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We present an innovative course-based undergraduate research experience curriculum focused on 
the characterization of single point mutations in p53, a tumor suppressor gene that is mutated in 
more than 50% of human cancers. This course is required of all introductory biology students, so 
all biology majors engage in a research project as part of their training. Using a set of open-ended 
written prompts, we found that the course shifts student conceptions of what it means to think like 
a scientist from novice to more expert-like. Students at the end of the course identified experimental 
repetition, data analysis, and collaboration as important elements of thinking like a scientist. Course 
exams revealed that students showed gains in their ability to analyze and interpret data. These data 
indicate that this course-embedded research experience has a positive impact on the development 
of students’ conceptions and practice of scientific thinking. 

Article

Research involving undergraduate students has been called 
the “purest form of teaching” (NRC, 2003, p. 87), and research 
experiences for undergraduates have been identified as “an 
integral component of biology education for all students” 
(AAAS, 2011, p. xiv). Despite these recommendations, the 
practical implications of involving students in research re-
main daunting. Historically, the integration of research into 
the undergraduate biology curriculum has primarily been in 
the form of research apprenticeships in faculty research labs 
(Russell et al., 2007), but there are not enough of these posi-
tions available at most institutions to give all students the 
opportunity to participate in authentic research.

One solution to this problem is to integrate research 
experiences into traditional high-enrollment lab courses 
(Handelsman et al., 2004; Sundberg et al., 2005; Auchincloss 
et al., 2014). Such course-based undergraduate research 
experiences, or CUREs, have five defining characteris-
tics: 1) There is an element of discovery, so that students 
are working with novel data. 2) Iteration is built into the 
lab. 3) Students engage in a high level of collaboration. 
4) Students learn scientific practices. 5) The topic is broadly 
relevant so that it could potentially be publishable and/or 
of interest to a group outside the class (Auchincloss et al., 
2014). One of the major goals of these CUREs is that they 
reflect a real research experience in order to give students 
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INTRODUCTION

Learning science means learning to do science.
—Vision and Change: A Call to Action (American 
Association for the Advancement of Science, 2011, p. 14)

Incorporating research experiences into the undergradu-
ate curriculum is a major goal of national reform efforts 
(American Association for the Advancement of Science 
[AAAS], 2011; National Research Council [NRC], 2003). 
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a more accurate conception of how scientific research is 
done.

In response to calls for reform, a diverse range of CUREs 
have been developed (for a list, see www.curenet.franklin 
.uga.edu). Some of these courses are extensions of faculty 
members’ research projects (e.g., Brownell et al., 2012). In this 
format, students have the opportunity to work on a research 
problem in a formal course, and questions they explore can 
contribute to a faculty member’s research program (Kloser 
et al., 2011; Brownell and Kloser, 2015). An alternative model 
is a stand-alone lab course in which students conduct re-
search that is only peripherally related, if at all, to a local 
faculty member’s research program. This approach is exem-
plified by the Howard Hughes Medical Institute (HHMI) 
SEA PHAGES program (Jordan et al., 2014) and the Genet-
ics Education Partnership (Shaffer et al., 2010, 2014), both of 
which are multi-institution programs. These courses have 
been packaged so they can be implemented at a diverse 
range of institutions, and inter-institutional collaboration is 
encouraged.

While many CUREs currently exist, most of these have 
been small-sized classes taught to students who volunteer to 
participate. However, volunteer students and nonvolunteer 
students have previously been shown to have different af-
fective gains from a CURE (Brownell et al., 2013), indicating 
that findings from volunteer populations may not be gener-
alizable to students in required CUREs. Additionally, assess-
ment of CUREs has been primarily in the form of student 
self-report surveys (e.g., CURE survey; Lopatto et al., 2008). 
While student self-reporting can be useful if one is interested 
in affective measures such as confidence or interest, it is not 
as effective at determining students’ abilities to interpret 
data or how similar their thinking processes are to expert 
scientists. Different means of assessment need to be used to 
further probe the impact of CUREs on students (Brownell 
and Kloser, 2015; Corwin et al., 2015).

We developed a CURE that replaced our “cookbook” in-
troductory biology course; it is required of all undergradu-
ate biology majors and is not directly related to any faculty 
member’s research at this institution. The primary purpose 
of this course is to engage students in research to shift their 
“thinking like a scientist” from novice to expert. This con-
struct has been defined in previous literature (Druger et al., 

2004; Hunter et al., 2007; Hurtado et al., 2009; Etkina and 
Planinši, 2014). We solicited responses from expert scientists 
who hold a PhD in their discipline to further articulate this 
construct; our definition is outlined in Table 1.

The purpose of this study was to assess the impact of this 
required high-enrollment CURE on 1) student conceptions 
of what it means to think like a scientist and 2) student abil-
ity to analyze and interpret scientific data, one of the key 
components of what it means to think like a scientist.

The novelty of this particular study is in the curriculum, 
how the course is required for a large population of intro-
ductory students, specific aspects of the course that promote 
and benefit from large-scale collaboration, and how we as-
sessed the impact of the course curriculum through coded 
open-ended written responses and student learning gains 
in data interpretation. We hope that this can be a model for 
others interested in developing and assessing CUREs that 
are designed to give all students graduating with a biology 
degree the experience of doing research.

CURRICULUM DESCRIPTION

Course Content: Investigating Human p53 Mutants 
Using Yeast as a Model System
We sought to identify an unsolved scientific problem that 
would engage student interest in human biology and could 
be investigated using molecular and cell biology techniques 
accessible to students with no previous lab experience. We 
reasoned that analysis of a human disease–related protein 
would satisfy the first criterion and that use of budding yeast 
as an experimental system would satisfy the second. We 
chose the human tumor suppressor gene p53 as the basis for 
study. p53 is a transcription factor that promotes DNA repair, 
cell cycle arrest, and apoptosis (Levine, 1997; Sionov and 
Haupt, 1999). p53 is mutated in more than 50% of cancers 
(Hollstein et al., 1991; Soussi et al., 1994; Whibley et al., 2009). 
We note that Gammie and Erdeniz (2004) used a similar ra-
tionale in creating a smaller lab course based on the human 
mismatch repair protein MSH2 (Gammie and Erdeniz, 2004).

The specific scientific research question in our course is 
to characterize mutant versions of p53 identified in human 
tumors. Each mutant version of p53 contains a single point 

Table 1. Our definition of the construct “thinking like a scientist” based on prior studies and consensus of an expert panel of PhD-level 
scientists

Element Description Agreement in prior literature

Make discoveries Scientists formulate questions, make observations, collect data, ana-
lyze and interpret data, test hypotheses, and draw conclusions.

