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Course-based undergraduate research experiences (CUREs) are increasingly being offered as scal-
able ways to involve undergraduates in research. Yet few if any design features that make CUREs 
effective have been identified. We developed a 17-item survey instrument, the Laboratory Course 
Assessment Survey (LCAS), that measures students’ perceptions of three design features of biology 
lab courses: 1) collaboration, 2) discovery and relevance, and 3) iteration. We assessed the psycho-
metric properties of the LCAS using established methods for instrument design and validation. We 
also assessed the ability of the LCAS to differentiate between CUREs and traditional laboratory 
courses, and found that the discovery and relevance and iteration scales differentiated between 
these groups. Our results indicate that the LCAS is suited for characterizing and comparing under-
graduate biology lab courses and should be useful for determining the relative importance of the 
three design features for achieving student outcomes. 

Article

et al., 2012); and conative gains, such as increased persever-
ance in the face of obstacles (Lopatto, 2007). Additionally, a 
number of studies document that undergraduates who par-
ticipate in research internships persist in science, though it is 
unclear whether these students persist because of self-selec-
tion into these experiences or because of the experience itself 
(Schultz et al., 2011; Eagan et al., 2013; Linn et al., 2015).

Course-based undergraduate research experiences 
(CUREs), which involve groups of students in addressing 
research problems or questions in the context of a class, have 
been proposed as scalable ways to involve undergraduates 
in research. CUREs offer other advantages beyond scal-
ability. First, they are accessible to students early in their 
undergraduate careers when they have greater potential to 
influence a student’s academic and career trajectory (Dolan 
et al., 2008; Lopatto et al., 2008; Wei and Woodin, 2011). Sec-
ond, many CUREs are open to all students who enroll in a 
course and thus have the potential to involve students who 
might not otherwise have access to science research opportu-
nities (Wei and Woodin, 2011; Bangera and Brownell, 2014). 
Finally, a handful of studies indicate that CURE students 
report many of the same outcomes as students who partici-
pate in research internships, including increased knowledge, 
improved research skills, increases in research self-efficacy, 
and greater clarity regarding their career choices (reviewed 
in Corwin et al., 2015).
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INTRODUCTION

National efforts aimed at improving undergraduate science 
education call for the involvement of undergraduates in re-
search (National Research Council, 2003; American Associa-
tion for the Advancement of Science, 2011; President’s Coun-
cil of Advisors on Science and Technology, 2012). These calls 
result from a growing body of evidence that undergraduates 
benefit from engaging in research (reviewed in Laursen et al., 
2010; Lopatto, 2010; Corwin et al., 2015). Students who par-
ticipate in research internships report cognitive gains such 
as the development of knowledge and skills (Kardash, 2000); 
affective gains, such as satisfaction with their research expe-
rience (Thiry and Laursen, 2011); psychosocial gains, such as 
feeling like a scientist (Thiry and Laursen, 2011; Adedokun 
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Although questions have been raised about whether 
enough is known about the efficacy and impact of CUREs 
and research experiences in general (Linn et  al., 2015), the 
potential benefits of CUREs are driving widespread devel-
opment and implementation of this pedagogy. As with any 
educational intervention, the design features that make it ef-
fective for students need to be identified and maintained to 
ensure its continued efficacy (Borrego et  al., 2013). Corwin 
Auchincloss and colleagues (2014) proposed the following 
set of design features, or “dimensions,” which may contrib-
ute to the efficacy and impact of CUREs:

•	 Collaboration: The degree to which students are encour-
aged to work together, help each other, build off one an-
other’s work, and provide and respond to feedback.

•	 Discovery: The degree to which students have opportuni-
ties to generate new scientific knowledge.

•	 Broad relevance: The degree to which students’ work is of 
interest to a community beyond the classroom, which can 
manifest as authorship on a scientific paper or presenta-
tions or reports to stakeholders.

•	 Iteration: The degree to which students have opportuni-
ties to revise or repeat aspects of their work to fix prob-
lems, improve validity of their own and others’ results, 
understand variation in data, or further test hypotheses.

•	 Use of science practices: The degree to which students en-
gage in asking questions, building and evaluating mod-
els, proposing hypotheses, designing studies, selecting 
methods, gathering and analyzing data, and developing 
and critiquing interpretations and arguments. Students 
are likely to engage in several but not all scientific prac-
tices during a single CURE.

We describe here the development and validation of a 
survey instrument, which we call the Laboratory Course As-
sessment Survey (LCAS), intended to measure students’ per-
ceptions of these design features in biology lab courses. We 
chose to focus on measuring how students perceived course 
design rather than how instructors intended to design their 
courses, because students’ perceptions are likely vary within 
a single course offering in ways that relate to the outcomes 

they realize from the course (Prosser and Trigwell, 1999). 
Through the use of established methods for instrument 
design and validation, we produced a 17-item survey that 
we anticipate will be useful to instructors and researchers 
for characterizing CUREs and for linking particular CURE 
design features to specific student outcomes (Corwin et al., 
2015). We also present data showing that the LCAS is useful 
for distinguishing between biology CUREs and traditional 
biology lab courses.

