co-
hen’s d to show how an instructional treatment affected stu-
dents’ post scores on a test of the acceptance of evolutionary
theory. Similarly, Matthews et al. (2010) used Cohen’s d to
show the magnitude of change in student’s beliefs about the
role of mathematics in biology due to changes in course mate-
rials, delivery, and assessment between different years of the
same course. Gottesman and Hoskins (2013) applied Cohen’s
d to compare pre/post means of data collected using an in-
strument measuring students’ critical thinking, experimental
design ability, attitudes, and beliefs.

When comparing means of three or more groups, for in-
stance, when using an analysis of variance (ANOVA) test,
Cohen’s f is an appropriate effect size measure to report (Co-
hen, 1988). In this method, the sum of the deviations of the
sample means from the combined sample mean is normalized
to the combined sample SD (see Table 1). Note that this test
does not distinguish which means differ, but rather just deter-
mines whether all means are the same. Other effect size mea-
sures commonly reported with ANOVA, multivariate anal-
ysis of covariance (MANCOVA), and analysis of covariance
(ANCOVA) results are eta-squared and partial eta-squared.
Eta-squared is calculated as the ratio of the between-groups
sum of squares to the total sum of squares (see Table 1; Ker-
linger, 1964). Alternatively, partial eta-squared is calculated
as the ratio of the between-groups sum of squares to the
sum of the between-groups sum of squares and the error
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sum of squares (Cohen, 1973). For example, Quitadamo and
Kurtz (2007) reported partial eta-squared, along with AN-
COVA/MANCOVA results, to show effect sizes of a writing
treatment on student critical thinking. However, eta-squared
is deemed by some as a better measure to report, because it
describes the variance accounted for by the dependent mea-
sure (Levine and Hullett, 2002), which bears similarities to
typical measures reported in correlational studies.

Determining Strength of Association between Variables. An-
other common approach in both biological and educational
research is to measure the strength of association between
two or more variables, such as determining the factors that
predict student performance on an exam. Many researchers
using this type of analysis already report appropriate mea-
sures of effect size, perhaps without even realizing they are
doing so. In most cases, the regression coefficient or analo-
gous index provides information regarding the magnitude of
the effect.

The Pearson product-moment correlation coefficient (Pear-
son’s r) measures the association between two continuous
variables, such as in a linear regression (see Table 1). Squar-
ing the r value when performing a simple linear regression
results in the coefficient of determination (1?), a measure that
provides information about the amount of variance shared
between the two variables. For multiple-regression analysis,
the coefficient of multiple determination (R?) is an appropri-
ate effect size metric to report. If one of the study variables is
dichotomous, for example, male versus female or pass versus
fail, then the point-biserial correlation coefficient () is the
appropriate metric of effect size. The point-biserial correla-
tion coefficient is similar in nature to Pearson’s r (see Table 1).
An easy-to-use Web-based calculator to calculate 7y, is lo-
cated at www.vassarstats.net/pbcorr.html. Spearman’s rank
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correlation coefficient (p) is a nonparametric association mea-
sure that can be used when both variables are measured on
an ordinal or ranked scale or when variables on a continu-
ous scale are not normally distributed. This measure can be
used only after one applies a transformation to the data that
ranks the values. Because this is a nonparametric measure,
Spearman’s p is not as sensitive to outliers as Pearson’s r.
Note that there are also variations of Spearman’s p thathandle
different formats of data. Most statistical software packages
can calculate all of these measures of variable association, as
well as most of the measures comparing differences between
groups. However, one must be careful to be sure that values
provided by the software are indeed what they are claimed
to be (Levine and Hullett, 2002).

How to Interpret Effect Sizes

Once you have calculated the effect size measure, how do you
interpret the results? With Cohen’s d and its variants, mean
differences are normalized to SD units. This indicates that a
d value of 0.5 can be interpreted as the group means differ-
ing by 0.5 SDs. Measures of association report the strength
of the relationship between the independent and dependent
variables. Additional manipulation of these association val-
ues, for example, 72, can tell us the amount of shared variance
between the variables. For the case of regression analysis,
we can assume that an 7* value of 0.3 means that 30% of
the variance in the dependent variable can be explained by
the independent variable. Additionally, McGraw and Wong
(1992) developed a measure to report what they call “the
common language effect size indicator,” which describes the
probability that a random value sampled from one group will
be greater than a random value sampled from a comparison
group (McGraw and Wong, 1992).

