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Social interactions between students are a major and underexplored part of undergraduate education.
Understanding how learning relationships form in undergraduate classrooms, as well as the impacts
these relationships have on learning outcomes, can inform educators in unique ways and improve
educational reform. Social network analysis (SNA) provides the necessary tool kit for investigating
questions involving relational data. We introduce basic concepts in SNA, along with methods for
data collection, data processing, and data analysis, using a previously collected example study on an
undergraduate biology classroom as a tutorial. We conduct descriptive analyses of the structure of
the network of costudying relationships. We explore generative processes that create observed study
networks between students and also test for an association between network position and success
on exams. We also cover practical issues, such as the unique aspects of human subjects review
for network studies. Our aims are to convince readers that using SNA in classroom environments
allows rich and informative analyses to take place and to provide some initial tools for doing so, in
the process inspiring future educational studies incorporating relational data.

INTRODUCTION

Social relationships are a major aspect of the undergraduate
experience. While groups on campus exist to facilitate so-
cial interactions, the classroom is a principle domain wherein
working relationships form between students. These relation-
ships, and the larger networks they create, have significant
effects on student behavior. Network analysis can inform our
understanding of student network formation in classrooms
and the types of impacts these networks have on students.
This set of theoretical and methodological approaches can
help to answer questions about pedagogy, equity, learning,
and educational policy and organization.
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Social networks have been successfully used to test and
create paradigms in diverse fields. These include, broadly,
the social sciences (Borgatti et al., 2009), human disease (Mor-
ris, 2004; Barabási et al., 2011), scientific collaboration (New-
man, 2001; West et al., 2010), social contagion (Christakis and
Fowler, 2013), and many others. Network analysis entails two
broad classes of hypotheses: those that seek to understand
what influences the formation of relational ties in a given
population (e.g., having the same major, having relational
partners in common), and those that consider the influence
that the structure of ties has on shaping outcomes, at either the
individual level (e.g., grade point average [GPA] or socioeco-
nomic status) or the population level (e.g., graduation rates
or retention in science, technology, engineering, and mathe-
matics [STEM] disciplines). A growing volume of research on
social influences at the postsecondary level exists, examining
outcomes such as overall GPA and academic performance
(Sacerdote, 2001; Zimmerman, 2003; Hoel et al., 2005; Foster,
2006; Stinebrickner and Stinebrickner, 2006; Lyle, 2007; Car-
rell et al., 2008; Fletcher and Tienda, 2008; Brunello et al., 2010),
cheating (Carrell et al., 2008), drug and alcohol use (Duncan
et al., 2005; DeSimone, 2007; Wilson, 2007), and job choice
(Marmaros and Sacerdote, 2002; De Giorgi et al., 2009). The
impacts are often significant, perhaps not surprisingly; this
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research has many implications, including the importance
that randomly determined relationships such as roommate or
lab partner can have on undergraduates’ behavioral choices
and, consequently, their college experiences.

One key direction for education researchers is to study
network formation within classrooms, in order to elucidate
how the realized networks affect learning outcomes. Network
analysis can give a baseline understanding of classroom net-
work norms and illuminate major aspects of undergraduate
learning. Educators interested in changing curriculum, intro-
ducing new teaching methods, promoting social equity in
student interactions, or fostering connections between class-
rooms and communities can obtain a more nuanced under-
standing of the social impacts different pedagogical strategies
may have. For example, we know active learning is effective
in college classrooms (Hake, 1998; O’Sullivan and Copper,
2003; Freeman et al., 2007; Haak et al., 2011), but the full set
of causal pathways is unclear. Perhaps one important change
introduced by active learning is the facilitation of student net-
works to be stronger, less centralized, or structured in some
other new way to maximize student learning. Social network
analysis (SNA) can help us assess these types of hypotheses.

Recent research in physics education has found that a stu-
dent’s position within communication and interaction net-
works is correlated with his or her performance (Bruun and
Brewe, 2013). An informal learning environment was found
to be facilitative in mixing physics students of diverse back-
grounds (Fenichel and Schweingruber, 2010; Brewe et al.,
2012). However, these exciting initial steps into network anal-
ysis in STEM education still leave many hypotheses to ex-
plore, and SNA provides a diverse array of tools to explore
them.

The goal of this paper is to enable and encourage re-
searchers interested in biology education, and education re-
search more generally, to perform analyses that use relational
data and consider the importance of learning relationships
to undergraduate education. In doing so, we first introduce
some of the many basic concepts and terms in SNA. We out-
line methods and concerns for data collection, including the
importance of gaining approval from your local institutional
review board (IRB). We briefly discuss a straightforward way
to organize data for analysis, before performing a brief anal-
ysis of a classroom network along three avenues: descriptive
analysis of the network, exploration of network evolution,
and analysis of network position as a predictor of individual
outcomes. This paper is aimed at serving as an initial primer
for education researchers rather than as a research paper or
a comprehensive guide. For the latter, see Further Resources,
where we provide a list of additional resources.

INTRODUCTION TO THE CASE STUDY

In introducing network analysis, we draw our example from
a subset of a 10-wk introductory biology course with 187
students who saw the course to completion as an exam-
ple. Each student in this course attended either a morn-
ing or afternoon 1-h lecture of ∼90 students four times
a week and attended one of eight student labs of ∼24
students each, which met once a week for 3 h and 20 min. This
course used a heavy regimen of active learning, including a
significant amount of guided student–student interaction in

both lecture and lab. The total percentage of active-learning
activities used in this lecture course was greater than 65%
of classroom time, including audience response–device ques-
tions. The data we collected included who students studied
with for the first three exams, all of their class grades, the
lecture and lab sections to which they belonged, and general
demographic information from the registrar.