METHODS

Participants
The participants in this study were 213 undergraduate stu-
dents enrolled in 16 different biology laboratory courses at 
11 colleges and universities in the United States. Students 
were recruited through emails forwarded to them by the 
instructors of their laboratory courses. These courses in-
cluded both upper-division and introductory courses, and 
students in the courses included freshmen through seniors. 
Instructors were recruited from the authors’ personal net-
works and from the CUREnet website (https://curenet.cns 
.utexas.edu). All participants received an email inviting 
them to participate in the study by completing an online sur-
vey. A $10 gift card was offered as an incentive. All respons-
es were collected within a year of students completing their 
laboratory course. The study was conducted with approval 
from the institutional review boards at the two institutions 
from which the authors conducted the study, the University 
of Georgia (STUDY00000793) and the University of Texas at 
Austin (2014-07-0028). This approval was deemed sufficient 
by individuals at participating institutions. Out of the 213 
participants, 187 completed at least 80% of the survey. All ex-
ploratory factor analyses (EFAs) described below were con-
ducted only on surveys that were at minimum 80% complete 
to minimize imputation error. The demographics of our stu-
dent sample show low representation of black and Hispan-
ic/Latino(a) students and higher representation of Asian 
students, with the highest representation being white stu-
dents (Table 1). We had no representation of Alaska Native 

Table 1.  Student demographic informationa

Total  
sample

EFA  
sample

Whole  
instrument 
comparison

Collaboration  
scale  

comparison

Iteration  
scale  

comparison

Discovery/ 
relevance scale 

comparison

National %  
graduates with 
biology majors

Sample size 212 187 115 141 134 133 100
Men 60 (28.3%) 58 (31.1%) 37 (32.2%) 43 (30.5%) 42 (31.3%) 41 (30.8%) 40.4
Women 128 (60.4) 125 (66.8) 76 (66.1) 96 (68.1) 90 (67.2) 90 (67.7) 59.6
Not reported 24 (11.3) 4 (2.1) 2 (1.7) 2 (1.4) 2 (1.5) 2 (1.5) n/a
White 85 (40.1) 84 (44.9) 54 (47.0) 68 (48.2) 65 (48.5) 65 (48.9) 58.4
Hispanic/Latino(a) 13 (6.1) 12 (6.4) 5 (4.3) 8 (5.7) 6 (4.5) 6 (4.5) 8.9
Black 18 (8.5) 18 (9.6) 11 (9.6) 13 (9.2) 14 (10.4) 14 (10.5) 7.1
Asian 60 (28.3) 60 (32.1) 42 (36.5) 46 (32.6) 46 (34.3) 45 (33.8) 15.7
Other 7 (3.3) 7 (3.7) 1 (0.9) 1 (0.7) 1 (0.7) 1 (0.8) 7.0
Not reported 29 (13.7) 6 (3.2) 2 (1.7) 5 (3.5) 2 (0.7) 2 (1.5) 2.9

aParticipants who responded to at least 80% of the LCAS scale items were included in the EFA. Only students who could be clearly identified 
as being part of a traditional lab or CURE lab and who had no missing responses were included in the comparisons. Nonparenthetical values 
indicate absolute numbers of respondents. Parenthetical values indicate percent of each sample.
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or Native American students. Our sample contains roughly 
twice as many female as male participants.

Overview of the Development and Validation Process
Dimensionality, reliability, and validity are established con-
cepts in the development and use of survey instruments. 
Dimensionality refers to the number of underpinning con-
structs represented by a set of survey items. We assessed di-
mensionality of the LCAS using EFA, which examines sim-
ilarity and dissimilarity among survey items based on the 
covariance among item responses. Two or more items that 
consistently elicit similar response patterns, or persistently 
covary, are likely to describe the same construct or dimen-
sion. Groups of items that persistently covary and measure a 
single construct are called scales.

Reliability refers to the degree of interrelatedness of an 
item to all other items in the same scale, or the internal con-
sistency. It also refers to the consistency of this interrelated-
ness across many administrations of an instrument in similar 
conditions and with a similar population (Bachman, 2004; 
American Educational Research Association, American Psy-
chological Association, and National Council on Measure-
ment in Education [AERA, APA, and NCME], 2014). We 
used Cronbach’s alpha (Cronbach, 1951) to assess the base-
line internal consistency within each scale of the LCAS and 
thus for each construct that we propose is being measured by 
the LCAS (Netemeyer et al., 2003).

Validity refers to the evidence that a scale is measuring 
what it was intended to measure (AERA, APA, and NCME, 
2014). We used several approaches to demonstrate validity 
for the LCAS. We tested content and face validity by con-
ducting cognitive interviews to ensure the items were clear, 
transparent, and meaningful to students and instructors 
from undergraduate biology courses and that they perceived 
the fundamental features of their courses were represented 
in the items. We tested construct validity by examining the 
relationship between the research and theory that informed 
the scale’s development and the data that resulted from 
testing it. We also tested construct validity of the LCAS to 

determine whether it differentiates between groups whose 
responses can be expected to differ, in particular, between 
students in CURE versus traditional lab courses (Netemeyer 
et al., 2003). We describe the specific methods for data collec-
tion and analysis below.

Data Collection
Development and validation of the LCAS followed the 
three-stage process (substantive, structural, and external 
stages) detailed by Benson (1998; Figure 1). During the sub-
stantive stage, we determined and refined the substance or 
topic of the survey instrument. Specifically, we designed the 
LCAS to assess five dimensions presented above: collabora-
tion, discovery, broad relevance, iteration, and use of science 
practices (Corwin Auchincloss et al., 2014). This is a form of 
content validity, with each dimension comprising a separate 
construct and thus testable with a separate scale. We wrote 
original Likert-like survey items hypothesized to indicate 
the presence of each dimension. We performed cognitive 
interviews with three instructors of self-designated CUREs 
(two white males, one white female), two instructors of tra-
ditional (non-CURE) laboratory courses (one white male, 
one white female), three students of CUREs (two white fe-
males, one white male), and three students of traditional lab 
courses (two black females, one Asian male).