Druger et al., 2004; Hunter et al., 2007; 
Hurtado et al., 2009; Etkina and 
Planinši, 2014

Make connections between 
seemingly unconnected 
phenomena

Scientists are able to think in multiple ways and design multiple 
types of experiments to test the same idea. New ideas often result 
from thinking differently. Science is not a linear process.

Hunter et al., 2007

Critically evaluate data  
with skepticism

Scientists critique both their own experiments and the experiments 
of others. There is the need to repeat experiments to see whether 
more evidence backs up a claim; one experiment is not enough.

Druger et al., 2004; Hunter et al., 2007

Seek opportunities to share 
their findings and com-
municate with others

Scientists present their work to others in the form of scientific 
posters, oral presentations, and written reports. Communication 
of their interpretations to the broader community is important, 
because scientists are working toward common goals.

Hurtado et al., 2009
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mutation that changes one amino acid in the p53 protein se-
quence. Although much is known about p53 function, the 
specific functional defects of many mutant p53 proteins are 
uncharacterized. We used yeast as a model system because 
it is inexpensive to culture, grows rapidly, and is easily 
genetically manipulated. Using standard yeast genetics and 
an array of basic molecular and cell biology techniques, stu-
dents can explore the phenotype of their p53 mutant over 
the course of a 10-wk quarter and come to an initial conclu-
sion about the molecular nature of the defect in their mutant 
(Schärer, 1992; Mager and Winderickx, 2005; Figure 1).

Course Goals: To Engage Students in a Research 
Experience to Encourage Scientific Thinking
This course’s primary goal was to shift students from novice 
to expert in their thinking as scientists in the context of a 
scientific research project. To achieve this, we incorporated 
the following features that align with the defining features 
of CUREs (Auchincloss et al., 2014): 1) discovery and rele-
vance: students explored one longitudinal research ques-
tion in depth for 10 wk, and neither instructors nor students 
knew in advance what the results of experiments would be; 

2) collaboration: a high degree of collaboration required stu-
dents to work with a partner on all aspects of the project, 
including experimentation, postlab assignments, and final 
presentations, and there were larger groups of students 
who shared data to achieve group conclusions; 3) iteration: 
multiple groups of students did the same experiments and 
compared data with one another; and 4) scientific practices: 
a) an emphasis on data interpretation and analysis and b) as-
sessments that were representative of how scientists would 
evaluate one another, including a poster presentation and an 
oral presentation.

The course has a modular scalability in that five different 
p53 mutants were studied each term, and each lab section 
(10 students) studied the same five p53 mutants (one pair 
of students per mutant p53 allele). Even though the experi-
mental procedures and the questions were mostly predeter-
mined, the results and interpretations were unknown, creat-
ing a realistic research experience.

Course Organization, Student Population, and 
Instructional Team
Students enroll in this introductory lab course independent 
of an introductory biology lecture course. The course is in-
tended for sophomore biology majors who are concurrently 
taking the introductory biology lecture series. All biology 
majors are required to take this course as their introductory 
biology lab course, and most premed students in nonbiology 
majors take this course to fulfill a medical school require-
ment; there were no other introductory biology lab course 
options available. Table 2 shows the demographic character-
istics of students from Winter 2013, which is representative 
of the other terms.

The course comprised one 75-min lecture/discussion sec-
tion and one 4-h lab each week. The lecture/discussion sec-
tion was used to introduce new material, to give students an 
opportunity for guided practice with some of the concepts of 
the course, and to compare and contrast data from different 
mutants. Three exams were also given during these discus-
sion sections.

The 4-h lab was primarily dedicated to conducting exper-
iments. Lab partners were randomly assigned at the begin-
ning of the course, and students worked with the same lab 
partners each week to investigate their specific mutants.

A PhD-level lecturer taught each discussion session to 
20 students; this lecturer taught two adjacent lab sessions, 
each with 10 students, simultaneously. Additionally, a grad-
uate student teaching assistant helped coordinate the lab 
sessions, so there was an overall teacher-to-student ratio 

Figure 1. Research questions explored by students in the course 
over a 10-wk period. Students work through each of these questions 
to determine the functional defect of their mutant p53. The exper-
imental protocols for each experiment have been developed; thus, 
the authenticity of the course stems from the data analysis on mu-
tant alleles that have not previously been characterized, as well as 
the progressive refinement of student-articulated hypotheses and 
conclusions.

Table 2. Demographic characteristics of students in the lab course in Winter 2013 (n = 117)

Class year Gender Ethnicity Major Prior research experience

Sophomore 53% Male 40.2% White 39.3% Biology 37.6% Yes 60.7%
Junior 31.6% Female 59.8% Asian 41% Human biology 37.6% No 39.3%

Senior 15.4% Black 9.4% Engineering 16.2%

Latin@ 7.7% Other 8.5%
Pacific Islander 1.7%
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Building in Iteration and Comparing Data. Within each 
lab room, each student pair worked on a different mutant, 
affording them ownership over their studies and indepen-
dence in their interpretation of the data. However, students 
in different lab rooms examined the same set of five mutants. 
Three times during the 10-wk quarter, we held mutant group 
discussions, in which all the students working on the same 
mutant came together to compare their data and draw con-
clusions about their p53 mutants (Figure 2).

During one of these meetings, the group assigned to a 
specific mutant collectively designed an experiment, decid-
ing how many different variables they wanted to test and 
weighing that against the benefit of having a higher number 
of replicates. These mutant group discussions allowed stu-
dents to see, through the lens of their own p53 mutants, the 
inherent variability of biological data and, consequently, the 
importance of having multiple replicates of each experiment. 
When experiments did not yield an interpretable result, stu-
dents engaged in a process of troubleshooting to determine 
what might have gone wrong. Differences between student 
results provided an opportunity to brainstorm possible 
sources of error and ways to make the data more reliable in 
the future; students also decided among themselves whether 
to include data points that could be considered outliers. Al-
though instructors and teaching assistants facilitated these 
discussions, students were encouraged to lead the discus-
sions, and student participation was integral.

We emphasized that the results of only one experiment 
are not enough to draw a conclusion; experiments must be 
repeated multiple times, which is a concept that students 
have been shown to have difficulty understanding (Brownell 
et al., 2014). Experiments must be repeated when they fail 
and when they work—one replicate is not enough to draw a 
conclusion in a biological experiment.

If an experiment did not yield interpretable results in a 
given week, students were expected to come in during an-
other time before the next lab to repeat the experiment; this 
encouraged students to be diligent in their experimentation 
and also gave them a more realistic experience of what it 

of 1:10. Two tenure-track faculty members with expertise in 
yeast genetics and four PhD-level instructors whose primary 
teaching responsibility was this course were responsible for 
designing and implementing the curriculum.

