
CBE—Life Sciences Education  •  16:ar14, 1–15, Spring 2017	 16:ar14, 1

ARTICLE

ABSTRACT
While there have been concerted efforts to reform undergraduate biology toward teaching 
students to organize their conceptual knowledge like experts, there are few tools that at-
tempt to measure this. We previously developed the Biology Card Sorting Task (BCST), de-
signed to probe how individuals organize their conceptual biological knowledge. Previous 
results showed the BCST could differentiate between different populations, namely non–
biology majors (NBM) and biology faculty (BF). In this study, we administered the BCST 
to three additional populations, using a cross-sectional design: entering biology majors 
(EBM), advanced biology majors (ABM), and biology graduate students (BGS). Intriguingly, 
ABM did not initially sort like experts any more frequently than EBM. However, once the 
deep-feature framework was revealed, ABM were able to sort like experts more readily than 
did EBM. These results are consistent with the conclusion that biology education enables 
advanced biology students to use an expert-like conceptual framework. However, these 
results are also consistent with a process of “selection,” wherein students who persist in 
the major may have already had an expert-like conceptual framework to begin with. These 
results demonstrate the utility of the BCST in measuring differences between groups of 
students over the course of their undergraduate education.

INTRODUCTION
Reform efforts currently underway in undergraduate biology education emphasize 
teaching students to think like biologists and discourage the traditional single-minded 
focus on content coverage. The Vision and Change in Undergraduate Biology Education 
report outlined a number of suggestions for reforming undergraduate biology educa-
tion so that, as a result of their education, students with a biology degree would 
“become adept at making connections among seemingly disparate pieces of informa-
tion, concepts, and questions” and to “ensure that the biology we teach reflects the 
biology we practice” (American Association for the Advancement of Science [AAAS], 
2011, pp. 3 and viii). As a result of their biology education, then, biology students 
should have greater conceptual expertise in biology. Here, we define conceptual exper-
tise as a more expert-like organization of conceptual biology knowledge. To assess 
their efforts to reform undergraduate biology education, departments, programs, and 
instructors need a way to measure changes in conceptual expertise. How could such 
conceptual expertise be measured?

Early attempts to investigate differences in disciplinary conceptual expertise 
between novices and experts came from physics education research. In a key paper, 
Chi and colleagues tasked physics graduate students—putative experts—and physics 
undergraduate students—putative novices—to sort 24 introductory physics problems 
based on “similarities of solution” (Chi et al., 1981). They found that their putative 
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experts tended to sort the problems based on underlying phys-
ics principles, or so-called “deep structures” (e.g., Newton’s sec-
ond law), while putative novices tended to sort the problems 
based on so-called “surface features” of the question, such as 
whether inclined planes were used in the problem. The Chi 
et al. study, as well as many subsequent studies, suggested that 
novices and experts could be differentiated by how they per-
formed on a problem-sorting task (Weiser and Shertz, 1983; 
Smith, 1990; Mason and Singh, 2011; Krieter et al., 2016).

Given the dearth of tools to specifically measure the organi-
zation of disciplinary conceptual knowledge in biology, we pre-
viously developed the Biology Card Sorting Task (BCST; Smith 
et al., 2013). We modeled the BCST on the task in the Chi et al. 
(1981) study, modifying the task in several key ways to enable 
quantitative measurements between different and large popu-
lations. First, unlike previous studies, the BCST was based on a 
hypothesis-driven card stimulus set. Sixteen biology problems 
were chosen for the BCST, and each card represented one of 
four hypothesized deep features—core biology concepts— and 
one of four hypothesized surface features—organism types. The 
four hypothesized deep features were four of the core concepts 
for biological literacy as proposed in Vision and Change (AAAS, 
2011): evolution; structure and function; information flow, 
exchange, and storage; and pathways and transformations of 
energy and matter. The four hypothesized surface features 
were the organisms mentioned in the problems: humans, 
insects, plants, and microbes. Second, the use of a hypothe-
sis-driven card sort allowed for the calculation of several quan-
titative metrics, including the percentage of deep, surface, or 
unexpected card pairs present in each individual’s sort, as well 
as edit distances, which are the number of cards that would 
have to be moved to transform an individual’s sort into either 
an exact hypothesized deep-feature or an exact hypothesized 
surface-feature sort. This improved approach to card sorting 
has already been applied in chemistry to investigate the devel-
opment of domain-specific conceptual expertise in undergradu-
ate chemistry majors (Krieter et al., 2016).