We confirmed whether courses were CUREs by asking in-
structors and students to describe during the cognitive in-
terviews what happens in their course. For the purposes of 
this study, a CURE was defined as “a course that involves 
a research experience with the potential to produce results 
that are of interest to a scientific community.” A traditional 
lab course was defined as “a course in which students per-
form experiments and investigations that are ‘good exem-
plars of phenomena’ and in which the ‘correct’ results of 
each investigation are known prior to execution” (adapted 
from Brownell and Kloser, 2015). During the interviews, 
we asked participants to respond to each item to allow us 
to evaluate whether our items were comprehensible and to 
determine whether items prompted responses relevant to 

Figure 1.  Description of Benson’s (1998) 
construct validation framework and the 
corresponding steps used to develop and 
validate the LCAS.

Substantive Stage
Theoretical and 

empirical definitions 
(scale items) of the 

construct are researched 
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Internal relationships 

between the instrument
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EFA, CFA, item/scale 
inter-correlations).

External Stage
External performance of 
the survey (e.g. known 
groups differentiation, 
correlations with other 
measures, modeling)

Construct Validation

-Auchincloss et 
al. (2014) meeting report 
formed the theoretical 
basis of the instrument.

were written to 
test five constructs: 
Discovery, Relevance, 
Iteration, Collaboration, 
and Science Practices.

were conducted with 43, 
35, 27, 18, and 17 items.

was 
calculated for the three
supported scales.

was performed with 
CUREs and Traditional 
lab students.

continue to build validity 
evidence.
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these items asked the students to indicate the frequency of 
other students engaging in certain activities likely to take 
place outside the classroom. It is probable that students did 
not have access to this information and could not accurate-
ly respond to these items. Second, we examined a polychor-
ic correlation matrix of all remaining items to identify items 
with low interitem correlations. We removed five items 
with consistently low interitem correlations (coefficients 
<0.3 for at least 80% of correlations) because of their low 
potential to contribute to measurement of underlying con-
structs as part of a cohesive multi-item scale. We identified 
and removed three other ambiguous items. Each of these 
items asked students about the time they had available 
during the course to complete a task, ending with “as orig-
inally planned” (e.g., “In this course I had time to collect 
and analyze data as originally planned”). Because we had 
no way of knowing what instructors originally planned, 
these questions were uninformative. At the end of this pro-
cess, 43 items remained.

We conducted several iterations of EFA with the remaining 
43 items to arrive at our final 17-item scale (Supplemental 
Material Appendix A). We conducted all EFAs with Mplus 
7.2 (Muthén and Muthén, 1998–2012), using weighted least-
squares means and variances adjusted estimation. This 
method of estimation is appropriate with categorical data 
and nonnormal data, as is the case with the present data 
(Finney and DiStefano, 2006). We used a GEOMIN (oblique) 
rotation, as we hypothesized the factors would correlate with 
one another. Missing responses (3.17% of the data) followed 
an arbitrary pattern, and none of the remaining items had 
a comparatively high number of missing responses. Thus, 
we assumed data were missing at random for the remaining 
scale items and used full-information maximum likelihood 
(FIML) estimation to impute missing values. FIML has been 
shown to be a valid method of accounting for missing data 
that does not bias the subsequent analyses when data are as-
sumed to be missing at random (Schafer and Graham, 2002; 
Enders, 2010; Little et al., 2013). For each factor analysis, we 
allowed a maximum of 10 underlying factors in order to in-
spect a wide range of models. We did not expect results with 
more than five factors to be useful, but we examined these 
solutions to allow for unanticipated results.

Our initial EFA yielded a four-factor solution and re-
vealed that eight items written to assess participation in 
science practices were not useful. Two items did not clearly 
load on any factors, and six items loaded on multiple factors 
(had loadings >0.35 for more than one factor). This is not 
surprising, considering that many science practices are as-
sociated with the other constructs of interest (e.g., analyzing 
data may be associated with discovery or iteration). We con-
cluded that “participation in science practices” itself does 
not constitute a single independent construct that could be 
completely and accurately measured using our approach. 
Thus, these eight items, which constituted the dimension 
“science practices,” were removed from the survey. After 
this, we focused on assessing only the four remaining con-
structs of interest: collaboration, discovery, relevance, and 
iteration.

We originally wrote nine items to be reverse scored to 
measure traditional lab course practices and to contrast 
with items that represent common practices in CUREs. For 
example, “I was expected to conduct an investigation to 

our survey aims (Bachman, 2004). We revised the wording 
and order of the questions based on the interviews and elim-
inated unclear and ambiguous questions. Only questions 
that were clear and interpreted as the authors intended by 
both instructors and students were retained. This resulted 
in a total of 55 survey items on the pilot survey to be given 
to students. We then entered the survey into Qualtrix online 
survey software to allow for data collection from the partici-
pants described above (N = 213).

Data Analysis
After data collection was complete, we assessed the dimen-
sionality, reliability, and validity of the survey instrument, 
consistent with Benson’s (1998) structural and external 
stages of development. First, we assessed the psychometric 
properties and dimensionality (structure) of the instrument. 
We started by determining the potential utility of each of the 
original 55 survey items by assessing its response rate. We 
also examined a polychoric correlation matrix, including 
all items, to ensure they correlated with at least two oth-
er survey items and had potential to contribute to at least 
one survey scale. We removed items with low response 
rates and items lacking strong correlations with other items 
(described in detail in Results). We then performed iterative 
EFA to assess the dimensionality of the instrument and de-
scribe relationships among items. We characterized three 
useful scales as a result of this analysis and established the 
internal consistency (a measure of reliability) of each scale 
(Cronbach, 1951).