Course Design Elements Designed to Promote 
Scientific Thinking
We integrated the following design elements throughout the 
course to promote student thinking like a scientist.

Query as a Way to Structure Student Thinking. QUERY is 
an acronym for “Question, Experiment, Results, and Your 
interpretation” (C. Anderson, unpublished observations). 
For each experiment students performed, they were asked 
to use the QUERY method to structure their thinking. This 
helped them to articulate the question they were trying to 
address, describe the experiment in detail, and differentiate 
results from their interpretation of the results. Specifically, 
students were asked about the question and experiment on 
each prelab assignment and the results and interpretation on 
each postlab assignment. Thus, we used QUERY as a way to 
scaffold the process of thinking like a scientist to introduc-
tory students. It required students to think about the “why” 
behind each experiment and distinguish the results from 
their interpretation of the results.

Hypothesis Testing and Making Predictions. Although the 
instructors knew the order of the experiments, which was 
essential for planning and providing reagents to such a large 
class, the students did not know the order of the experi-
ments in advance. Thus, after students completed the first 
set of analyses to determine whether their mutant p53s had 
transactivation defects, we gave students the opportunity 
to brainstorm about what might be causing the defects and 
how they might be able to test their hypotheses. Students 
engaged in a brainstorming session during which they used 
inductive logic to ask what next set of experiments they 
should design to answer their overarching question: “What 
is wrong with your p53 mutant?”

These brainstorming sessions provided opportunities for 
students to see the similarities and differences between ex-
periments and experience the benefits of having multiple 
people working together to solve a problem. These sessions 
also prompted students to see the connections between 
individual experiments in answering the overall question 
(Figure 1).

Additionally, on each weekly postlab assignment, students 
were asked, based on data collected thus far, to develop hy-
potheses concerning possible molecular defects in their mu-
tant p53s. This exercise could help students organize what 
they knew already and keep the big picture of the project in 
perspective. These activities were intended to help students 
see the project as one longitudinal project, even though they 
were completing a series of smaller experiments.

Data Interpretation. Each week’s postlab assignment fo-
cused on the data analysis and interpretation of experiments 
conducted in the lab. Partners worked together on the data 
analysis and interpretation, and each pair of partners sub-
mitted a single, collaboratively prepared, postlab assign-
ment. Thus, the collaboration between them was realistic of 
how scientists in a research lab would collaborate.

Figure 2. Collaboration among students in the course. Students 
work with one partner on a specific mutant allele of p53 for the 
whole 10 wk. In each 20-student combined lab section, two pairs of 
partners work on each mutant. For mutant group discussions, stu-
dents from different lab sections who all work on the same mutant 
p53 compare data.
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ually. Students also needed to earn an average of 70% on 
their postlab assignments and final posters. These standards 
encouraged students to take the course seriously and held 
them accountable for what they learned; each year, only one 
to two students failed the course due to low exam scores.

Steps Taken to Implement a High-Enrollment 
Required CURE
Before this new course was implemented, the existing in-
troductory biology lab course was a standard “cookbook” 
course in which the topics and organism studied changed 
every 2 wk and students worked through predetermined 
protocols to get a known “right” answer. The impetus for 
redesigning the course was a history of poor student eval-
uations for this course and a desire among faculty members 
to improve the course, in conjunction with national calls for 
biology lab course reform (NRC, 2003; AAAS, 2011).

Because we were uncertain how students would react to 
this new course or whether this type of course would be 
possible for a large, introductory population of students, we 
decided to gradually scale up the course. The new lab course 
was introduced in 2 yr of pilot versions of the course. In 
Winter 2010, a pilot version of the research-based course was 
taught to ∼20 students who volunteered to take it rather than 
the older “cookbook” course. Based on the positive reaction 
to the new course expressed in interviews and attitudinal 
and self-efficacy surveys (unpublished data), the course was 
scaled up to a larger group of students the next year. The 
course was taught in Winter 2011 to ∼40 students who were 
chosen at random (i.e., nonvolunteers) into either the pilot 
course or the existing cookbook lab course, and evaluation 
of the pilot course was largely positive (unpublished data). 
In Winter 2012, the new course was implemented to 250+ 
students, and four PhD-level instructors taught different sec-
tions of the course. Increased collaboration between students 
within the lab sections and in mutant groups was added to 
the course, as was a poster session at the end of the course. 
The curriculum that we are assessing is the most recent cur-
riculum, which has now been taught in approximately the 
same way for five quarters (Winter 2012, Fall 2012, Winter 
2013, Fall 2013, and Winter 2014) to a large-enrollment pop-
ulation of nonvolunteer students, giving us confidence that 
implementing this type of course in a large introductory set-
ting as a required course is possible.

EVALUATION

Methods
To assess the course, we used an approach of analyzing pre- 
and postcourse open-ended written responses and course ex-
ams. Because time for assessment was limited in the 10-wk 
quarter, we have collected different types of data from the two 
times the course has been offered as a required component of 
the introductory curriculum (Fall 2012 and Winter 2013).

Students were given pre- and postcourse surveys that 
included open-ended questions about their conception of 
what it meant to think like a scientist. Question prompts 
were designed through a series of think-aloud interviews 
with students. Student responses to open-ended questions 
were coded using a combination of content analysis and 

feels like to have to repeat failed experiments, a necessary 
component of research.

Situating Student-Generated Data within What Is Known: 
Accessing Primary Literature and p53 Database. Students 
read and discussed a primary scientific paper that was rel-
evant to their investigation of p53 mutants. This exercise 
challenged students to think critically about published data 
and encouraged them to think about what other experi-
ments they would need to do before their own work could 
be published (e.g., more replicates, additional experimental 
approaches to answer each question). The discussion also 
had students draw a connection between their work with 
yeast and the therapeutic implications in humans.

Students also accessed an online p53 database to explore 
research that had previously been done on their p53 mutants 
and the number of human tumors that had been identified 
with their p53 mutations. This allowed them to recognize 
what elements of the research project were novel and how 
their experiments were situated within the growing body of 
scientific knowledge.

Assignments Representative of How Scientists Would 
Present Data. Because student results were preliminary, 
we sought to mimic what scientists in a research lab would 
do with preliminary data: present them to their colleagues 
in lab meeting and present them in a poster venue. For the 
lab meeting presentation, all students who studied the same 
mutant in the lab section presented one set of representative 
data and their interpretations from all the experiments. As 
they presented, other students and instructors asked ques-
tions concerning data analysis and interpretation, often com-
paring them with other sets of data that had been presented. 
For the final poster presentation, each partner pair created a 
scientific poster, which they took turns presenting during the 
poster session, a large venue with more than 50 posters. Stu-
dents were required to visit other posters and compare other 
students’ results with their own results, completing graded 
worksheets that summarized their observations.