Network Concepts
In this section, we lay out some of the foundations of SNA
and introduce concepts and measurements commonly seen
in network studies.

Social Network Basics. SNA aims to understand the deter-
minants, structure, and consequences of relationships be-
tween actors. In other words, SNA helps us to understand
how relationships form, what kinds of relational structures
emerge from the building blocks of individual relationships
between pairs of actors, and what, if any, the impacts are of
these relationships on actors. Actors, also called nodes, can be
individuals, organizations, websites, or any entity that can be
connected to other entities. A group of actors and the connec-
tions between them make up a network.

The importance of relationships and emergent structures
formed by relationships makes SNA different from other re-
search paradigms, which often focus solely on the attributes
of actors. For example, traditional analyses may separate stu-
dents into groups based on their attributes and search for
disproportional outcomes based on those attributes. A social
network perspective would focus instead on how individuals
may have similar network positions due to shared attributes.
These similar network positions may present the same social
influences on both individuals, and these social influences
may be an important part of the causal chain to the shared
outcome. In situations in which a presence or absence of so-
cial support is suspected to be important to outcomes of in-
terest, such as formal learning within a classroom, the SNA
paradigm is appealing.

Network Types. One way to categorize networks is by the
number of types of actors they contain. Networks that consist
of only one type of actor (e.g., students) are referred to as
unipartite (or sometimes monopartite or one-mode). While not
discussed in detail here, bipartite (or sometimes two-mode)
networks are also possible, linking actors with the groups to
which they belong. For example, a bipartite network could
link scholars to papers they authored or students to classes
they took, differing from a unipartite network, which would
link author to author or student to student.

Networks can also be categorized by the nature of the ties
they contain. For example, if ties between actors are inher-
ently bidirectional, the network would be referred to as undi-
rected. A network of students studying with one another is
an example of an undirected network; if student A studies
with student B, then we can be certain that student B also
studied with student A, creating an undirected tie. If the rela-
tional interest of a network has an associated direction, such
as student perceptions of one another, then it is referred to
as a directed network; if student A perceives student B as
smart, it does not imply that student B perceives student A
as smart; without the latter, we would have one directed tie
from A to B.
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Ties can also be binary or valued. Binary ties represent
whether or not a relation exists, while valued ties include
additional quantitative information about the relation. For
example, a binary network of student study relations would
indicate whether or not student A studied with student B,
while a valued network would include the number of hours
they studied together. Binary networks are simpler to collect
and analyze. Valued networks include a trade-off of more in-
formation in the data versus increased analytical and method-
ological complexity. Using the example of a study network,
the added complexity of valued networks would allow an
investigation regarding a threshold number of study hours
necessary for a peer impact on learning gains, while a binary
network would treat any amount of study time with a peer
equally.

Network Data Collection. Collecting network data requires
deciding on a time frame for the relationships of interest. Real-
world networks are rarely static; ties form, break, strengthen
and weaken over time. At any given time, however, a network
takes on a given cross-sectional realization. Network data col-
lection (and subsequent analyses) can be categorized, then,
by whether it considers a static network, a cross-sectional
realization of an implicitly dynamic network, or an explic-
itly dynamic network. The last of these may take the form
of multiple cross-sectional snapshots or of some form of con-
tinuous data collection. Measuring and analyzing dynamic
networks introduces a host of new challenges. Because the
set of actors in a classroom population is mostly static for
a definite period of time (i.e., a semester or quarter), while
the relational ties among them may change over that period,
all three options are feasible in this setting. The type of col-
lection should, of course, be driven by the research question
at hand. For example, our interest in the evolution of study
networks inspired a longitudinal network collection design.
Examining the impact of network ties on subsequent class-
room performance, on the other hand, could be done with a
single network collection.

Beyond considering the time frame of collection, it is also
important to consider how to sample from a population. Ego-
centric studies focus on a sample of individuals (called “egos”)
and the local social environment surrounding them without
explicitly attempting to “connect the dots” in the network fur-
ther. Typically, respondents are asked about the number and
nature of their relationships and the attributes of their rela-
tional partners (called “alters”). In some fields, the term “ego-
centric data collection” implies that individual identifiers for
relational partners are not collected, while in other fields this
is not part of the definition. By either definition, egocentric
studies tend to be easier to implement than other methods,
both in terms of data collection and ethics and human sub-
jects review. Egocentric data are excellent first descriptors of
a sample and, in many situations, may be the only form of
data available. A wide range of important hypotheses can be
tested using egocentric data, although questions about larger
network structure cannot. Asking a sample of college fresh-
men to list friends and provide demographic information
about each friend listed would represent egocentric network
collection.

At the other end of the spectrum, census networks, some-
times referred to as whole networks, collect data from an entire
bounded population of actors, including identifiable informa-

tion about the respondents’ relational partners. These alters
are then identified among the set of respondents, yielding
a complete picture of the network. This results in more po-
tential hypotheses to be tested, due to the added ability to
look at network structures. In our classroom study, we asked
students to list other students in that same classroom with
whom they studied; this is an example of a census network
whose population is bounded within a single classroom.

High-quality census networks are rare, due to the exhaus-
tive nature of the data collection, as well as the need for
bounding a population in a reasonable way. It is worth not-
ing that census networks may lack information on potentially
influential relations with actors who are not a part of the
population of interest; for example, important interactions
between students and teaching assistants will be absent in
a census network interested in student–student interactions,
as would any students outside the class with whom students
in the class studied. In the case of longitudinal studies, an
added challenge arises—handling students who withdraw
from the class or who join after the first round of data collec-
tion has been conducted. Census data collection also presents
a nonresponse risk, which may result in a partial network.
Nonresponse is more acute in complete network studies than
other kinds of data collection because many of the commonly
used analytical methods for complete networks consider the
entire network structure as an interactive system and assume
that it has been completely observed. Educational environ-
ments such as classrooms are fairly well bounded and have
unique and important cultures between relatively few actors;
they are thus prime candidates for census data collection,
although the above issues must still be attended to.