Using the novel BCST, we previously demonstrated that it 
could be used to differentiate between putative biology nov-
ices—non–biology majors (NBM)—and putative biology 
experts—biology faculty (BF). For example, NBM generated 
fewer deep-feature card pairs and had card sorts that were much 
closer to the hypothesized surface-feature card sort compared 
with BF (Smith et al., 2013). Interestingly, 100% of BF reported 
using deep-feature rationales to organize their cards, while 
NBM reported using a variety of different rationales to sort their 
cards, including but not limited to, surface-feature rationales. 
Intriguingly, similar findings—that while experts tend to con-
verge on one of a small number of methods for organizing their 
knowledge, novices tend to be much more varied in how they 
organize their knowledge—have been reported for a genetics 
card-sorting task (Smith, 1990), recently developed chemistry 
card-sorting tasks (Irby et al., 2016; Krieter et al., 2016), and a 
physics card-sorting task subsequent to the work of Chi et al. 
(1981; Mason and Singh, 2011). This ability to reveal the frame-
works individuals use to organize their disciplinary knowledge 
is a significant advantage of card-sorting tasks compared with 
other assessment approaches, because the organization of one’s 
knowledge, rather than the presence, absence, or accuracy of 
the content knowledge itself, is thought to be key to developing 

expertise (Ambrose et al., 2010). Furthermore, having a more 
expert-like organization of conceptual knowledge has been 
shown to be associated with increased problem-solving abilities 
(Eylon and Reif, 1984; Hardiman et al., 1989).

The BCST was established as a tool that could address a 
variety of important questions. For example, to what extent are 
students who are graduating from biology departments orga-
nizing their knowledge any differently from entering students? 
And among our entering students, are there any detectable dif-
ferences in how two populations—students who are strongly 
expressing an interest in biology and students who are nonma-
jors in a biology general education course—organize their con-
ceptual biology knowledge? Having demonstrated the utility of 
the BCST in differentiating between biology novices and biology 
experts, we investigate these questions here by administering 
the BCST to student populations with various levels of formal 
biology education experience: entering biology majors (EBM), 
advanced biology majors (ABM), and biology graduate stu-
dents (BGS). The following two overarching research questions 
drove the research design and data analyses. First, to what 
extent do student populations at different levels of formal biol-
ogy education organize their biology knowledge differently? 
Second, to what extent can the BCST be used to uncover unhy-
pothesized frameworks used by biology students to organize 
their biology knowledge?

METHODS
The BCST is an assessment tool designed to measure concep-
tual expertise in biology (Smith et al., 2013). The BCST asks 
subjects to explore associations among 16 biology problems 
(presented on cards) and by doing so reveal how they connect 
or do not connect core biological concepts (Smith et al., 2013). 
Previous work has shown consistent and significant differences 
in how putative experts (BF) and putative novices (NBM) sort 
the biology problems in the BCST (Smith et al., 2013). In this 
study, we expanded the scope of participant populations to 
include putative intermediate levels of biological expertise. 
Below we describe the populations sampled, the implementa-
tion of the task, and the analytic approaches used to quantify 
sorting differences within and across populations with regard 
to: constructed card groupings, constructed card-group names, 
and responses to reflective prompts.

Recruitment and Participant Populations
Participants were recruited from the students and faculty of a 
large, urban university with more than 25,000 undergraduates 
(1800 biology majors and 5000 students enrolled in biology 
courses per term) and ∼40 faculty in biology who are active in 
research, as well as teaching, and represent a wide breadth of 
subdisciplines from the molecular to the ecological scale 
(Table 1).

Non–biology majors (NBM) were recruited on the first day of 
their laboratory section for a general education course in biol-
ogy. We hypothesized that these nonmajors would have the 
greatest interest in and understanding of biology among the 
wider population of NBM on campus, and thus we thought that 
querying this population would lessen the chance of artificially 
inflating the differences between NBM and other populations. 
Each student in the course completed the tasks associated with 
this study as part of their course curriculum, but only those 
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identified as NBM were included in the study (n = 101). These 
data were included in a previous publication (Smith et  al., 
2013) and are reproduced here for ease of comparison.