Building Community through Pass/Fail Grading. The 
course was offered on a pass/fail basis, primarily because 
we wanted to create a community of collaborators rather 
than competitors. Additionally, we felt that having students 
strive for a letter grade, and thus focus on the final answers 
and point values, would detract from them learning how 
to think like scientists. This perspective was confirmed by 
students enrolled in the course: more than 50% of students 
preferred that the course was offered pass/fail, and the most 
common reason cited was the desire to avoid having to wor-
ry about points on each assignment (unpublished data). It 
has also been shown that offering courses on a pass/fail ba-
sis rather than assigning a letter grade can lead to improve-
ments in psychological well-being (Bloodgood et al., 2009) 
and group cohesiveness (Rohe et al., 2006); we were most 
interested in group cohesiveness, because we wanted the 
students to view themselves as collaborators.

Accountability. Because motivation can be a problem for 
pass/fail courses (Gold, 1971), we implemented a policy 
that required students to earn above a 70% on the average 
of three exams that focused on data interpretation and ex-
perimental design. These exams were completed individ-
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each question, using a rubric that was developed by the 
course instructors (Table 3). To do this, we scrambled all the 
exam questions so the rater would not know which ques-
tion came from which exam. We had two former instruc-
tors for this course blindly score the questions according 
to Bloom’s level and difficulty. They achieved greater than 
80% interrater reliability on the Bloom’s level and 100% 
interrater reliability on the difficulty score. These former 
instructors did not teach the course in the term that used 
these particular exams, so they did not have knowledge 
about specific questions on specific exams. Additionally, 
these former instructors had an expert understanding of 
the course content and familiarity with what was explicitly 
covered in the course, so they knew how the data were typ-
ically presented to students in the course and what specific 
experiments students conducted. Scores were compared 
and discussed until consensus was achieved. Data used are 
from Winter 2013.

While a common method of assessment in biology edu-
cation is a pre–post test format, we chose not to give stu-
dents a pretest focused on data analysis at the beginning 
of the course, because there was too much content-depen-
dent information that students would not have known (e.g., 
how to interpret specific assays). We also chose not to give 
students a pre–post test on their content knowledge, be-
cause that was not one of our course goals. We were using 
yeast genetics to explore p53 and cancer as a model system; 
students had to learn certain details about the system to be 
able to pose hypotheses and analyze data, but we focused on 
content information only to the extent that it was necessary 
for them to learn the process skills. It would be interesting to 
see how students perform on a pre–post test of their ability 
to interpret data in a content-independent way, but at the 
time of our study, no such assessment tool existed.

Results

Finding 1: Students Show a More Expert-Like Conception 
of What It Means to Think Like a Scientist at the End of 
the Course and Perceive That Their Own Thinking Has 
Changed. We found that student understanding of what 
it means to think like a scientist became significantly more 
nuanced and similar to expert scientists’ thinking when 
comparing their postcourse and precourse answers to the 
question: “What do you think it means to think like a sci-
entist?” (Table 4). Specifically, students at the beginning of 
the course mentioned being curious, being critical or logi-
cal, developing hypotheses, or using the scientific method. 
However, at the end of the course, the responses were more 
grounded in their lab experience, including a focus on col-
laboration and data analysis. Specifically, students at the 
end of the course mentioned needing to be skeptical of data, 
the need to repeat experiments, how scientists can learn 
from failed experiments, and how there are multiple ways 
to approach a problem (Table 4).

When we asked students at the end of the course whether 
their own thinking like a scientist had changed during their 
investigation of mutant p53, we found that 100% of stu-
dents (n = 60) thought that their thinking like a scientist had 
changed (Table 5). In response to an open-ended question 
of how their thinking like a scientist changed, 83% of stu-
dent responses could be classified as thinking scientifically, 

grounded theory (Glaser, 1978; Glaser et al., 1968) to identify 
themes, from which specific categories were chosen. Two in-
dependent raters scored a subset of student responses, and 
they came to a consensus when they disagreed. The fre-
quency of each student response was calculated for each cat-
egory. Student responses could include more than one idea, 
so responses do not sum to 100%. All students enrolled in 
the course completed the surveys, and a random subset of 
student responses was used in the analysis; lab sections were 
chosen at random, and all student responses in those sec-
tions were included in the analysis. Post hoc, we made sure 
that student responses were included for each instructor and 
time slot (day and time) to minimize the bias that may be 
caused by only examining student responses from one in-
structor or from one section time. Data used are from Fall 
2012 (n = 60) and Winter 2013 (n = 117). Statistical analysis 
was done using paired t tests (p < 0.05).

Additionally, open-ended questions on the postcourse 
surveys asked students whether their thinking like a sci-
entist had changed as a result of the course and, if so, how 
their own thinking like a scientist had changed. Data used 
are from Fall 2012 (n = 60). Students were also asked specific 
Likert-scale questions about what components of the course 
were important for their understanding of thinking like a sci-
entist. The average Likert score for each question and the SD 
were calculated. Data used are from Winter 2013 (n = 117).

Students’ ability to design experiments and interpret data 
were measured by assessing their scores on three exams. We 
determined the composition of questions focused on data 
analysis by having two independent raters review exam 
questions. We found that 50% of the total points on the ex-
ams asked students to read graphs or interpret figures and 
tables and 21% of the total points on the exams were ques-
tions that verbally described experimental results or condi-
tions, so 71% of the exam points were specifically directed at 
eliciting student understanding of data analysis and inter-
pretation. Thus, the composition of the exam questions was 
predominantly data analysis or interpretation questions, 
giving us confidence that this could be a measure of student 
ability to analyze and interpret data.

We characterized the cognitive level of each question on 
the exams (Crowe et al., 2008) and calculated a weighted 
Bloom average for each exam adapted from Freeman and 
colleagues (2011). We also calculated a difficulty score for 

Table 3. Difficulty rubric for exam questions

Easy (1) Definitions/explanations of what was previously 
presented in lab (e.g., purpose of a particular 
step of an experiment or fact about cancer)

Medium (2) Students need to apply their knowledge to a sit-
uation that they experienced in lab or analyze 
the results of one graph/figure in the same 
way they analyzed it in lab (e.g., students have 
to predict what went wrong when given an 
experimental result).