Statisticians have determined qualitative descriptors for
specific values of each type of effect size measure (Cohen,
1988, 1992; Rosenthal, 1996). For more interpretation of these
types of measures, see Table 2. These values can help guide
a researcher to make some sort of statement about the qual-
itative nature of the effect size, which is useful for commu-
nicating the meaning of results. Additionally, effect size in-
terpretations impact the use of data in meta-analyses. Please
refer to Box 1 to see an example of how interpretations of the

Effect Size Analysis in Research

Box 1. Use of effect sizes in meta-analyses

Effect size measures are an important tool used when per-
forming meta-analyses because they provide a standardized
method for comparing results across different studies with
similar designs. Two of the more common measures are Pear-
son’s r and Cohen’s d. Cohen’s d describes the difference be-
tween the means of two groups normalized to the pooled
standard deviation of the two groups. Pearson’s r measures
the association between two continuous variables. A problem
arises when comparing a study that reports an r value with
one that reports a d value. To address this problem, statis-
ticians have developed methods to convert r values into d
values, and vice-versa. The equations are listed below:

d= 2r = d
A/1-r2 Ad2+4

Many studies in the literature do not report effect sizes,
and only report statistical significance results such as p val-
ues. Rosenthal and Rubin (2003) have developed a mea-
sure to account for this issue, Tequivalent, Which can deter-
mine effect size from experimental designs comparing the
means of two groups on a normally distributed outcome
variable (Rosenthal and Rubin, 2003). This measure allows
meta-analysis researchers to derive apparent effect sizes from
studies that only report p values and sample sizes. First, one
determines a f value from a f-value table by using the associ-
ated sample size and one-tailed p value. Using this t value,
one can calculate Tequivalent using the following equation:

Tequivalent = ﬁ, where df = degrees of freedom on which
the p-value is based.

different types of effect size measures can be converted from
one type to another for the purpose of meta-analysis.

Limitations of Effect Size

We have built a justification for the reporting of effect sizes
as a complement to standard statistical significance testing.
However, we do not wish to mislead the reader to construe
effect size as a panacea in quantitative analyses. Effect size
indices should be used and interpreted just as judiciously
as p values. Effect sizes are abstract statistics that experience
biases from sampling effort and quality and do not differ-
entiate among relationships of similar magnitude that may

Table 3. Recommended references for learning more about and implementing effect size measures as a part of standard statistical analyses

Introduction to effect sizes written for the nonstatistician and
relevant to the educational researcher

Theoretical explanation of effect size measures written for those
with stronger statistical foundation

Accessible and relevant reference for the practical application of
effect size in quantitative research; includes directions for
calculating effect size in SPSS

A guide to implementing effect size analyses written for the
researcher

American Psychological Association recommendation to report
effect size analyses alongside statistical significance testing

Coe R (2002). It’s the effect size, stupid: what effect size is and
why it is important. Paper presented at the Annual
Conference of the British Educational Research Association,
held 12-14 September 2002, at the University of Exeter, UK.
www.leeds.ac.uk/educol/documents/00002182.htm.

Cohen J (1988). Statistical Power Analysis for the Behavioral
Sciences, 2nd ed., Hillsdale, NJ: Lawrence Erlbaum.

Ellis PD (2010). The Essential Guide to Effect Sizes: Statistical
Power, Meta-Analysis, and the Interpretation of Research
Results, Cambridge, UK: Cambridge University Press.

Nakagawa S, Cuthill IC (2007). Effect size, confidence interval
and statistical significance: a practical guide for biologists. Biol
Rev Camb Philos Soc 82, 591-605.

Wilkinson L, APA Task Force on Statistical Inference (1999).
Statistical methods in psychology journals: guidelines and
explanations. Am Psychol 54, 594-604.
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actually have more or less practical significance (Coe, 2002;
Nakagawa and Cuthill, 2007; Ferguson, 2009). Rather, deter-
mination of what constitutes an effect of practical significance
depends on the context of the research and the judgment of
the researcher, and the values listed in Table 2 represent some-
what arbitrary cutoffs that are subject to interpretation. Just
as researchers may have logical reasons to choose an alpha
level other than p = 0.05 with which to interpret statisti-
cal significance, the interpretation of practical relationships
based on effect size may be more or less conservative, de-
pending on the context. For example, an r of 0.1 for a treat-
ment improving survival of a fatal disease may be of large
practical significance. Furthermore, as we mentioned earlier,
one should always accompany the proper effect size measure
with an appropriate confidence interval whenever possible
(Cohen, 1994; Nakagawa and Cuthill, 2007; Ellis, 2010; Tres-
soldi et al., 2013). For example, Lauer et al. (2013) reported
Cohen’s d along with 95% confidence intervals to describe the
effects of an administration of a values-affirmation exercise on
achievement gaps between men and women in introductory
science courses.

CONCLUSION

By highlighting the problems with relying on statistical sig-
nificance testing alone to interpret quantitative research re-
sults, we hope to have convinced the reader that significance
testing is, as Fan (2001) puts it, only one-half of the coin. Our
intent is to emphasize that no single statistic is sufficient for
describing the strength of relationships among variables or
evaluating the practical significance of quantitative findings.
Therefore, measures of effect size, including confidence in-
terval reporting, should be used thoughtfully and in concert
with significance testing to interpret findings. Already com-
mon in such fields as medical and psychological research due
to the real-world ramifications of the findings, the inclusion of
effect size reporting in results sections is similarly important
in educational literature. The measures of effect size described
here do not by any means represent the numerous possible in-
dices, but rather are intended to provide an overview of some
of the most common and applicable analyses for educational
research and a starting point for their inclusion in the report-
ing of results. In addition to the references cited throughout
this article, we recommend several informative and accessi-
ble authorities on the subject of effect sizes, summarized in
Table 3.
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