Network Level Concepts and Measures. Network analysis
entails numerous concepts and measurements absent in more
standard types of data analyses. Perhaps the most basic mea-
surement in network analysis is network density. The density
of a network is a measurement of how many links are ob-
served in a whole network divided by the total number of
links that could exist if every actor were connected to ev-
ery other actor. These measurements are frequently small but
vary by the type and size of the network. Density measure-
ments are often hard to interpret without comparable data
from other similar networks.

Density is a global metric that simply indicates how many
ties are present. A long list of network concepts are fur-
ther concerned with the patterns of who is connected with
whom. One pervasive concept in the latter realm is homophily
(McPherson et al., 2001), a propensity for similar actors to be
disproportionately connected in a relation of interest. If we
are interested in who studies with whom, and males dispro-
portionately studied with other males and females with other
females, this would exemplify some level of homophily by
gender. Likewise, we could see homophily by ethnicity, GPA,
office-hours attendance, or any other characteristic that can
be the same or similar between two students. Understanding
and researching homophily in classroom and educational net-
works may be central for several reasons. For example, two
reasonable hypotheses are that relationships of social support
in classrooms are more likely to be seen between students
with similar backgrounds and that having sufficient social
support is important for STEM retention. Testing these hy-
potheses by looking for homophily in networks with relation
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to STEM retention would provide valuable information re-
garding the lower STEM retention rates of underrepresented
groups. Confirming these hypotheses, then, would inform
improved classroom behavioral strategies for educators to
emphasize.

Finding a pattern of homophily for certain research ques-
tions is interesting on its own. Note, however, that a pattern
of homophily can emerge from multiple processes. Two ex-
amples of these are social selection and social influence. Social
selection occurs when a relationship is more likely to occur
due to two actors having the same attributes, while social
influence occurs when individuals change their attributes to
match those of their relational partners, due to influence from
those partners. As an example, we can imagine a hypotheti-
cal college class in which a network of study partners reveals
that students who received “A’s” disproportionately stud-
ied with other students receiving “A’s.” If “A”-level students
seek out other “A”-level students to study with, this would
be social selection; if studying with an A-level student helps
raise other students’ grades, this would be social influence.
Depending on the goals of a study, disentangling between
these two possibilities may or may not be of interest. Doing
so is most straightforward when one has longitudinal data,
so that event sequences can be determined (e.g., whether stu-
dent X became an “A” student before or after studying with
student Y).

Analyzing ties between two individuals independently,
such as in studies of homophily, falls into the category of
dyad-level analysis. When one has a census network, how-
ever, analysis at higher levels such as triads is possible. Triads
have received considerable interest in network theory (Gra-
novetter, 1973; Krackhardt, 1999) due to their operational sig-
nificance. Triads are any set of three nodes and offer interesting
structural dynamics, such as one node brokering the forma-
tion of a tie between two other nodes, or one node acting
as a conduit of information from one node to the other. One
version of classifying triads in an undirected network (com-
monly called the undirected Davis-Leinhardt triad census) is
shown in Figure 1.

In a study network, a class exhibiting many complete triads
may indicate a strong culture of group study compared with
a class that exhibits comparatively few complete triads. One
way to examine this would be a triad census—a simple count
of how many different triad types exist in a network. Another
way to measure this would be to look at transitivity, a value
representing the likelihood of student A being tied to C, given
that A is tied to B and B is tied to C. Transitivity is a simple,
local measure of a more general set of concepts related to
clustering or cohesion, which may extend to much larger
groups beyond size three.

A

CB

A

CB

A

CB

A

CB

0 1 2 3
Figure 1. Davis and Leinhardt triad classifications for undirected
networks.

In directed networks, transitivity can take on a different
meaning, pointing to a distinct pair of theoretical concepts.
When three actors are linked by a directed chain of the form
A→B→C, then there are two types of relationships that can
close the triad: either A→C or C→A (or, of course, both). The
first option creates a structure called a transitive triad, and
the latter a cyclical triad. For many types of relationships (i.e.,
those involving giving of goods or esteem), a preponderance
of transitive triads is considered an indicator of hierarchy
(with A always giving and C always receiving), while a pre-
ponderance of cyclical triads is an indicator of egalitarianism
(with everyone giving and everyone receiving). If asking stu-
dents about their ideal study partners, the presence of tran-
sitive triads would reflect a system wherein students agree
on an implicit ranking of best partners, presumably based
on levels of knowledge and/or helpfulness. Cyclic triads (as
well as other longer cycles) would be more likely to appear
if students believed that other factors mattered instead or as
well; for instance, that it is most useful to study with someone
from a different lab group or with a different learning style
so as to maximize the breadth of knowledge.