Difficult: com-
plex data or 
near transfer 
(3)

Students need to apply their knowledge to either 
a complex set of data (more than one figure at 
once) or to data presented in a novel way (e.g., 
students interpreting an unfamiliar graphical 
representation of data).
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Table 4. Student responses to the open-ended question “What does it mean to think like a scientist?”a

Theme

Percentage of responses categorized 
under this theme

Example student responsesPrecourse Postcourse

Involves  
collaboration

0 20.5* “This quarter has taught me the importance of working collaboratively 
with others in order to more fully understand the topic of research.”

“Be willing to collaborate.”

Requires analyzing 
and interpreting 
data

6.0 31.6* “Thinking like a scientist requires lots of analyzing of data and asking 
so what? Why is this? What is next?”

“One has to analyze the results and try to interpret them and then draw 
up other experiments that can confirm the results.”

Being skeptical of 
data

0 18.8* “It also means to be skeptical and critical of data, and to never trust just 
one set of data but try to continuously strive for accurate and less 
variable results.”

“To not be stubborn and ignore results that contradict with your  
hypothesis.”

Need to repeat 
experiments

2.6 12.8* “Test and retest.”
“Additionally, I have learned the importance of repeating experiments 

and testing hypotheses in a variety of ways in order to gain more 
significant data.”

Learn from mis-
takes/failed 
experiments

1.7 9.4* “Troubleshooting experiments that don’t go as planned, i.e., designing 
experiments to figure why the original experiment wasn’t working.”

“Identify why errors occurred.”

QUERY as a way to 
organize thinking 
for each experi-
ment

0 15.4* “It means asking a question, designing an informed hypothesis based 
on background knowledge, creating an experiment to test this ques-
tion and interpreting the results. (QUERY).”

“QUERY is a huge part in being able to think like a scientist.”

Using multiple 
approaches to an-
swer a question; 
many ways of 
thinking

9.4 17.9* “As a scientist, you want to approach a topic or research points from 
multiple angles. There may be one experiment that shows X, but 
you always want to verify that result with other experiments. As a 
scientist, you want to realize that experiments have limitations and 
by having multiple experiments to support one another, you can 
synthesize a conclusion from all the data.”

“Do a series of experiments to try and answer it while using both quali-
tative and quantitative methods.”

Critical, logical 
thinking

25.6 21.4 “Thinking like a scientist means thinking critically and thinking 
through all possibilities in order to best devise controls and alternate 
experiments.”

“You have to make a conscious effort to not jump to conclusions you 
want to be true and only take what the data gives [sic] you.”

Developing  
hypotheses

21.4 29.1* “You try to learn more about the world around you by creating experi-
ments and testing hypothesis [sic].”

“Form educated hypotheses.”

Using the scientific 
method

16.2 1.7* “Think like a scientist means to constantly employ the scientific 
method—observe, hypothesize, experiment, conclude—in all 
aspects of life in order to reach better understandings of different 
topics.”

“Thinking like a scientist means to think in a logical and organized 
method, in particular adhering to the scientific method. In such 
a method, research begins with an observation, hypothesis, 
question prediction, followed by the research and data and 
results.”

Generalized vague 
statement about 
being curious

23.9 16.2* “To be curious about how and why things work and to then pursue 
those curiosities with experimentation.”

“To be inquisitive. A desire to learn how/why things work and how 
things break down/what causes them to malfunction.”

*p < 0.05, paired t tests.
aData from Winter 2013 (n = 117).
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bleshooting failed experiments (8%), and 6) collaborating 
with other students in the class (8%).

In addition, we gave students a list of some of the de-
sign elements of the course and asked them to rate these 
items on a five-point Likert scale on how useful a particular 
component of the course was for improving their thinking 
like a scientist (1, not at all useful; 2, slightly useful; 3, mod-
erately useful; 4, very useful; and 5, extremely useful). Once 
again, we found that components of the course that related 
to collaboration and data analysis were most highly rated 
(Table 7), with the one exception being “your instructor’s 
teaching.” However, the majority of instruction that oc-
curred in the lab was focused on data analysis, so it could be 
that students were referencing the instructor teaching them 
this skill.

An interesting comparison between the open-ended data 
and the Likert-scale data is that mutant group discussions 
was the most frequent response for the open-ended question 
but was only rated in between moderately useful and very 
useful on the Likert scale. Additionally, the SD is large, in-
dicating that this aspect of the course may be polarizing for 
students or that perhaps the quality of the different mutant 

as follows: 1) collaboration is important (20%), 2) be skep-
tical of data and make only tentative conclusions (38%), 3) 
repeat experiments (27%), 4) learn from making mistakes/
failed experiments (13.3%), 5) use multiple approaches to an-
swer a problem (13.3%), and 6) controls are important. Thus, 
not only did students have a clearer idea of what it meant to 
think like a scientist, they felt as though they had acquired 
these skills as a result of taking this course.

Finding 2: Students Indicated That Specific Aspects of the 
Course Focused on Data Analysis and Collaboration, 
Including the Mutant Group Discussions, Were the Most 
Useful for Their Learning How to Think Like a Scientist. At 
the end of the course, students were asked in an open-end-
ed question what specific aspects of the course were most 
useful in helping them to think like a scientist. The most fre-
quent themes that emerged after analyzing the data that cap-
tured 92% of student responses included (Table 6): 1) mutant 
group discussions (27%), 2) data analysis aspect of postlab 
assignments (26%), 3) performing different experiments on 
one longitudinal question (24%), 4) predicting results and 
comparing actual results with predicted ones (15%), 5) trou-

Table 5. Student responses at the end of the course to the open-ended question “How has your own thinking like a scientist changed during 
your investigation of mutant p53?”a

 
 

Theme

Percentage of 
responses categorized 

under this theme

 
 

Example student responses

Collaboration 20 “I learned that science is collaborative work.”
“I have learned it is essential to work together with the other groups in order to critically 

look at our experimental results before coming to a general conclusion.”

Being skeptical of data 38 “You can’t always trust your results because the procedure may need to be optimized.”
“I learned not to get too attached to the results of any one experiment.”
“Before I would have been more prone to quickly accept the results from science ex-

periments as being always correct. But because this course taught us to question our 
results and look for possible sources of errors, I developed a more critical eye when 
interpreting experimental results.”

Need to repeat experi-
ments

27 “I also realized that one set of data are not enough to make a conclusion. Many 
repeated attempts must give a similar result for the conclusion to be valid and 
consistent.”

“Requiring multiple confirming data results to be able to conclude anything definitive 
about the mutant (rather than jumping to conclusions after a single experimental 
result)”

Learn from mistakes/
failed experiments

13.3 “I also learned how to think like a scientist not only when my experiments worked, but 
when they didn’t work as well.”