Entering biology majors (EBM) were recruited on the first 
day of their laboratory section for an introductory biology 
course. This course is a one-semester component of a yearlong 
introductory biology series. Only subjects from this course who 
were declared biology majors were included in the analyses 
(n = 185). Seventy-five percent of this class was made up of 
students who were more than five semesters away from gradu-
ation (i.e., students who would traditionally be considered 
freshmen and sophomores) as determined by the students’ 
self-reported anticipated year of graduation.

Advanced biology majors (ABM) were recruited on the last 
day of their genetics class; this is the most advanced biology 
class required of all undergraduate concentrations in biology. 
Only subjects from the genetics course who were declared biol-
ogy majors were included in the analyses (n = 109). Ninety-five 
percent of this class was made up students who were within 
four semesters of graduation (i.e., students who would tradi-
tionally be considered juniors and seniors) as determined by 
the students’ self-reported anticipated year of graduation.

Biology graduate students (BGS), who were graduate stu-
dents pursuing a master’s degree in biology with concentrations 
in cell/molecular biology, ecology/systematic biology, conser-
vation biology, physiological/behavioral biology, and microbi-
ology, were recruited through email. The tasks associated with 
the study were administered in a small-group setting during a 
single semester (n = 29).

Biology faculty (BF), who were tenured and tenure-track 
members of the biology faculty were recruited by email. Tasks 

associated with the study were administered individually during 
a single semester by a member (J.I.S.) of the research team who 
was not known to them (n = 23). These data were included in a 
previous publication (Smith et al., 2013) and are reproduced 
here for ease of comparison.

Task Conditions
We used the previously described hypothesis-driven card set 
(Figure 1) to probe how populations organized biological con-
cepts. Each individual biology problem was written on a sepa-
rate card. Participants were asked to read the questions but not 
to attempt to solve the problems. Participants were told that the 
task was not intended as a test and that there were no right or 
wrong ways to sort the cards. The card-sorting task was per-
formed under two conditions (Figure 2): first the unframed 
task condition, and then the framed task condition (described 
below).

Unframed Sorting-Task Condition.  Under the unframed con-
dition (Figure 2, left-hand column), participants were asked to 
consider what they knew about biology and to sort the prob-
lems into groups representing common underlying biological 
principles. No further instructions were given as to what was 
meant by the phrase “underlying biological principles.” Sub-
jects were told that they must generate more than one group 
and fewer than 16 groups of cards and that any problem could 
be a member of only one group. Each group constructed was to 
be given a name that described the commonality that caused 
individuals to group those problems together. Subjects recorded 
their constructed groups, the names of those groups, their start 
and stop times, and the number of groups they created on a 

form provided by the researchers. When 
subjects were finished sorting in the 
unframed condition, they were asked to 
respond to two reflective prompts that 
probed the reasoning behind their card 
groupings and group names: 1) Describe 
why you grouped certain problems together 
and give an example of your reasoning, and 
2) How did you decide on the names of your 
groups?

Framed Sorting-Task Condition.  Once 
subjects had completed the unframed task, 
they were asked to sort the problems a sec-
ond time (Figure 2, right-hand column). 
The framed condition was employed to 
determine the extent to which subjects 
could use the hypothesized deep-feature 
framework when specifically prompted 

TABLE 1.  Participant population

Participant type Participation rate Sample size Female participants Participants of color

Non–biology majors 89% 101 55% 56%
Entering biology majors 90% 185 70% 70%
Advanced biology majors 97% 109 59% 74%
Biology graduate students 18% 29 59% 32%
Biology faculty 69% 23 26% 48%