Actor-Level Variables. Nodes within a network also have
their own set of measurements. These include the exoge-
nously defined attributes with which we are generally fa-
miliar (e.g., age, race, major), but they also include measures
of position of nodes in the network. Within the latter, a widely
considered cluster of interrelated metrics revolves around the
concept of centrality. Several ways of measuring centrality
have been proposed, including degree (Nieminen, 1974), close-
ness (Sabidussi, 1966), betweenness (Freeman, 1977), and eigen-
vector centrality (Bonacich, 1987). Degree centrality represents
the total number of connections a node has. In networks in
which relations are directional, this includes measures of inde-
gree and outdegree, or the number of edges pointing to or away
from an actor, respectively. Degree centrality is often useful
for examining the equity or inequity in the number of ties be-
tween individuals and can be done by looking at the degree
distribution, which shows the distribution of degrees over an
entire network. Betweenness centrality focuses on whether
actors serve as bridges in the shortest paths between two
actors. Actors with high betweenness centrality have a high
probability of existing as a link on the shortest path (geodesic)
between any two actors in a network. If one were to look at
an airport network (airports connected by flights), airports
serving as main hubs, such as Chicago O’Hare and London
Heathrow, would have high betweenness, as they connect
many cities with no direct flights between them. Closeness
centrality focuses on how close one actor is to other actors on
average, measured along geodesics. It is important to keep
in mind that closeness centrality is poorly suited for discon-
nected networks (networks in which many actors have zero
ties or groups of actors have no connection to other groups).
Eigenvector centrality places importance on being connected
to other well-connected individuals; having well-connected
neighbors gives a higher eigenvector centrality than having
the same number of neighbors who are less well connected.
Easily the most famous metric based upon eigenvector cen-
trality is the PageRank algorithm used by Google (Page et al.,
1999). Because the interpretation of what centrality is actually
measuring depends on the metric selected and the type of
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network at hand, careful consideration is advised before se-
lecting one or more types of centrality for one’s study.

Network Methods: Data Collection
In this section, we provide guidance for collecting network
data from classrooms. Our discussion is based on existing
literature as well as personal experience from our previously
described network study.

Both relational and nodal attribute data can be collected
using surveys. Designing an effective survey is a more chal-
lenging task than often anticipated. There are excellent re-
sources available for writing and facilitating survey questions
(Fink, 2003; Denzin and Lincoln, 2005). This section highlights
some of the issues unique to surveys for educational network
data.

Survey fatigue, and its resulting problems with data qual-
ity (Porter et al., 2004), can be an issue for any form of survey
research; however, for network studies, it can be especially
challenging, given that students are reporting not only on
themselves but also on each of their relational partners. For
our project, we avoided overuse of surveys in several ways.
Routine administrative information such as lab section, lec-
ture section, student major, course grades, and exam grades
was easily collected from instructor databases. Data about
student demographics, educational background, and stan-
dardized testing were obtained through a request to our uni-
versity’s registrar’s office (with accompanying human sub-
jects approval).

We strongly suggest pilot studies with your survey, as
scheduling a single high-value data collection as the first use
of a survey instrument can be risky. The delay in waiting for
the next term or the next class for a more vetted collection is
worthwhile. Data processing time and effort can be greatly
reduced by streamlined data collection, and analysis will be
strengthened by iterative improvement of survey questions.
With adequate design preparation, brief surveys can easily
collect relational data. It is important to keep questions clear
and compact. Guidance into the form of the data can make
data collected from both closed- and open-ended questions
much simpler to clear and process (Wasserman et al., 1990;
Scott and Carrington, 2011).

Relational data collected in a closed-ended format such as
lists, drop-down menus, or autocomplete forms can limit er-
rors that come with open-ended data collection and are often
easier to process. While these streamline student choices, they
also come with a downside: they can introduce name confu-
sions (e.g., in our class, nine students share the same first
name) and are most problematic when students use nick-
names. List data should always allow for both a “Nobody”
answer choice and a default “I prefer not to answer” answer
choice. An example of data collection with a closed list is
shown below:

Question 11: We are interested in learning how in-class
study networks form in large undergraduate classes. Over
the next few pages is a class roster with two checkboxes
next to each student—one which says “Pre-class friend”
and one which says “Strong student”. For each student,
evaluate whether they fit the description for each box
(immediately below this paragraph), and check the box if they
do.

Pre-class friend: A student that you would consider a friend
from BEFORE the term of this class. If you have met someone

in this class that you would consider a friend now but not
before this class, do not list them as a pre-class friend.

Strong student: A student you believe is good at under-
standing class material.

If you are not exactly sure of a name, mark your best
guess. The next question in this survey will allow you to
write in a name if you don’t see one or aren’t sure.

***Please know that your response is completely confidential.
All names will be immediately re-coded so we will have no
idea who studied with whom. This information will never be
used for any class purpose, grading purpose, or anything else
before the end of the class. Also, please note that students that
you list will not know that you listed them in this survey,
and you will not know if anyone listed you.***

Pre-class friend Strong student

Curie, Marie Pre-class friend Strong student

Darwin, Charles Pre-class friend Strong student

Einstein, Albert Pre-class friend Strong student

Franklin, Rosalind Pre-class friend Strong student

If no checkmarks: Nobody fits
descriptions above

Nobody fits
descriptions above

I prefer not to answer I prefer not to answer

The number of possible choices given to subjects is an area
of intense interest to survey writers in other fields (Couper
et al., 2004). Limiting respondents to a given number of an-
swers has a variety of purposes; e.g., in egocentric studies in
which a respondent will be asked many questions about each
partner, it can help to limit respondent fatigue. For census
network data, this is not an issue because we will not need
to ask students a long list of questions about the attributes
of their alters; we will have that information from the alters
themselves, who are also students in the class. It can also help
avoid a subject with a broad definition of friendship or col-
laboration from dominating the data set. We chose to avoid
limits on numbers of student nominations, which have the
potential to induce subjects to enter data to fill up their per-
ceived quota. In our experience, individual student responses
are typically few; no student listed so many friends or study
partners that it drowned out other signals significantly.