“Mistakes in my assay helped me think more critically about how an experiment is 
performed.”

“I also am happy that errors occurred in the process, because troubleshooting them 
really helped me develop greater critical thinking skills, instead of just following the 
protocol.”

Using multiple ap-
proaches to answer a 
question; many ways 
of thinking

13.3 “That web-like thinking is how a scientist thinks – not a straight line.”
“I learned how to attack problems from many different angles.”

Need to use controls 15 “Scientists must use positive and negative controls (I used to think a positive control 
would be enough)”

“I understand the necessity of both positive and negative controls. Prior to this course, I 
only ever thought about having negative controls.”

aData from Fall 2012 (n = 60).
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ment in the mutant groups was captured by the following 
responses:

“Sometimes we failed to reach a conclusion, since 
often we all had conflicting results.”

“[Mutant groups] were drawn out and inconclusive.”

“The greatest area for improvement for the mutant 
discussion group is reaching a more firm and assertive 
group conclusion.”

These students missed the idea that purpose of the mutant 
group discussions was to illustrate the inherent variability 
of scientific data and the inappropriateness of drawing con-
clusions based on one replicate of one experiment. These 
students wanted an answer, the “right” answer, and were 
frustrated when effort was spent and no conclusion could 
be reached.

However, the other group of students (∼25% of responses) 
seemed to understand that the data they had collected with 
their own hands were one set out of a larger collaborative 
data set that they would use to determine the functional 
defect of their mutant p53; thus, the mutant group discus-
sions became paramount for these students’ understanding 

group discussions was variable. Different instructors facili-
tated these discussions and may have emphasized different 
concepts.

To investigate this further, we asked students what was 
the single greatest strength of the mutant group discussions 
in an open-ended question (Table 8). Ninety percent of the  
responses for the greatest strength could be classified 
as 1) confirming whether their data agreed or disagreed 
with other students’ data, 2) achieving consensus about 
functional defect, 3) discussing possible sources of error, and  
4) representative of a scientific lab’s discussion of data.

Students in this class seemed to display one of two dis-
tinct mind-sets: 1) those who viewed “their data” as the 
data that they themselves had collected and 2) those who 
viewed “their data” as the collective set of data derived 
from their mutant group. Those ∼55% of responses that 
held onto the idea that their data were only the data that 
they had collected with their own hands used the mutant 
groups as a way to confirm that they had done the exper-
iment correctly (i.e., they had a similar result as everyone 
else) or to determine whether they had made a mistake (i.e., 
they had a different result from everyone else), but they 
failed to understand the larger benefit of having multiple 
people working on the same mutant as part of a collective 
research team. This disconnect and apparent disappoint-

Table 6. Student-generated ideas about what specific aspects of the course were most useful for their thinking like a scientista

 
 

Theme

Percentage of responses 
that were categorized 

under this theme

 
 

Example student responses

Mutant group discus-
sions

26.5 “I enjoyed mutant group discussions because it gave us an opportunity to combine 
data and come up with more accurate conclusions about our mutant. It showed if 
our data agreed and if it didn’t, we could explore possible reasons why this was 
so.”

“Getting such varied results even within same mutant group was eye-opening.”

Data analysis and future 
directions aspects of 
postlabs

25.6 “Postlab, b/c they always emphasized analysis of data and trying to hypothesize why 
some results occurred.”

“Parts of the postlab asking about future directions or possible causes; understanding 
reasons for doing experiments.”

Performing different 
experiments on one 
longitudinal question

23.9 “The fact that we used the whole quarter to answer one research question about 
p53 was helpful because it showed the time and complexity involved in scientific 
thinking.”

“The multiple experiments aimed at only elucidating a small part of the puzzle that 
slowly built to an overall picture was [sic] a good technique.”

Brainstorming exper-
iments, predicting 
results, and compar-
ing actual results with 
predicted ones

15.4 “A specific example that I enjoyed was when we were presented our results which did 
not match up with our predictions and we had to determine why we didn’t get our 
derived results.”

“The assignment where we had to come up with our own experiments was the most 
difficult since we had to think as scientists. We had to find an issue we wanted to 
investigate and come up with a procedure to do it.”

Troubleshooting failed 
experiments

7.7 “Tests that failed. Inconclusive data from group. Sooo [sic] many errors possible.”
“Learning about the details of the experiments and not just about the results helped me 

understand the sort of controls and errors and stuff I should look for.”

Collaborating with other 
students in the class

7.7 “Working with other groups—get a feel for the community of scientific research. Explor-
ing potential problems on our own first—got us really thinking about what we were 
doing and why.”

“Specifically, I really enjoyed working on the postlabs with a partner and being able to 
analyze the results with someone.”

aData from Winter 2013 (n = 117).
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explanation of what was already presented in the lab course, 
were examining data in the same way they had been pre-
sented the data in class, or were faced with a more complex 
set of data presented in a novel way. Based on this difficulty 
scale, exam 1 was 1.61, exam 2 was 1.82, and exam 3 was 2.41. 
Thus, the exams had a significant increase in the difficulty of 
the average exam question (Kruskal-Wallis χ2 = 10.35, df = 2, 
p = 0.006).

DISCUSSION

In this study, we present an innovative curriculum that al-
lows students to experience research in the context of an in-
troductory lab course. One of the strongest aspects of this 
course is that it is required of all biology majors, thus giving 
all biology majors exposure to research at the undergraduate 
level. Many CUREs have only been offered to a small num-
ber of volunteers, which limits the ability to generalize con-
clusions drawn from the evaluation of these smaller courses. 
With the scale-up of this course, every biology major at this 
institution engages in a research project as part of his or her 
undergraduate curriculum. Additionally, it makes scientific 
research more inclusive by limiting the number of hurdles 
students have to jump through to engage in research and by 
removing the selection process that faculty members use to 
pick students for individual apprenticeships (Bangera and 
Brownell, 2014).

Gains in Student Conceptions of What It Means to 
Think Like a Scientist
The theme of thinking like a scientist has appeared in other 
studies of traditional independent research apprenticeships, 
although in contrast to these other studies, our definition 
did not include deeper conceptual knowledge about the top-
ic (Seymour et al., 2004; Hunter et al., 2007). We limited our 

of the significance of repetition of experiments and in statis-
tical analysis of results, and their responses captured this:

“Being able to compare your data to better understand 
what next steps to take and what was actually happen-
ing with our p53 mutation.”