FIGURE 1.  Biology Card Sort Task (BCST) design. Columns represent the four different 
hypothesized deep features of biology, the rows represent the four hypothesized surface 
features of biology. Each letter represents one of the 16 biology problems included in the 
BCST. Each problem was chosen to exemplify one hypothesized deep feature and one 
hypothesized surface feature.
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with those concepts. In the framed sorting-task condition, par-
ticipants were asked to sort the same 16 problems again, but this 
time into four groups that had been preassigned the following 
names by the researchers: 1) Evolution by Natural Selection in 
Living Systems, 2) Pathways and Transformations of Energy and 
Matter in Living Systems, 3) Storage and Passage of Information 
about How to Build Living Systems, and 4) Relationships 
between Structure and Function in Living Systems. Subjects 
recorded their constructed groups and their start and stop times 
on a form provided by the researchers. When subjects were fin-
ished sorting in the framed condition, they were asked to 
respond to two reflective prompts: 1) Which if any of the prob-
lems was difficult to assign to one of the 4 categories and why? 
Please list all that apply; and 2) Now that you have completed 2 
card-sorting activities, which group names do you prefer: the group 
names that you created or the group names given to you by the 
researchers or neither? Please explain your answer. Analyses of the 
answers to these two prompts goes beyond the scope of the cur-
rent research report and were not systematically analyzed.

After completing both of the task conditions, subjects were 
asked to respond to a variety of demographic questions regard-
ing themselves and their educational backgrounds. Only those 
participants who completed all tasks as directed by the research-
ers were included in the study. This research was approved 
both by the committee for the protection of human subjects at 
San Francisco State University (Protocol #X10-036) and the 
Institutional Review Board for the Protection of Human Sub-
jects at Holy Names University (Protocol Title: “Investigation of 
How Novices and Experts Structure Knowledge of Fundamental 
Biological Principles”).

Analyses and Comparison of Constructed Card Groupings
Subjects may have organized their cards based upon hypothe-
sized surface features (organism type), hypothesized deep fea-
tures (core biological concepts), or some other unexpected 
organization. To quantify how similar the card groupings gen-
erated by participants were to our hypothesized groupings 
(Figure 1), we used two quantitative metrics to describe each 
individual’s sort: percent card pairings and edit distance.

Percent Card Pairings
Percent card pairings measured the degree to which the cards 
grouped by a participant generated pairings predicted as sur-
face-feature pairings, deep-feature pairings, or unexpected 
pairings. For example, in the card group {CDK}, one card 
pair—CK—belongs to the hypothesized deep-feature group, 
Evolution by Natural Selection in Living Systems (Figure 1). 
Another pair—DK—belongs to the surface-feature group, Plant 
(Figure 1). The final card pair—CD—represents an unexpected 
pairing; it belongs to neither the hypothesized surface- nor 
deep-feature groupings (Figure 1). The BCST contains 136 pos-
sible card pairs, 24 of which are hypothesized deep-feature 
pairings, 24 of which are hypothesized surface-feature pairings, 
and 88 of which are unexpected pairings. If a participant gener-
ated a group with only a single card, then that individual card 
was treated as an unexpected pairing. Percentages of deep-fea-
ture, surface-feature, and unexpected card pairings were calcu-
lated for each participant (using a data entry Python script 
[Python Software Foundation, 2011] written by the researchers 
and freely available by contacting the corresponding author) by 
identifying all the card pairs within each card group for each 
group generated by the participant and dividing by the total 
number of pairs produced by that participant. Percentages of 
deep-feature pairings, surface-feature pairings, and unexpected 
pairings were averaged across individuals in each participant 
population for both the unframed and framed conditions and 
were then compared across populations.

Edit Distance
A second analytical approach was used to quantify and compare 
sorting results. Edit distance (Deibel et al., 2005) is defined as 
the minimum number of card moves needed to turn an individ-
ual’s card sort into either an exact hypothesized surface-feature 
sort or an exact hypothesized deep-feature sort (Figure 1). 
Units of ED are “necessary card moves.” An exact hypothesized 
deep-feature sort would have an ED-Deep of 0 necessary card 
moves and ED-Surface of 12 necessary card moves. Similarly, 
an exact hypothesized surface-feature sort would have an 
ED-Deep of 12 necessary card moves and ED-Surface of 0 nec-
essary card moves. EDs were calculated using a Python script 
written by the researchers that used Clapper’s munkres imple-
mentation of  the Hungarian method (Kuhn, 2010; Clapper, 
2008). Using this approach, an ED from the exact hypothesized 
surface-feature sort (ED-Surface) and an ED from the exact 
hypothesized deep-feature sort (ED-Deep) were calculated for 
each individual card sort and averaged across populations. 
These were then compared across populations for each task 
condition.