In the external stage, an instrument is applied in research 
to understand how it functions in certain populations or 
how resulting data relate to data collected using similar or 
dissimilar instruments. For this stage, we administered the 
survey to “known groups”—students whom we expected 
to have different average ratings for each survey scale. Spe-
cifically, we compared survey responses from students in 
CUREs versus traditional lab courses by using t tests. CUREs 
and traditional labs were identified based on qualitative con-
tent analysis of two data sources: descriptions of courses by 
1) students and 2) instructors. We describe the structural and 
external stages in more detail in the Results to illustrate how 
we used results of different analyses to inform the develop-
ment and validation of the LCAS.

RESULTS

Refinement of Scales
The original instrument was composed of 55 new Likert-
type items intended to measure five constructs of interest: 
collaboration, discovery, relevance, iteration, and use of sci-
ence practices. (This initial item bank is available upon re-
quest from L.A.C.) Upon survey administration, we noted 
that not all items appeared to contribute to assessment of 
the intended constructs. Thus, we conducted preliminary 
analyses to systematically remove nonuseful items. First, 
we examined item response rates. We considered responses 
of “I don’t know” or “I prefer not to respond” to be nonre-
sponses, and we removed four items with a response rate of 
60% or lower. When we examined these items, it was clear 
that missing responses were not missing at random. All of 
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The final three-factor solution of the LCAS consists of:

1.	 Collaboration. This factor consists of six items that ask 
students to evaluate the frequency with which they en-
gaged in activities related to collaboration (e.g., provide 
help to other students, discuss work with other students, 
or critique other students’ work) and metacognition (e.g., 
“reflect on what I was learning”). The response options 
are 1, weekly; 2, monthly; 3, one or two times; 4, never.

2.	 Discovery and relevance. The second factor consists of 
five items that ask students to rate their agreement with 
statements about whether their lab work could lead to 
discovery of something new, development of new ar-
guments, or generation of information of interest to the 
scientific community. The response options range from 1, 
strongly disagree, to 6, strongly agree.

3.	 Iteration. The third factor consists of six items that ask 
students to rate their agreement with statements about 
whether they had time or direction to repeat aspects of 
their work, such as making revisions, changing meth-
ods, and analyzing additional data. The response options 
ranged from 1, strongly disagree, to 6, strongly agree.

Distinguishing between CUREs and Traditional 
Lab Courses
We designed the LCAS to measure the design features or 
dimensions that make CUREs distinctive as learning ex-
periences, based on input from experts in undergraduate 
research and thorough review of research on these expe-
riences (Corwin Auchincloss et  al., 2014). Thus, the LCAS 
already has some degree of construct validity. To further 
assess its validity, we compared the ratings of students in 
traditional lab courses with ratings of CURE students for 
the entire survey instrument and for each scale (Benson 
and Hagtvet, 1996; Netemeyer et  al., 2003). In comparing 
these known groups, we hypothesized that CURE students 
would report higher levels of most, if not all, of the mea-
sured constructs compared with students in traditional lab 
courses.

find an anticipated result” was hypothesized to contrast 
with the discovery item “I was expected to conduct an 
investigation to find something previously unknown to 
myself, other students, and the instructor.” However, re-
sponses to these items indicated that students did not see 
these traditional lab practices as opposites of CURE prac-
tices, making reverse scoring inappropriate. In addition, 
traditional lab items loaded together on a single, indistinct 
factor with many of the science practice items. Thus, we 
removed these nine items from the analysis, resulting in 
a measure that included 27 positively worded and scored 
items.

We conducted two more iterations of EFA with the remain-
ing 27 items to identify and remove items that did not con-
tribute further to the functioning of the instrument. Through 
these analyses, we identified 17 items that consistently fac-
tored onto three factors, loaded strongly onto their desig-
nated factors (>0.42), and were not redundant with other 
items in the same scale (i.e., their wording was substantially 
different from other items). We excluded items that did not 
meet these criteria. We conducted a final EFA with the 17 
remaining items. We selected a final three-factor solution, 
because the items all had strong factor loadings and repre-
sented three theoretically meaningful factors (see Comparison 
of CUREs and Traditional Lab Courses in the Discussion). After 
choosing the solution, we consulted the results of a parallel 
analysis (Horn, 1965; Hayton et  al., 2004), the acceleration 
factor and optimal coordinates (RaÎche et al., 2013), and the 
Kaiser (1960) rule (eigenvalue greater than one) for addi-
tional support for determining the number of factors. Each 
of these analytical tests suggested that three factors were 
most appropriate for the data. We corroborated this solu-
tion by examining the eigenvalues and resulting scree plot 
(Figure 2). Interitem correlations, means, SDs, and scales of 
the final 17 items can be found in Table 2. Factor loadings 
for the final instrument were consistently above 0.4 within 
each scale, higher than the suggested minimum cutoff of 0.32 
(Tabachnick and Fiddell, 2001). Cronbach’s alpha for each 
scale was calculated with the result of α > 0.8 for all scales 
(Nunnally 1978; Lance et al., 2006; Table 3).