“The opportunity to be away from the lab and have 
the time to sit and actually process and discuss what 
we’re doing in class. Also the opportunity to talk to 
other mutant groups and think about what could have 
gone wrong, what are the general trends etc. was re-
ally great in actually understanding the lab content. 
I think this was the best learning experience of the 
entire lab.”

Finding 3: Students Showed Improvement in Their Ability 
to Analyze and Interpret Data. We designed three exams 
to test student ability to analyze and interpret data, includ-
ing understanding the significance of biological variation, 
repetition of experiments, and how to analyze the data they 
had obtained during their investigations into the functional 
defects of p53. Some of the questions were based on spe-
cific experiments they had conducted, but others required 
students to analyze data in a novel way or to transfer their 
knowledge to a novel scenario (see Supplemental Material 
for sample questions).

Average student scores on these exams remained constant 
over the term; students’ average scores were 87.1% on exam 
1, 86.6% on exam 2, and 88.2% on exam 3 (Table 9). Student 
performance on exams was not curved or normalized in any 
way. While the total score remained constant, the Bloom’s 
level of the average exam question increased significantly 
over the term (Kruskal-Wallis χ2 = 13.7, df = 2, p = 0.001). 
Average weighted Bloom levels were 2.69, 2.91, and 3.61 for 
exams 1, 2, and 3, respectively. Additionally, we designed a 
“difficulty scale” based on whether students were giving an 

Table 7. Aspects of the course that were most useful for improving your thinking like a scientista

Component of course Mean (SD)

Analyzing your own data 4.35 (0.68)
Working with a partner on all aspects of the project 4.30 (0.87)
Your instructor’s teaching 4.23 (0.85)
Comparing your data with data from other groups working on the same mutant in your lab section 4.16 (0.81)
Completing postlab assignments 4.12 (0.77)
Creating a poster 3.45 (1.16)
Mutant group discussions 3.42 (1.24)
Reading a primary scientific paper 3.37 (1.14)
Using the QUERY method 3.32 (1.13)
Comparing your data with data from other groups working on a different mutant in your lab section 3.27 (1.19)
Designing your own experiment 3.18 (1.13)
Repeating experiments that did not work the first time 3.12 (1.11)
Working through the handouts during lab 3.07 (1.03)
Course exams 3.05 (0.91)

aStudents evaluated this question on a closed-ended Likert scale (1, not at all useful; 2, slightly useful; 3, moderately useful; 4, very useful; 5, 
extremely useful). Data from Winter 2013 (n = 117).
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an understanding that it is a process that is responsive to ex-
perimental results and constantly evolving in the face of new 
data, new techniques, and new ideas. This emphasis on data 
was echoed when students were asked about the specific 
aspects of the course that contributed to an improvement 
in their thinking like a scientist: data-centered collaborative 
aspects of the course were highlighted. Students focused on 
mutant group discussions and postlabs as sources of scien-
tific thinking. Building multiple opportunities for students 
to think critically about data, including having them repeat 
experiments, helped students grasp the variability that is 
inherent to experimental science and the need for multiple, 
independent observations to build convincing support for a 
hypothesis.

However, we saw that many students still struggled in the 
mutant groups with not being able to find a “right” answer. 
This may indicate that we need to integrate more opportuni-
ties for mutant group discussions into the course and more 
explicit discussion of the importance of biological replicates 
in order to come to a conclusion.

Documented Learning Gains in Student Ability 
to Interpret Data
In pilot studies, we saw that students’ confidence in their 
ability to analyze data improved as a result of this course 
and through exam analysis (unpublished data). Confidence 

definition to what would be considered process skills (Coil 
et al., 2010) or core competencies (AAAS, 2011) and divorced 
it from conceptual understanding or affective benefits.

We found that students’ thoughts about what it means to 
think like a scientist transitioned as a result of the course. 
At the beginning of the course, students had a vague, gen-
eral view of what it means to think like a scientist. Many 
student responses stated that scientists were critical think-
ers, were curious about the world around them, and asked 
questions. However, not one precourse response included 
references to collaboration or being skeptical of data, and 
very few mentioned data analysis, the need to repeat an ex-
periment, or learning from failed experiments—all of which 
were mentioned in the postcourse responses. We conclude 
that students’ conceptions of what it means to think like a 
scientist became more reflective of the views of practicing 
scientists (Table 1) and more grounded in students’ experi-
ences of working closely with data. Additionally, students 
highlighted the importance of collaboration in thinking like 
a scientist, a trait that has been emphasized as a core compe-
tency in Vision and Change (AAAS, 2011).

Interestingly, while many students mentioned the scientific 
method as part of what it meant to think like a scientist in the 
beginning of the course, few students mentioned it at the end 
of the course. We interpret this to mean that students’ con-
ceptions of science shifted away from the idea that science is 
a rigid, step-by-step method (e.g., “the scientific method”) to 

Table 8. Single greatest strength of the mutant group discussionsa

 
Theme

Percentage of responses  
categorized under this theme

 
Example student responses

Confirming that “their data” were 
similar to others by comparing 
results

54.7 “The single greatest strength of the mutant group discussion was to 
have the opportunity to compare our data with that of the other 
mutant groups.”

“Being able to see that our results were not completely askew.”

Achieving consensus about func-
tional defect of mutant p53

24.8 “Verify/compare results to the same experiment to simulate con-
ducting multiple trials.”

“It was very beneficial to see some consensus or lack of consensus 
between teams; it put everything more in perspective.”

Discussing possible sources of 
error in experiments

13.7 “Discussing the results each group got and which were the possible 
correct results. Determining reasons for any outliers.”

“An opportunity to discuss possible sources of variation and the 
strength of our controls.”

Representative of an authentic lab 
discussion about data

6.0 “A preview of what collaboration in a lab is actually like (people 
sometimes get completely different results and those differences 
need to be reconciled).”

“Collaborating was always interesting and made our results feel 
much more real.”

aData from Winter 2013 (n = 117).

Table 9. Student ability to analyze data improved as the exams got more difficult and their exam scores stayed constanta

 
Average student score

Weighted average Bloom  
score for each exam

Weighted average difficulty  
score for each exam

Exam 1 87.1% 2.69 1.61
Exam 2 86.6% 2.91 1.82
Exam 3 88.2% 3.61 2.41

aData from Winter 2013 (n = 117).
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as “thinking like a scientist,” whereas this was only 50% for 
one of the other instructors. For others interested in develop-
ing this type of course and having the course taught by in-
structors with diverse teaching experience and/ or styles, it 
will be important to determine whether instructors with lim-
ited teaching experience (e.g., first-year graduate students) 
can adequately facilitate this type of course to achieve the 
desired learning gains.