Analyses and Comparison of Constructed 
Card-Group Names
Scoring rubrics were developed to determine the extent to 
which group names given by participants in the unframed 
condition employed language related to either the hypothe-
sized deep features or surface features. (Examples of included 
and excluded terms for deep-feature group names are given in 
Supplemental Table S1.) The scoring rubrics were revised 
using blind coding of subsets of the data until at least 90% 
interrater reliability was achieved. Group names given by par-
ticipants that did not match the hypothesized features were 

FIGURE 2.  Protocol for BCST administration. The BCST is 
conducted in two phases: the unframed phase always precedes the 
framed phase.
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not included in this analysis. The percentages of participants 
in each population who gave group names similar to the 
hypothesized features were calculated and then compared 
across populations.

Analysis and Comparison of Responses to 
Reflective Prompts
Analysis of the responses to the posttask reflection questions 
administered after the unframed task condition revealed that 
many participants used rationales that were unrelated to the 
deep features or surface features of the cards. Therefore, a 
grounded theory approach was taken to analyze the responses 
to the reflective prompts. Then, a scoring rubric was developed 
to assess the prevalence of sorting strategies based upon the 
most common rationales, which included surface features, deep 
features, and curriculum-based rationales (Table 2). This ratio-
nale rubric was used to analyze all the responses given by par-
ticipants to the reflection questions given after the unframed 
sort. The prevalence of several other sorting strategies was 
quantified (rationales mentioning using non–surface feature 
key words from the cards, rationales that make reference to a 
coherent strategy without making reference to a hypothesized 
strategy, and rationales that were too vague to accurately cate-
gorize); however, all these were prevalent in less than 20% of 
any population and are not shown here.

Comparative Statistical Analyses
Two-tailed Student’s t tests were used to compare the average 
percent card pairing and average ED measures between partic-
ipant populations within a task condition. Only populations 
that were “adjacent” in biology experience were compared with 
each other, as these were the comparisons that were of the 
greatest interest, and to maintain statistical power. That is, 
NBM were compared with EBM, EBM were compared with 
ABM, ABM were compared with BGS, and BGS were compared 
with BF. In comparing the average percent card pairings, we 
considered the unframed and framed conditions to be separate 
families of tests. We performed four tests per card pairing (one 
between each adjacent populations as described above) for 
each of the three types of card pairings (deep, surface, and 
unexpected pairs) for a total of 12 tests in the unframed condi-
tion and 12 tests in the framed condition. For both the unframed 
and framed conditions, to correct for multiple comparisons, a 
Bonferroni-adjusted alpha level of 0.004 (0.05/12) was used. 
Comparisons of the results for a single participant population 
between the two task conditions—unframed and framed—
were also analyzed. This was considered a separate family of 
tests with 15 tests, three (percent surface, percent deep, and 
percent unexpected pairs) for each of the five populations. In 
this case, to correct for multiple comparisons, a Bonferroni-ad-
justed alpha level of 0.003 (0.05/15) was used.

TABLE 2.  Rubric for and analysis of card-sorting strategy explanationsa

Surface-feature rationale Sample quote

Non–biology major (n = 101) 37.6% “I grouped them together based on what kind of organism they pertained to.”

Entering biology major (n = 185) 33.0% “An example of how I grouped my cards is I grouped all the cards that mentioned insects and 
put those together in one group.”

Advanced biology major (n = 109) 32.1% “I grouped the problems together based on the organism or group that the question 
related to.”

Biology graduate student (n = 29) 13.8% “Topics relating to microorganisms I grouped as microbiology”

Biology faculty (n = 23) 8.7% “Others are united by kind of organism. (D,I; P,M,G)”

Deep-feature rationale Sample quote

Non–biology major (n = 101) 1 22.8% “I grouped problems together that dealt with DNA or genetics of organisms.”

Entering biology major (n = 185) 37.8% “I grouped based on concept of each question. For example anything involving metabolism or 
use of energy I grouped as metabolism.”