Open-ended data collection should also include a means
for students to indicate that no choices fit the question, to dif-
ferentiate between nonrespondents and null answers. The
largest source of respondent error in open-ended data is
again name confusion between students. However, errors can
be minimized by providing concise instructions for student-
answer formatting. For one of our projects, one example of
an open-ended relational survey question was:

We are interested in how networks form in classes. Please
list first and last names if possible. If this is not possible, last
initials or any description of that person would be appreciated
(ie: “they are in the same lab as me”, “really tall” or “sits in
the second row”).

If no one fits one of these descriptions, simply write “none.”
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***Your response is completely confidential. All names will
be re-coded so we will have no idea who listed whom. This
information will never be used for any class purpose, grading
purpose, or anything else before the end of the class. Also,
please note that students that you list will not know you
listed them in this survey, and you will not know if anyone
listed you.***

There are no right or wrong answers for this. We will ask
you similar questions a few times this term. These data are
incredibly valuable, so we truly appreciate your answers!

Please list any people in the class that you know are
strong with class material. If you do not list anybody,
please type either “No one fits description” OR “I prefer
not to answer”. (separate multiple students with a comma,
like “Jane Doe, John Doe”).

Finally, it may be appropriate in smaller classes, communi-
ties with less online capability, or in particularly well-funded
studies to collect relational data by interviews. This brings
along greater privacy concerns but may be necessary for
some hypotheses. Open-ended questions allow for greater
breadth of data collection but come with intrinsic complex-
ity in processing. For example, a valued network describing
the amount of respect that students have for various faculty
might be best collected in a private interview. In this format,
the interviewer could more thoroughly describe “respect” by
using repeated and individualized questioning to ascertain
the amount of respect a student has for each faculty member.

Timing of Survey Administration
Timing of survey questions throughout a class is important.
For classroom descriptions consisting of a single network,
data should be collected at the earliest possible time that all
students have had the experiences desired in the research
study. This limits the loss of data due to students forgetting
particular ties, dropping or switching classes, or failing to
complete the assignment as submission rates inevitably drop
toward the end of the term. For longitudinal studies involving
several collections, relational data can be collected either at
regular intervals or around important classroom events. In
either case, we strongly suggest implanting relational survey
questions in already existing assignments, if permitted, to
maximize data collection rates.

For our project, we collected data throughout the 10-wk
term of an introductory biology course. We surveyed for stu-
dent study partnerships after each exam, spread at semiregu-
lar intervals throughout the term (weeks 3, 5, 8, and 10). It will
come as no surprise to instructors that attempts to administer
an additional, nongraded survey gave lower response rates
from already overworked and overscheduled undergradu-
ates. Instead, we appended ungraded survey questions to
existing graded online assignments. Depending on your re-
search question, it may be appropriate to repeat some collec-
tions to allow for redundancy or for longitudinal analyses.
Friendships, for example, are subjectively defined and tem-
poral (Galaskiewicz and Wasserman, 1993). In some of our
projects, we ask students for friendship relational data at both
the beginning and end of the term as an internal measure of
this natural volatility.

Given high response rates, anecdotal accounts of student
study groupings that corroborated with the relational data,
and limited extra work placed on students to provide data,

we have a high level of confidence in the efficacy of our
data collection methods, and others interested in network re-
search with similar populations may also find these methods
effective.

IRB and Consent
Data used solely for curricular improvement and not for gen-
eralizable research often do not require consent, but any use
of the data for generalizable research does (Martin and In-
wood, 2012). Social network data include the unique issue
of one individual reporting on others in some form or other,
even if it is only on the presence of a shared relationship.
They also often describe vulnerable populations; this can be
especially true for educational network research, when re-
searchers are often also acting as instructors or supervisors
to the student subjects and are thus in a position of authority.
This may create the impression in students’ minds that re-
search participation is linked to student assessment. Because
of this, early and frequent conversations with your local hu-
man subjects division are useful, illuminating, and should
take priority (Oakes, 2002).

The nature of network data not only allows subjects to
report information on other subjects but may allow recogniz-
ability of even anonymized data (called deductive disclosure),
especially in small networks. This makes larger data sets typ-
ically safer for subjects. It also means that some network data
fields must be stripped of information (Martin and Inwood,
2012). A relatively common example is in networks of mixed
ethnicity in which one ethnic group is extremely small. In
these cases, ethnicities may need to be identified by random
identifiers rather than specific names. In many scenarios, re-
searchers must plan on anonymizing or removing identifiers
on data (Johnson, 2008). Your IRB will determine the best fit
of plan for any given population of subjects.

Obtaining consent makes networks exciting and problem-
atic at the same time. Complete inclusion of all subjects gives
fascinating power to network statistics. Incomplete networks
are far less compelling. More so than simpler unstructured
data, networks may hinge on a small group of centralized
actors in a community. The twin goals of subject protection
and data set completion may compete (Johnson, 2008).