Student Population May Limit Generalizations
Another critical caveat arising from our evaluation of the 
benefits of this type of course for an introductory popula-
tion of students is that the student population at Stanford 
includes a high proportion of high achievers. Even though 
this is the first biology lab experience for them in college, 
a significant percentage of our students have had previous 
research experience. Although we acknowledge that this is 
likely perceived as a limitation to generalizing our results to 
all universities, there are students in this cohort who have no 
prior research experience and a weak biology background. 
Furthermore, unlike many CUREs, students are required to 
take this course, so there is no self-selection bias.

Although our population is high achieving, it is consid-
erably ethnically diverse. White students make up less than 
40% of the class, with almost 20% of the students coming 
from historically underrepresented minority populations. 
Additionally, ∼15% of Stanford undergraduates are the first 
in their family to attend a 4-yr college.

Cost of Running This Type of Course
Although we encourage others to adopt a similar curricu-
lum, this course does have an associated cost that may be a 
barrier for many institutions. We were fortunate to receive 
several grants to ensure ongoing commitment to the course. 
In addition to start-up costs (e.g., equipment), there are high 
costs for experimental materials and supplies (e.g., antibod-
ies, the DNA-binding assay kits). Although there are ways to 
decrease the cost of running this course by not doing partic-
ular experiments, the cost of running a molecular course is 
inherently higher than other types of biological courses. As 
budgets become tighter, this does present a logistical chal-
lenge to those interested in developing this type of course. 
As a contrast to this high-cost course, we have developed 
another research-based lab course that integrates teaching 
and research; it focuses on ecological relationships and is a 
low-cost alternative that also gives students a research expe-
rience in the context of an introductory biology lab course. 
For an overview and assessment of that course, see Brownell 
et al. (2012) and Kloser et al. (2013).

CONCLUSION

We encourage others to consider developing this type of 
high-enrollment course; it allows students the opportunity 
to think about larger data sets than would be possible from 
a small 10–20 person class. Additionally, the opportunities 
for collaboration are extensive. However, a larger class is 
logistically more challenging. We encourage others to start 
small and then build from there; our first pilot year we had 

does not always correlate with ability, but here we demon-
strated that their ability to analyze data and draw conclu-
sions about experiments improved as a result of the course. 
As the difficulty of exams increased, students’ average scores 
on the exams remained constant. This is particularly encour-
aging, because these exams were not high-stakes exams. We  
wanted to establish a culture of collaboration rather than 
competition, so we chose to have the course be ungraded 
and taken only as pass/fail. Students were required to obtain 
70% on the average of the three exams but were not reward-
ed for performing better than that. Despite the potential lack 
of motivation, we still saw student improvement in the abil-
ity to analyze data. This is important, because most assess-
ments of CUREs rely on student self-reporting of their abil-
ities rather than one measurement of their actual ability; we 
were able to document learning gains, and others interested 
in assessing CUREs could use a similar method.

Advantages of a Large-Enrollment Course
Finally, rather than a large course enrollment being an in-
convenience, the specific format of the course actually ben-
efits from having large numbers of students working on 
the same mutant alleles and sharing data. More students 
meant a larger number of replicates and higher probability 
of seeing a conclusive pattern in the data. We acknowledge 
that our enrollment of ∼200–300 students, while large by the 
standards of our institution, is not large by the standards 
of others that need to cater to more than 1000 introducto-
ry-level students. However, we believe that this course 
could be scaled up further and are interested in working 
with others to help adopt this course, or similar courses, at 
their institutions.

LIMITATIONS OF INTERPRETATIONS

Teacher Effect May Be Acting Independently  
of the Curriculum
This course was taught by PhD-level instructors, which like-
ly contributes to an “instructor effect” that has an impact dis-
tinct from the curriculum itself on student learning. Our goal 
for this study was to examine the course curriculum rather 
than an individual instructor’s teaching, but the two by their 
very nature are entwined. It could be possible that the gains 
we saw are due to the synergistic effects of the research-based 
curriculum and having expert scientists as instructors. We 
specifically decided to have PhD-level instructors, because 
we wanted instructors with expertise in scientific thinking, 
but we hope that it is possible to replicate the same quality 
of high-level instruction by using more advanced graduate 
students or postdoctoral fellows.

It is also important to note that instructors all had very 
different teaching styles, ranging from a more traditional 
lecturing to more interactive active-learning teaching, and 
diverse training in biological sciences. While we do not see 
notable differences among instructors on most of the assess-
ments, leading us to conclude that the major source of im-
pact for the course is derived from the common curriculum, 
there was one instance in which particular instructors had 
significant differences. In Fall 2012, for two of the instructors, 
more than 90% of the student responses could be categorized 
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only 20 students and few of the experiments worked. In the 
second year, more of the experiments worked, but kinks 
still needed to be worked out. It took many iterations of 
the course to work out the logistical challenges associated 
with this type of course, and even after seven iterations, not 
all of the experiments work every time. The most frequent 
complaints from students the first two times the course was 
offered centered on course logistics rather than on content, 
curriculum, or instruction. While logistics may seem insig-
nificant and often are less of a problem in a lecture-based 
course, they can be significant barriers to achieving course 
goals in a lab course.

This course is a way to expose all students, not a select 
few, to the joys and challenges of research, and it gives them 
a more realistic impression of how research is done. We urge 
others to consider adopting this type of course-embedded 
research experience as a way to make research more acces-
sible to a larger population of students who likely would 
not pursue independent research on their own (Bangera and 
Brownell, 2014). This course, and others like it, can be in-
strumental for providing all students with the opportunity 
to learn how to do science.

ACKNOWLEDGMENTS

Funding for this course came from a National Science Foundation 
TUES (0941984), a Hoagland Award for Innovations in Undergrad-
uate Teaching, an HHMI education grant, and a generous gift from 
a private donor. We thank the 700+ students who have participat-
ed in this course, in particular the students who took the course 
during the initial pilot phases, and the graduate student teaching 
assistants who helped teach the course, particularly Jared Wegner 
and Dan Van de Mark. Charles Anderson (now at Penn State Uni-
versity) first coined “QUERY” as an educational concept, and it has 
now been incorporated into the course. We are especially grateful 
to Nicole Bradon for her technical assistance in preparing reagents 
and equipment for the weekly student laboratories. We also ac-
knowledge the support of colleagues in the Department of Biology, 
including Shyamala Malladi, Matt Knope, Waheeda Khalfan, Tad 
Fukami, and the leadership of our former department chairman, 
Bob Simoni. Additionally, Rich Shavelson and Matt Kloser at the 
Stanford Graduate School of Education were instrumental in early 
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