Advanced biology major (n = 109) 32.1% “My biggest group is structure/function. All of the questions relate to how something is 
organized or what it is made up of and how that relates to its function.”

Biology graduate student (n = 29) 2 48.3% “I tried to figure out the underlying themes. For example, A, D, and L were different questions 
about cellular respiration and metabolism so I put them under the group “cellular 
energetics.”

Biology faculty (n = 23) 100% “I looked for similar characteristics among cards. An easy one were the cards selected for 
“basic structural characteristics of organisms” G, I, M, P- which were descriptive of 
structures and implicit or explicit implications of process.”

Curricular rationale Sample quote

Non–biology major (n = 101) 6.9% “It was pretty easy, almost like chapters of a textbook.

Entering biology major (n = 185) 3 10.3% “I tried thinking about big topics in biology and what is usually grouped together in lectures.”
Advanced biology major (n = 109) 28.4% “I then looked at what each problem was asking and sorted based on what kind of bio class I 

could see having discussed such problem or may have such a problem on a test.”
Biology graduate student (n = 29) 48.3% “I primarily grouped them according to undergraduate Biology course titles”

Biology faculty (n = 23) 39.1% “Maybe in what section of a book (intro) I’d find it, or what course, based on concepts I think 
cards reference.”

aNBM and BF data are reprinted from Smith et al. (2013). Adjacent populations with differences significant to a Bonferroni-adjusted p < 0.0125 (see Methods) are 
denoted with a vertical bracket and a number. The numbers correspond to the following statistical values: 1χ2 = 6.8, df = 1, p = 0.0093; 2χ2 = 16.7, df = 1, p < 0.0001; 
3χ2 = 16.0, df = 1, p < 0.0001.
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In comparing the average ED-Surface and ED-Deep, we con-
sidered the unframed and framed conditions to be separate fam-
ilies of tests. We performed four tests for ED-Surface (one 
between each adjacent populations) and four tests for ED-Deep 
for a total of eight tests in the unframed condition and eight tests 
in the framed condition. Here, to correct for multiple compari-
sons, a Bonferroni-adjusted alpha level of 0.006 (0.05/8) was 
used. Comparisons of the results for a single participant popula-
tion between the two task conditions—unframed and framed—
were also analyzed. This was considered a separate family of 
tests with 10 tests, two for each population (the difference in 
ED-Surface between the framed and unframed conditions, and 
the difference in ED-Deep between the framed and unframed 
conditions). In these cases, to correct for multiple comparisons, 
a Bonferroni-adjusted alpha level of 0.005 (0.05/10) was used.

Pearson’s chi-square tests were used to compare the preva-
lence of group names and specific card-sorting strategies used 
by different participant populations. Each group name or ratio-
nale was composed of four tests, one for each adjacent pair of 
populations. In these cases, to correct for multiple comparisons, 
a Bonferroni-adjusted alpha level of 0.0125 (0.05/4) was used.

To normalize for differences in the size of particular partici-
pant populations, we present all variances as an SEM. All statis-
tical comparisons were generated using JMP version 12.1.0 
(SAS Institute, 2015).

RESULTS
In this study, we employed the BCST to investigate how organi-
zation of conceptual knowledge in biology may or may not dif-
fer among students with various amounts of formal biology 
education. As described previously (Smith et  al., 2013), the 
BCST yields multiple sources of data for analysis. Below, we 
describe the three new participant populations (EBM, ABM, 
and BGS) and show examples of a raw card sort from a member 
of each of the three new populations and from members of the 
two previously described populations. Next, four analyses are 
presented that provide insights into the differences between 
how all five populations grouped the cards in their stimulus set, 
named their constructed groups, and rationalized their card 
groupings. The four analyses are 1) prevalence of deep, surface, 
and unexpected card pairings; 2) ED from hypothesized 
deep-feature and surface-feature sorts; 3) prevalence of hypoth-
esized deep-feature and surface-feature group names; and 
4) analysis of card-sorting rationales. For ease of comparison, 
all of the analyses shown include the two previously published 
populations, NBM and BF reprinted from Smith et al. (2013). 
The figures, tables, and results are organized to show compari-
sons among the five participant populations, and comparisons 
between unframed and framed task conditions for each of the 
five populations.