In our experience, conversations with IRB advisors led to
an understanding of opt-in and opt-out procedures. For ex-
ample, a standard opt-in procedure would use an individ-
ual not involved with the course to talk students through
a consent script, answer questions, and retrieve signed con-
sent forms from consenting subjects. An opt-out procedure
would provide the same opportunities for student informa-
tion and questions but ask subjects to opt out by signing a
centrally located and easily accessible form kept confidential
from researchers until after the research is completed. While
the opt-in procedures are more common and foreground sub-
ject protection, they tend to omit data with a bias toward
underserved and less successful populations. For this rea-
son, we used an opt-out procedure, which commonly leads
to higher rates of data return. Balancing research goals and
appropriate protection of subject rights and privacy is critical
(Johnson, 2008). By minimizing the risk to our subjects via
confidential network collection, the use of an opt-out proce-
dure was justified.
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Table 1. Example of nodal attributes held in a matrix

Gender Major Lab section Grade

Marie 1 Chemistry 2 3.5
Charles 0 Theology 1 2.6
Rosalind 1 Biophysics 4 3.8
Linus 0 Biochemistry 5 4.0
Albert 0 Physics 5 3.3
Barbara 1 Botany 1 3.1
Greg 0 Pre-major 3 3.0

Data Management
Matrices are a powerful way to store and represent social net-
work data. Common practice is to use a combination of ma-
trices, one (or more) containing nodal attributes (see Table 1)
and one (or more) containing relational data. A common form
for the latter is called a sociomatrix or adjacency matrix (see
Table 2); another is as an edgelist, a two-column matrix with
each row identifying a pair of nodes in a relationship. For
our study, we compiled several sociomatrices taken longitu-
dinally at key points in the class, as well as one matrix with
data of interest about our students.

A unipartite sociomatrix will always be square, with as
many rows and columns as there are respondents. For undi-
rected networks, the sociomatrix will be symmetric along the
main diagonal; for undirected, the upper and lower triangles
will instead store different information. Matrices for binary
networks will be filled with 1s and 0s, indicating the existence
of a tie or not, respectively. In cases of nonbinary ties (e.g.,
how many hours each student studied together) the num-
bers within the matrix may exceed one. The matrix storing
nodal attribute information need not be square; it will have
a row for each respondent and a column for each attribute
measured.

It is important to understand the value of keeping rows
of attribute data linkable to, and in the same order as,
sociomatrices—this will ensure the relational data of a stu-
dent are paired properly to his or her other data. The linkage
can be done through unique names; more typically it will be
done using unique study IDs.

The amount of effort and time spent cleaning the data will
depend on how the data were collected and the classroom
population. For this reason, it is advisable to plan the amount
and means of collecting data around your ability to process
them. Recently, we collected a large relational data set via
open-ended survey online. To process these data into so-
ciomatrices we created a program capable of doing more than
50% of the processing (Butler, 2013), leaving the rest to simple

Table 2. Example of a small sociomatrix

Marie Charles Rosalind Linus Albert Barbara Greg

Marie – 0 1 0 1 0 1
Charles 0 – 0 1 0 0 0
Rosalind 0 0 – 0 0 0 0
Linus 0 0 0 – 0 0 0
Albert 1 0 0 0 – 0 0
Barbara 0 0 0 1 0 – 0
Greg 0 0 0 0 0 0 –

data entry. For data collected using a prepopulated comput-
erized list, it may even be possible for all data processing to
be automated.

Data Analysis
Many different questions can be addressed with SNA, and
there are nearly as many different SNA tools as there are
questions. As an example, we will look at the change in stu-
dent study networks over the span of two exams from our
previously described study. Our main interest in these analy-
ses will be how study networks form in a classroom and the
impacts these networks have on students. To generate testable
hypotheses, we will first perform exploratory data analysis,
taking advantage of sociographs. These informative network
visualizations offer an abundance of qualitative information
and are a distinguishing feature of SNA. It is important to
note that, while SNA lends itself well to exploratory analy-
ses, it is often judicious to have a priori hypotheses before
beginning data collection. The exploratory data analysis em-
bedded below is used to provide a more complete tutorial
rather than to model how research incorporating relational
data must be performed.

Starting Analyses
Most familiar statistical methods require observations to be
independent. In SNA, not only are the data dependent among
observations, but we are fundamentally interested in that de-
pendence as our core question. For these reasons, the methods
must deal with dependence. As a result, analyses may occa-
sionally seem different from familiar methods, while at other
times they can seem familiar but have subtle differences with
important implications. This point should be kept in mind
while reading about or performing any analysis with depen-
dent data.

There are a number of proprietary software packages avail-
able for performing SNA, and interested investigators should
weigh the pros and cons of each for their own purposes before
choosing which to use. We use the statnet suite of packages
(Handcock et al., 2008; Hunter et al., 2008) in R, primarily its
constituent packages network and sna (Butts, 2008). R is an
open-source statistical and graphical programming language
in which many tools for SNA have been, and continue to be,
developed. The learning curve is steeper than for most other
software packages, but it comes with arguably the most com-
plex statistical capabilities for SNA. Other network analysis
packages available in R are RSiena (Ripley et al., 2011), and
igraph (Csardi and Nepusz, 2006). Other software packages
commonly used for analysis for academic purposes include
UCINet (Borgatti et al., 1999), Pajek (Batagelj and Mrvar, 1998),
NodeXL (Smith et al., 2009; Hansen et al., 2010), and Gephi
(Bastian et al., 2009).

We include R code for step-by-step instructions for our
analysis in the Supplemental Material for those interested in
using statnet for analyses. The Supplemental Material also in-
cludes instructions for accessing a mock data set to use with
the included code, as confidentiality needs and correspond-
ing IRB agreements do not allow us to share the original
data.
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Exam 1 Exam 2

Figure 2. Sociographs representing study networks for the first and second exam. Male students are represented as triangles and females as
diamonds. The color of each node corresponds to the lab section each student was in. Edges (lines) between nodes in the networks represent a
study partnership for the first and second exam, respectively.

Exploratory Data Analysis
In performing SNA, visualizing the network is often the first
step taken. Using sociographs, with nodal attributes repre-
sented by different colors, shapes, and sizes, we will be able
to begin qualitatively assessing a priori hypotheses and de-
riving new hypotheses. We hypothesize that students who
are in the same lab are more likely to study together, due to
their increased interaction. We also think students with fewer
study partners, and thus less group support in the class, are
less likely to perform well in the class.