Figure 2.  Scree plot of eigenvalues. Plot-
ted points represent the eigenvalues for 
each added factor.
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Table 2.  Polychoric correlation matrix for the LCASa

Item number

C1 C2 C3 C4 C5 C6 DR1 DR2 DR3 DR4 DR5 I1 I2 I3 I4 I5 I6

C1 —
C2 0.62 —
C3 0.61 0.37 —
C4 0.41 0.52 0.52 —
C5 0.50 0.41 0.64 0.64 —
C6 0.59 0.55 0.81 0.70 0.61 —
DR1 0.20 0.33 0.33 0.27 0.32 0.26 —
DR2 0.17 0.21 0.29 0.25 0.29 0.21 0.62 —
DR3 0.22 0.18 0.31 0.20 0.51 0.24 0.42 0.34 —
DR4 0.17 0.35 0.29 0.30 0.46 0.30 0.55 0.38 0.67 —
DR5 0.19 0.29 0.23 0.35 0.39 0.24 0.77 0.53 0.46 0.55 —
I1 0.08 0.15 0.20 0.34 0.39 0.21 0.29 0.21 0.37 0.43 0.46 —
I2 0.21 0.20 0.33 0.25 0.38 0.29 0.51 0.39 0.39 0.42 0.46 0.45 —
I3 0.26 0.23 0.40 0.48 0.39 0.40 0.32 0.25 0.32 0.45 0.38 0.49 0.51 —
I4 0.24 0.40 0.34 0.35 0.40 0.36 0.39 0.38 0.39 0.50 0.54 0.55 0.63 0.47 —
I5 0.31 0.41 0.40 0.44 0.43 0.42 0.45 0.37 0.36 0.46 0.50 0.63 0.61 0.46 0.67 —
I6 0.10 0.17 0.39 0.23 0.42 0.24 0.39 0.38 0.36 0.42 0.40 0.59 0.55 0.43 0.59 0.65 —

Mean 3.73 3.72 3.66 3.25 3.05 3.51 4.21 4.39 5.07 4.70 4.25 4.71 4.32 5.14 4.54 4.59 4.64
SD 0.67 0.67 0.69 1.04 1.07 0.85 1.49 1.50 1.14 1.24 1.42 1.11 1.31 1.03 1.19 1.29 1.41
Response scale 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6

an = 176 (complete cases only). C refers to a collaboration scale item, DR to a discovery and relevance scale item, and I to an iteration scale 
item; see Table 3 for specific item codes. Scale indicates the number of response options available for that item.

To conduct this comparison, we first designated courses as 
CUREs or traditional lab courses. This designation was based 
on two data sources: student descriptions of their courses 
and instructor descriptions of the same courses. Students 
and instructors were asked to respond to three questions 
about their courses: 1) “In a few sentences, please describe 
the lab course you are responding about”; 2) “Please list up 
to 5 words or phrases that describe what makes this course 
unique or distinctive compared to other lab courses you have 
taken/taught, other than science topics (for example, not Mi-
crobiology)”; and 3) “Please list up to 5 words or phrases you 
would use, other than science topics, to describe what you/
your students did in the course.” Students and instructors 
were blind to one another’s responses on all questions.

We used the same criteria to analyze student and instruc-
tor responses. Specifically, two authors (L.A.C. and E.L.D.) 
read student responses and instructor responses separately 
and coded each course as a CURE, a traditional lab course, or 
ambiguous. We designated as a CURE any course described 
using terms that reflected a research component with poten-
tial to produce results of interest to a community outside the 
classroom. Relevant terms included “research,” “inquiry,” 
“real,” “novel,” “new,” and “publishable,” as well as some in-
dicator of the importance of the results beyond the classroom. 
We designated as a traditional lab any course described as a 
series of discrete “labs” or “exercises” with a focus primarily 
on mastery of specific content or techniques. These courses 
rarely mentioned “inquiry” or “research” and did not include 
any multiweek investigations. When we were not able to de-
finitively identify a course as a CURE or traditional lab course, 
we designed the course as “ambiguous” and excluded the as-
sociated survey responses from subsequent analyses. We cal-
culated a Cohen’s kappa of 0.897 as a measure of intercoder 
reliability, which is considered very good by conventional 

standards (Landis and Koch, 1977; Fleiss, 1981). We also cal-
culated a Cohen’s kappa of 0.794 as a measure of student and 
instructor agreement, which is considered good by conven-
tional standards. In the two cases lacking student/instructor 
agreement, we examined laboratory manuals as a third form 
of evidence to determine course type. The laboratory man-
uals provided evidence that both courses were traditional, 
which aligned with designations based on student responses 
but did not align with the designation of “ambiguous” based 
on instructors’ responses. Through this process, we were able 
to clearly identify 60 students in CURE courses and 55 stu-
dents in traditional courses (n = 115) who had complete re-
cords for the full 17-item instrument.

We performed preliminary tests to ensure all statistical as-
sumptions of our t tests were met. For all comparisons, Lev-
ene’s test of equal variances was significant—indicating that 
the assumption that variance is equal throughout the data 
set was not met. Specifically, CURE students had less varia-
tion in their responses than traditional students. To confirm 
that the three LCAS scales were internally consistent and re-
liable for each group, we calculated Cronbach’s alpha values 
for each scale within each group. Cronbach’s alpha values 
for the traditional group were 0.83 for collaboration, 0.84 for 
discovery/relevance, and 0.90 for iteration, which are con-
sidered very good. Cronbach’s alpha values for the CURE 
group were slightly lower, 0.76, 0.76, and 0.75 respectively, 
but still demonstrate good internal consistency (Nunnally 
1978; Lance et al., 2006). Thus, we interpret the difference in 
variation among groups to indicate that students are inter-
preting the items in the same way but there is more variation 
in design features among traditional courses than among 
CUREs. To accommodate this difference when performing 
our t tests, we adjusted the independent-samples t test de-
grees of freedom with the Welch correction (Welch, 1947). 
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students (M = 68.15, SD = 14.76; t(85.70) = 3.05, p < 0.01, 
d = 0.13). CURE students also rated their courses higher on 
the discovery and relevance (p < 0.001, d = 0.71) and itera-
tion (p < 0.05, d = 0.39) scales than students in traditional lab 
courses. Cohen’s d ranged from 0.39 to 0.71, specifying me-
dium to medium-large effect sizes for these scales (Cohen, 
1992; Kotrlik and Williams, 2003). In contrast, we found 
no difference on the collaboration scale between groups 
(p > 0.05, d = 0.07). Both CURE and traditional lab course 

This correction makes the tests more conservative and re-
duces the likelihood of making a type I error when compar-
ing groups with unequal variances.