Description of Participant Populations
The participant populations for the current biology card-sort 
study are described in Table 1. In this study, we collected biol-
ogy card-sorting data for three new populations: EBM, ABM, 
and BGS. For ease of comparison with these three new popula-
tions, we are including previous data collected from NBM and 
BF (Smith et al., 2013).

EBM were recruited from Introductory Biology I, the first 
biology class required for biology majors at the institution. 

There were 315 EBM who were given the BCST as part of an 
in-class activity; 31 students did not consent to the use of their 
data for this study for a participation rate of 90%. Of the 
remaining 284 students, 99 students were excluded for one or 
both of the following reasons: 82 students were excluded 
because they were not biology majors and 32 students were 
excluded due to sorting anomalies. Sorting anomalies were 
defined as using a card more than once in either the unframed 
or framed condition, or not using all of the cards in either the 
framed or unframed condition. The final population size for 
EBM was n = 185. Of EBM, 70% identified as female and 70% 
who answered the optional demographic question identified as 
nonwhite (Table 1).

ABM were recruited from an upper-division genetics course, 
the last course required for all biology majors. There were 138 
ABM who were given the BCST as part of an in-class activity; 
four students did not consent to the use of their data for this 
study for a participation rate of 97%. Of the remaining 134 stu-
dents, 25 were excluded for one or more reasons as follows: 
10 students were excluded because they were not biology 
majors, 15 students’ data contained sorting anomalies, one stu-
dent did not submit a demographics form, and one student did 
not submit a reflection form for the framed sort. The final popu-
lation size for ABM was n = 109. We are showing data from one 
ABM class, as the NBM and EBM data were both only collected 
in a single class. However, two other ABM data sets were col-
lected in the same class but in different years. There were no 
statistically significant differences between the data sets, but 
two of the data sets were much more similar to each other than 
the third data set. Of these two data sets, we are presenting the 
data set with the greatest number of participants. Of ABM, 59% 
identified as female and 74% who answered the optional demo-
graphic question identified as nonwhite (Table 1).

BGS were recruited from a pool of 165 graduate students in 
a biology master’s degree program. Thirty BGS participated and 
gave consent for a participation rate of 18%. Of these 30 stu-
dents, one task contained a sorting anomaly. The final popula-
tion size for BGS was n = 29. Of BGS, 59% identified as female 
and 32% who answered the optional demographic question 
identified as nonwhite (Table 1).

Detailed descriptions of the 101 NBM and 23 BF can be 
found in Smith et al., 2013. There were significant differences in 
the percentage of female participants among the five popula-
tions (χ2 = 20.1, df = 4, p = 0.0004). There were also significant 
differences in the percentage of participants of color between 
the five populations (χ2 = 25.2, df = 4, p < 0.0001).

Example Card Sorts from a Non–Biology Major, Entering 
Biology Major, Advanced Biology Major, Biology Graduate 
Student, and Biology Faculty
Figure 3 shows example BCST responses from a single member 
of the NBM (Figure 3, A and B), EBM (Figure 3, C and D), ABM 
(Figure 3, E and F), BGS (Figure 3, G and H), and BF (Figure 3, 
I and J) groups. NBM (Figure 3, A and B) and BF (Figure 3, I and 
J) examples are reprinted from Smith et al. (2013). The exam-
ples in Figure 3 demonstrate the different kinds of information 
that can be collected from the biology card-sort task. In the 
unframed condition, participants vary in the number of groups 
that they sort the cards into, how they name each group, and 
which cards they put into each group. In the framed condition, 
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both the number of groups and the name of each group are 
given to the participant. Figure 3A further shows an example of 
an exact hypothesized surface-feature card sort, examples of 
which were found in all undergraduate student populations 
studied. An exact hypothesized deep-feature card sort was 
found in the previously published BF population (Figure 3I), 
and in one of the ABM data collections not presented here.