Figure 2 contains two sociographs visualizing the study
networks for the first and second exam. Each shape represents
a student, and a line between two shapes represents a study
relationship. In these graphs, each color represents a different
lab section, shape represents gender, and the size of each
shape corresponds to how well the student performed in the
class.

While no statistical significance can be drawn from so-
ciographs, we can qualitatively assess our hypotheses. Judg-
ing by the clustering of colors, it seems as though same-lab
study partnerships were rarer in the first exam than the sec-
ond exam, for which several same-color clusters exist. This
provides valuable visual evidence, but more rigorous statisti-
cal methods are important, particularly if policy depends on
results.

There does not seem to be any strong visual evidence for an
association between classroom performance and number of
study partners. If this were true, we would see isolated nodes
(those with zero ties) and nodes with few connections to be
smaller on average than well-connected nodes. Visually, it is
hard discern whether this is the case, and more rigorous tests
can help us test this hypothesis. We first explore structural
changes in study networks between the first two exams before
statistically testing for an association between test scores and
social studying.

Network Changes over Time
We can compare the study networks from the first and sec-
ond exams using network measures such as density, triad
censuses, and transitivity. These measurements allow us to
assess whether the number of study partnerships are increas-
ing or decreasing and whether any changes affect larger net-
work structures such as triads.

Examining Table 3, a few things become clear. First, 34 more
study partnerships exist in the second exam compared with
the first, a 22.5% increase in network density. This increase
in study partnerships does not distinguish between students
moving from studying alone to studying with other students
and students who have study partners adopting more study
partners. One way to gain a better understanding of the in-
crease in overall study partnerships is to look at the degree
distribution for the first two exams, seen in Table 4.

There are fewer students without study partners on the
second exam, several students exhibiting extreme sociality in
their study habits, and an overall trend toward more students
with upwards of five study partners. Unfortunately, the de-
gree distribution does not completely illuminate the social

Table 3. General measurements taken from study networks of the
first two exams

Measure
First exam study

network
Second exam

study network

Edges 151 185
Density 0.00868 0.01064
Triad (0) 1,044,790 1,038,672
Triad (1) 27,407 33,384
Triad (2) 216 326
Triad (3) 32 63
Transitivity 0.3077 0.3670
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Table 4. Degree distribution from the study networks of the first
two exams

Degree

0 1 2 3 4 5 6 7 8 9

First 57 45 32 34 8 7 4 0 0 0
Second 51 43 24 33 17 12 1 3 2 1

mobility of students between the first and second exam. One
way to view general trends is to use a parallel coordinate
plot using the degree data from the first and second study
networks.

The plot in Figure 3 seems to indicate that the overall in-
crease in study partnerships is not dominated by a few indi-
viduals and is instead an outcome of an overall class increase
in social study habits. While we see many isolated students
studying alone on the first and second exam, we also find
many branching off and studying socially in the second exam.
At the same rate, many students studied with partners in the
first exam and become isolated on the second.

Not only are there more overall connections, but we see
higher transitivity and a trend toward complete triads. This
increase in both measures indicates how students find their
new study partners; they become more likely to study with
their study partner’s study partner, resulting in more group
studying.

Ties as Predictors of Performance
Understanding study group formation and evolution is both
interesting and important, but we are not limited to ques-
tions focused on network formation. As educators, we are
inherently interested in what drives student learning and the
kinds of environments that maximize the process. We can

start addressing this broad question by integrating student
performance data with network data.

As an example, we will test for an association between
exam scores and both degree centrality and betweenness cen-
trality. Studying with more students (indicated by degree cen-
trality) and being embedded centrally in the larger classroom
study network (indicated by betweenness centrality) may be
a better strategy than studying alone or only with socially
disconnected students. If we think of each edge in the study
network as representing class material being discussed in a
bidirectional manner, then more social students may have a
leg up on those who are not grappling with class material
with peers.

Owing to the dependent nature of centrality measures, test-
ing for an association between network position and exam
performance is not completely straightforward. One way
around the dependence assumption is to use a permutation
correlation test. The general idea is to create a distribution
of correlations from our data by randomly sampling values
from one variable and matching them to another. In effect,
we will assign each student in the study network a randomly
selected exam score from the scores in the class 100,000 times.
This creates a null distribution of correlation coefficients (ρ)
for the correlation between exam score and centrality mea-
sure for the set of exam scores found in our data, as seen in
Table 5. We can then test the null hypothesis that ρ = 0 using
this created distribution.

With a one-tailed test, we see no significant correlation
for either centrality measure for the first exam but find a
significant correlation between both betweenness centrality
and degree centrality and exam performance on the second
exam. With our understanding of how students changed their
studying patterns between the first and second exam, this
finding is rather interesting. Given the opportunity to revise
their network positions after some experience in the course,
we find a social influence on exam performance.

Figure 3. A parallel coordinate plot tracking changes in number of study partners from the first and second exam. The number of students
whose number of study partners changes from exam 1 to exam 2 is denoted by the line widths.
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Table 5. Results from a permutation correlation test between de-
gree and betweenness centrality and student exam performance

Centrality measure Exama Correlation Pr (ρ ≥ obs)

Degree centrality Exam 1 0.072 0.164
Exam 2 0.212 0.001

Betweenness centrality Exam 1 0.031 0.337
Exam 2 0.117 0.048

aSignificance is seen between both types of centrality for the second
exam, but not the first.

Because we are unable to control for student effort
(a measure notoriously hard to capture), we are unable to dis-
cern whether study effort confounds our finding and makes
causality vague. Regardless, the association is interesting and
exemplifies the sort of direction researchers can take with
SNA.