We hypothesized that students in CUREs would have 
significantly higher ratings overall, as well as higher rat-
ings for each individual scale, compared with students 
from traditional labs. Overall, our results supported our 
hypothesis (Table 4). CURE students (M = 75.10, SD = 8.67) 
had significantly higher total ratings than traditional lab 

Table 4.  Group differences on the LCASa

CURE students Traditional students

Welch df t p d
Possible range 

of scoresMean SD Mean SD

Collaboration scale 21.11 3.20 20.87 4.02 128.06 0.40 >0.05 0.07 6–24
Discovery scale 24.35 4.04 20.77 5.82 104.37 3.64 <0.001 0.71 5–30
Iteration scale 28.71 4.15 26.53 7.00 95.91 2.47 <0.05 0.39 6–36
LCAS total score 75.10 8.67 68.15 14.76 85.70 3.05 <0.01 0.13 17–90

aOnly student responses with complete cases on each scale were used. LCAS total score n = 115 (60 CURE students, 55 traditional lab course 
students). Collaboration n = 141 (73 CURE students, 68 traditional lab course students). Discovery and relevance n = 133 (72 CURE students, 
61 traditional lab course students). Iteration n = 134 (72 CURE students, 62 traditional lab course students). Welch’s df adjustment was made 
because the assumption of homogeneity of variance was not met.

Table 3.    Rotated factor loadings for the LCASa

In this course, I was encouraged to … Collaboration
Discovery and 

relevance Iteration

C1 discuss elements of my investigation with classmates or instructors. 0.767 — —
C2 reflect on what I was learning. 0.694 — —
C3 contribute my ideas and suggestions during class discussions. 0.893 — —
C4 help other students collect or analyze data. 0.708 — —
C5 provide constructive criticism to classmates and challenge each other's interpretations. 0.617 — —
C6 share the problems I encountered during my investigation and seek input on how to 

address them.
0.954 — —

In this course, I was expected to …
DR1 generate novel results that are unknown to the instructor and that could be of interest 

to the broader scientific community or others outside the class.
— 0.938 —

DR2 conduct an investigation to find something previously unknown to myself, other stu-
dents, and the instructor.

— 0.592 —

DR3 formulate my own research question or hypothesis to guide an investigation. — 0.421 —
DR4 develop new arguments based on data. — 0.462 0.306
DR5 explain how my work has resulted in new scientific knowledge. — 0.701 —
In this course, I had time to …
I1 revise or repeat work to account for errors or fix problems.b — — 0.822
I2 change the methods of the investigation if it was not unfolding as predicted. — — 0.589
I3 share and compare data with other students. — — 0.451
I4 collect and analyze additional data to address new questions or further test hypotheses 

that arose during the investigation.
— — 0.702

I5 revise or repeat analyses based on feedback. — — 0.764
I6 revise drafts of papers or presentations about my investigation based on feedback. — — 0.779
Cronbach's alpha 0.8 0.82 0.85

Factor correlations
C —
DR 0.409 —
I 0.453 0.528 —

aFactor loadings less than 0.25 were omitted. All collaboration items had four response options: “never,” “one or two times,” “monthly,” and 
“weekly.” All other items had six response options ranging from “strongly disagree” to “strongly agree.” All items also included additional 
response options of “I don’t know” and “prefer not to respond.”
bFor item I1, the item stem is “In this course, I was expected to ...,” unlike the other items in this set.
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The iteration scale reflects what it was originally designed 
to measure—the extent to which students have opportuni-
ties to change, revise, or repeat aspects of their work based 
on feedback. Items in this scale emphasize iteration as per-
formed by a single student in order to make progress toward 
achieving a research goal or to address a scientific question. 
This scale does not measure iteration as performed by a class 
of students (e.g., two or more students working separately 
on the same sample to replicate results), because students 
may be unable to accurately assess whole-class forms of iter-
ation. This scale also does not measure iteration as repeated 
practice of the same procedure to develop technical expertise 
or to conduct different investigations with goals that are dis-
tinct from one another, which may be common in traditional 
or inquiry courses. This distinction is made in an effort to 
target the specific form of iteration that is observable in re-
search.

These two scales differentiate between CUREs and tradi-
tional lab courses. These results align with our expectations, 
because traditional lab courses are typically designed to 
demonstrate well-established phenomena (i.e., not discov-
ery), and iteration is not an essential element for students 
to make progress in traditional lab courses, because the out-
comes are known (Brownell and Kloser, 2015). In contrast, 
CUREs involve students in work with unknown outcomes 
(i.e., discovery) and repeating aspects of the work is often 
necessary to generate results and confirm findings (i.e., it-
eration). The combination of discovery and relevance has a 
large effect size and thus explains the majority of the differ-
ence between CURE and traditional lab courses. This makes 
sense, as the potential for discovery is a defining feature of 
research and thus of CUREs. The medium effect size ob-
served for iteration might be the result of iteration being 
inherent to the research process and thus to CUREs, while 
being an optional element of traditional lab courses based 
on whether instructors offer opportunities for students to re-
peat aspects of their work.