More Complex Models of Network Formation
The methods we present here only scratch the surface of those
available and largely focus on fairly descriptive techniques.
A variety of approaches exists to explore the structure of
networks, to infer the processes generating those structures,
and to quantify the relationships among those structures
and the flow of entities on them, with a recent trend away
from description and toward more inferential models. For
instance, past decades saw great interest in specific models
for network structure (e.g., the “small-world” model) and
their implications (Watts and Strogatz, 1998). A host of meth-
ods exist for identifying endogenous clusters in networks
(e.g., study groups) that are not reducible to exogenous at-
tributes like major or lab group; these have evolved over
the decades from more descriptive approaches to those in-
volving an underlying statistical model (Hoff et al., 2002).
Recently, more general approaches for specifying compet-
ing models of network structure within the framework and
performing model selection based on maximum likelihood
have become feasible. These include actor-oriented models,
implemented in the RSiena package (Snijders, 1996), and
exponential-family random graph models, implemented in
statnet (Wasserman and Pattison, 1996; Hunter et al., 2008).
One recent text that covers all of these and more, using ex-
amples from both biology and social science and with a sta-
tistical orientation, is Statistical Analysis of Network Data by
Kolaczyk (2009).

FUTURE DIRECTIONS

Within education research, we are just beginning to explore
the kinds of questions that can benefit from these meth-
ods. Correlating student performance (on any number of
measures) to network position is one clear area of research
possibility. Specific experiments in pedagogical strategies or
tactics, beyond having effects on student learning, may be as-
sessable by differential effects on student network formation.
For example, three groups of students could be required to
perform a classroom task either by working alone, by working
in pairs, or by working in larger groups. Differential outcomes

might include grade results, future self-efficacy, or under-
standing of scientific complexity. The outcomes could be cor-
related with significant differences in the emergent network
structures, strength of ties, and number of ties that emerge in
a network of studying partnerships. Controlled experimenta-
tion with social constraints and network data would provide
insight on advantages or disadvantages of intentional social
structuring of class work.

Educational networks are not exclusive to students; rela-
tional data between teachers, teacher educators, and school
administrators may reveal how best teaching practices spread
and explain institutional discrepancies in advancing science
education.

Beyond correlational studies, major questions of equity and
student peer perceptions will be a good fit for directed net-
work analysis. Conceivably, network analysis can be used to
describe the structure of seemingly ethereal concepts such
as reputation, charisma, and teaching ability through the
social assessment of peers and stakeholders. With a better
understanding of the formation and importance of class-
room networks, instructors may wish to understand how
their teaching fosters or hinders these networks, potentially
as part of formative assessment. Reducing the achievement
gaps along many demographic lines is likely to involve social
engineering at some granular level, and the success or fail-
ure of interventions represents rich opportunities for network
assessment.

SUMMARY

In this primer, we have analyzed two study networks from a
single classroom. We have discussed collection of both nodal
and relational data, and we specifically focused on keeping
surveys brief and simple to process. We transitioned these
data to a sociomatrix form for use with SNA software in a
statistical package. We analyzed and interpreted these data
by visualizing network data with sociographs, looking at
some basic network measurements, and testing for associ-
ations between network position and a nodal attribute. Data
were interpreted both as a description of a single network
and as a longitudinal time lapse of community change. For
this project, data collection required a single field of data
from the institution registrar and a single survey question
asked longitudinally on just two occasions. With a relatively
small investment in data collection we can rigorously assess
hypotheses about interactions within our educational envi-
ronments.

It bears repeating: this primer is intended as a first introduc-
tion to the power and complexity of educational research aims
that might benefit from SNA. Your specific research question
will determine which parts of these methods are most useful,
and deeper resources in SNA are widely available.

In short, networks are a relatively simple but powerful
way of looking at the small and vital communities in ev-
ery school and college. Empirical research of undergraduate
learning communities is sparse, and instructors are thus lim-
ited to anecdotal evidence to inform decisions that may im-
pact student relations. We hope this primer helps to guide
educational researchers into a growing field that can help in-
vestigate classroom-scale hypotheses, and ultimately inform
for better instruction.
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FURTHER RESOURCES

For readers whose interest in SNA has been piqued, there
are numerous resources to use in learning more. We provide
some of our favorites here:

Carolan, Brian V. Social Network Analysis and Education: The-
ory, Methods & Applications. Los Angeles: Sage, 2013.

Kolaczyk, Eric D. Statistical Analysis of Network Data: Meth-
ods and Models. Springer Series in Statistics. New York:
Springer, 2009.

Lusher, Dean, Johan Koskinen, and Garry Robbins. Expo-
nential Random Graph Models for Social Networks: Theory, Meth-
ods, and Applications. Structural Analysis in the Social Sciences
35. Cambridge, UK: Cambridge University Press, 2012.

Prell, Christina. Social Network Analysis: History, Theory &
Methodology. Los Angeles: Sage, 2012.

Scott, John, and Peter J. Carrington. The Sage Handbook of
Social Network Analysis. London: Sage, 2011.

Wasserman, Stanley, and Katherine Faust. Social Network
Analysis: Methods And Applications. Structural Analysis in the
Social Sciences 8. Cambridge, UK: Cambridge University
Press, 1994.

Other resources include the journals Social Network Analysis
and Connections, both published by the International Network
for Social Network Analysis; the SOCNET listserv; and the
annual Sunbelt social networks conference.
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HIGHLIGHT:

The authors introduce basic concepts in SNA, along with methods for data collection, data processing, data analysis, and
conduct analyses of a study relationship network. Also covered are generative processes that create observed study networks
and practical issues, such as the unique aspects of human subjects review for network studies.
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