Both CUREs and traditional labs had similarly high rat-
ings on the collaboration scale. This is not surprising, con-
sidering that social learning theory has long been used to 
explain how people learn (Bandura, 1971; Lave and Wenger, 
1991) and collaborative group work is increasingly a part 
of instructional design in higher education (Springer et  al., 
1999; Felder and Brent, 2007). We anticipate that student re-
sponses on the collaboration scale reflect group work in both 
course types. Brownell and Kloser (2015) suggest that stu-
dents in CUREs are more likely than students in traditional 
lab courses to engage in cognitively demanding, or “inter-
active” forms, of collaboration. Chi and Wylie (2014) define 
interactive learning experiences as those in which students 
build off, elaborate on, or add to one another’s ideas. This 
is in contrast to passive, active, and constructive forms of 
learning, in which students orient and receive information 
without overtly doing anything with it (passive), students 
do something overtly active with information provided to 
them (active), and students produce something beyond what 
was presented to them (constructive). Although the current 
scale is useful for assessing collaboration, further develop-
ment and testing would be necessary to elucidate nuances in 
collaboration that reflect interactivity.

The collaboration scale also included items related to meta-
cognition, or students’ reflection on their own knowledge or 

students reported participating in collaborative practices on 
a weekly or monthly basis (Table 1). Thus, it appears that 
both CUREs and traditional labs engage students in collabo-
rative and metacognitive practices.

DISCUSSION

Comparison of CUREs and Traditional Lab Courses
The aim of this study was to present and evaluate a new 
instrument, the Laboratory Course Assessment Survey, or 
LCAS, intended to measure design features that distinguish 
CUREs from traditional lab courses in biology. We found 
that students and instructors showed very high agreement 
about whether their courses were CUREs or traditional lab 
courses. For this reason, we have presented the LCAS as a 
measure of lab course design rather than student percep-
tions of course design. Concerns have been raised by us and 
others about relying on student reporting of outcomes from 
research experiences (Corwin Auchincloss et al., 2014; Cor-
win et al., 2015), primarily because of lack of evidence that 
student reports of knowledge or skill gains accurately reflect 
their learning (Falchikov and Boud, 1989). Our results sug-
gest that there is a single “lab course design” construct that 
is reflected in both student perceptions of their lab course ex-
periences and instructors’ intended course designs, at least 
at the level of whether a course could be considered a CURE 
or a traditional lab course.

Using EFA, we show that the LCAS consists of three scales 
that measure: 1) collaboration, 2) discovery and relevance, 
and 3) iteration. We established content validity of the LCAS 
by developing scale items based on hypothesized course de-
sign features of CUREs (Corwin Auchincloss et al., 2014). We 
found high interitem reliability for each of the three scales. 
We used a known-groups comparison to test our hypothesis 
that the LCAS would differentiate between CUREs and tra-
ditional laboratory courses. We found that the LCAS differ-
entiates between CUREs and traditional labs as perceived by 
both students and instructors. Two of the three scales differ-
entiate between CUREs and traditional labs with medium to 
medium-large effect sizes. Overall, the psychometric proper-
ties of this instrument indicate it is suited for data collection 
in a variety of undergraduate biology lab courses.

The discovery and relevance scale combines two of the five 
proposed design features of CUREs: the potential for students 
to make discoveries and the relevance of their work beyond 
the classroom. Discovery, as we use it here, emphasizes nov-
elty to both students and other stakeholders (e.g., instructors 
and members of a scientific community). The discovery and 
relevance scale places strong emphasis on this by specify-
ing that discovery must be new to students, instructors, and 
communities outside the course (see items DR1, DR2, and 
DR5 in Table 3). In addition, these questions are indicative of 
the relationship between relevance and discovery (e.g., item 
DR1). The extent to which a result is a discovery depends 
on its relevance to a broader body of knowledge. Brownell 
and Kloser (2015) also propose grouping discovery and rele-
vance for pedagogical reasons. They argue that learning ex-
periences that involve students in making discoveries (i.e., 
discovery) and in relating science to their daily lives (i.e., rel-
evance) lead to similar student outcomes, such as increased 
excitement and engagement (Brownell and Kloser, 2015).
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Implications for Research and Teaching
We believe that the LCAS will be useful to both instructors 
and researchers for a range of assessment purposes. For ex-
ample, the LCAS could be used to assess the degree to which 
collaboration, discovery and relevance, and iteration are 
present in a particular course or vary among different types 
of lab courses (e.g., CUREs vs. inquiry labs), among different 
courses of the same type (e.g., different CUREs), and among 
different offerings of the same course (e.g., different offer-
ings of SEA-PHAGES; Jordan et al., 2014). The LCAS could 
also be used for determining the extent to which each design 
feature relates to student outcomes. For example, students 
who collaborate once or twice during a course may develop 
communication skills, while students who collaborate on a 
weekly basis may develop communication skills and a sense 
of community with their peers (Corwin et al., 2015). Results 
from these kinds of studies will be useful for informing the 
design and teaching of lab learning experiences.

Research that connects course design features with out-
comes will also be useful for future studies of the efficacy and 
effectiveness of CUREs. Efficacy studies elucidate the key 
components needed for an innovation to be successful (i.e., 
What is necessary and sufficient for a CURE to be effective?), 
and effectiveness studies examine how adaptations of an in-
novation affect the intended outcomes (i.e., To what extent is 
there latitude in how CUREs are implemented?; O’Donnell, 
2008). Future research should compare the relationship be-
tween CURE design features and student outcomes in dif-
ferent institutional and disciplinary contexts. Future studies 
should also examine the extent to which students experience 
CUREs differently based on their backgrounds, demograph-
ics, and prior experiences. For example, students who are 
non science majors or early in their undergraduate careers 
may perceive any lab learning experience with outcomes un-
known to them as “discovery,” while upper-division majors 
might view discovery and relevance more narrowly as expe-
riences in which they have the potential to present their work 
to a broader scientific community or publish their findings. 
Such differences may have unique and important implica-
tions for students’ psychosocial development in ways that 
influence their persistence in science (Estrada et  al., 2011). 
For example, high discovery and relevance ratings from in-
troductory students, who are new to higher education and 
to the practice of science, may influence the extent to which 
they feel like part of a community. In contrast, high discov-
ery and relevance ratings from upper-division students may 
influence the extent to which they identify as scientists and 
thus pursue further research experiences or go on to gradu-
ate education in science.

The LCAS could also be tested to determine its usefulness 
for comparing students’ experiences in research internships, 
since the design features it measures are likely to be present 
and to vary across internship experiences (Corwin Auchin-
closs et  al., 2014). For example, directors of undergraduate 
research programs may wish to assess the degree to which 
the internships include these design features and how de-
sign features relate to the outcomes realized by students who 
self-select into these experiences.

Although our results show that the LCAS is useful for mea-
suring several aspects of CURE design, we acknowledge the 
LCAS does not measure all features that are likely to make 
CUREs distinctive as learning experiences. For example, we 

thinking. The relationship between collaboration and meta-
cognition is not surprising, as the process of collaboration 
demands that students verbalize their thoughts, including 
their rationales and interpretations. This in turn requires stu-
dents to reflect on their own thinking, or to be metacognitive 
(Chi et al., 1994; Tanner, 2009). Although metacognition was 
described as a component of collaboration in the grounding 
work for this paper (Corwin Auchincloss et al., 2014), it was 
not a central focus in development of the LCAS.

Limitations of the LCAS
As with any research aimed at developing new instruments, 
this study has several limitations. The items in the collabo-
ration scale are measured on a four-point rating scale in con-
trast to the six-point rating scales used to assess discovery 
and relevance and iteration. There is a chance that the four-
point rating scale may mask fine-grained differences in col-
laboration between CURE and traditional courses. The four-
point scale may also have influenced how the collaboration 
items factored. It is unlikely that this is a major influence on 
the factor analysis results, because the final six items in this 
scale were part of a larger set of nine items with the same re-
sponse options. The three items that were removed had low 
interitem correlations, showing that the clustering of items 
is not merely as artifact of the rating scale. In future uses of 
the LCAS, we recommend expanding the collaboration rat-
ing scale to five points (i.e., 1, weekly; 2, every other week; 3, 
monthly; 4, one or two times; 5, never) to determine whether 
small differences in collaboration can be identified between 
CUREs and traditional lab courses.

Another limitation is that our comparison of CUREs and 
traditional lab courses relies on the assumption that the vari-
ation in students’ responses is due mainly to course design 
and not other factors, such as instructor experience or stu-
dents’ prior lab course or research experience. For example, 
as students progress through a degree program and gain ex-
perience, they may hone their ability to assess whether their 
work is truly relevant to the scientific community. These fac-
tors should be measured in future uses of the LCAS to de-
termine their influence on students’ responses and to better 
characterize the validity of the LCAS.

Finally, as with many educational studies, our sample was 
not random. Participation in the study was voluntary, and 
self-selection into the study may have biased the group of 
student participants. However, we made efforts to collect 
data from different institutions across the United States and 
to include a variety of lab course types. This likely helped 
us to capture a spectrum of student experience that may 
have mitigated self-selection bias. In addition, participants 
were mainly white and Asian students (40–50% and 28–37% 
respectively, depending on the analysis). An insufficient 
number of Hispanic/Latino(a), black, and other underrepre-
sented minority (URM) students (<10% in each group) partic-
ipated in the study for us to test the properties of the survey 
with students from a full range of backgrounds. Although 
the percentage of URM students in our survey population 
was not substantially different from national percentages of 
URM students who graduated with a bachelor’s degree in 
biology (Table 1; National Science Foundation, 2014), future 
research should evaluate the instrument’s utility with a 
broader range of students.
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originally wrote items to measure participation in science 
practices. However, these items did not form a single unidi-
mensional scale, because each practice represents a distinct 
activity. Future research should investigate other approaches 
to measuring student engagement in science practices, such 
as the creation of an inventory, similar to the teaching prac-
tices inventory designed by Wieman and Gilbert (2014), or 
the design of course-specific tools and rubrics as proposed by 
Brownell and Kloser (2015). Project ownership has also been 
identified as an important feature of lab course experiences 
(Hanauer et al., 2012; Hanauer and Dolan, 2014). Future re-
search should develop and test more complex models of the 
relationships among design features (ownership, discovery 
and relevance, iteration, collaboration, etc.), student-level 
differences, and student outcomes to yield insights into the 
efficacy and impact of different research experiences for di-
verse students (Corwin et al., 2015; Linn et al., 2015).

Future research should continue to test the alignment be-
tween student perceptions of course design and instructors’ 
intended course designs and to identify, if possible, any vari-
ables that allow student perceptions and instructor inten-
tions to be delineated. For example, instructors may design 
courses to engage students in research. Yet if students do not 
believe they are doing legitimate work (Lave and Wenger, 
1991) that has the potential to contribute to a larger research 
endeavor, they may report having a different experience than 
the instructor intended. The experience may be research in 
the eyes of the instructor but not authentic from a student 
perspective (Rahm et al., 2003). This may result in a differ-
ent level of engagement that is limited in its resemblance to 
the actual practice of science (Sadler and McKinney, 2010) 
and more closely resembles the process of following steps 
in a protocol typically observed in traditional lab courses. If 
student perceptions and instructor intentions can be teased 
apart, it would be possible to examine whether student out-
comes more closely relate to student perceptions, instructor 
intentions, or the alignment between the two.
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