Analyses of Prevalence of Surface-Feature, Deep-Feature, 
and Unexpected Card Pairings
Percent Card Pairings in the Unframed Card Sort.  In the 
unframed card-sort condition (Figure 4A and Table 3), EBM (n = 
185) generated an average of 37.0 ± 2.1% surface-feature card 
pairings, 35.7 ± 1.9% deep-feature card pairings, and 27.3 ± 1.1% 
unexpected card pairings. ABM (n = 109) generated an average 

FIGURE 3.  Example BCST results. (A) Unframed condition, non–biology major (NBM). (B) Framed condition, NBM. (C) Unframed condition, 
entering biology major (EBM). (D) Framed condition, EBM. (E) Unframed condition, advanced biology major (ABM). (F) Framed condition, 
ABM. (G) Unframed condition, biology graduate student (BGS). (H) Framed condition, BGS. (I) Unframed condition, biology faculty (BF). 
(J) Framed condition, BF.
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of 35.0  ±  2.9% surface-feature card pairings, 38.0  ±  2.6% 
deep-feature card pairings, and 27.0 ± 1.5% unexpected card 
pairings. BGS (n = 29) generated an average of 14.9 ± 3.5% sur-
face-feature card pairings, 57.0 ± 4.5% deep-feature card pair-
ings, and 28.1 ± 2.7% unexpected card pairings in this unframed 
sorting condition.

We made statistical comparisons between populations that 
are the closest in expertise, which we term “adjacent popula-
tions”: NBM versus EBM, EBM versus ABM, ABM versus BGS, 
and BGS versus BF. Statistical analysis of differences between 
adjacent populations in mean percent surface-feature pairs in 
the unframed condition revealed that, while there was a gen-
eral downward trend, only the difference between ABM and 
BGS was statistically significant (Figure 4A, white bars, and 
Table 3). There were no statistically significant differences in 
the percentage of deep-feature pairs between any of the under-
graduate populations, nor was there a statistically significant 
difference between BGS and BF (Table 3).

The inverse pattern was found when comparing the mean 
percent deep-feature pairs between populations in the unframed 
condition (Figure 4A, black bars, and Table 3). While there was 
a general upward trend in mean percent surface-feature pairs 
with increasing formal biology education, only the difference 
between ABM and BGS was statistically significant (Table 3).

Finally, statistical analysis of unexpected pairs in the unframed 
condition revealed no significant differences among any of the 
adjacent populations. (Figure 4A, gray bars, and Table 3).

Percent Card Pairings in the Framed Card Sort.  To investigate 
the effect of biological framing on how participants categorize 
their knowledge, we did the same analysis for the results in the 
framed condition. In the framed card-sort condition (Figure 4B 
and Table 3), EBM (n = 185) generated an average of 14.5 
± 0.5% surface-feature card pairings, 45.2 ± 1.5% deep-feature 
card pairings, and 40.3 ± 1.2% unexpected card pairings. ABM 
(n = 109) generated an average of 12.4 ± 0.7% surface-feature 
card pairings, 54.7  ±  2.2% deep-feature card pairings, and 
32.8 ± 1.6% unexpected card pairings. BGS (n = 29) generated 
an average of 7.8  ±  1.0% surface-feature card pairings, 
69.8 ± 3.6% deep-feature card pairings, and 22.3 ± 2.7% unex-
pected card pairings in this framed sorting condition.

Statistical analysis of differences between populations 
revealed that, even after framing, when analyzing the mean 
percent surface card pairs in the framed condition, only the 
difference between ABM and BGS was statistically significant 
(Figure 4B, white bars, and Table 3). On the other hand, upon 
framing, the difference in mean percent deep pairs between 
ABM and EBM and between ABM and BGS were now statisti-
cally significant (Figure 4B, black bars, and Table 3). Interest-
ingly, neither the difference between NBM and EBM, nor the 

FIGURE 4.  Surface-feature, deep-feature, and unexpected card 
pairings among populations with increasing biology experience. 
Mean percentage of surface-feature card pairs (white bars), 
deep-feature card pairs (black bars), or unexpected card pairs (gray 
bars) in each population for the unframed condition (A) or framed 
condition (B). Error bars represent the SEM. Differences between 
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adjacent populations that are significant to a Bonferroni-adjusted 
p < 0.004 (see Methods) are marked with an asterisk. (C) Difference 
between the average percent card pairs in the framed – unframed 
condition. A positive number indicates an increase in that card pair 
category after framing. A negative number indicates a decrease in 
that card pair category after framing. Differences between adjacent 
populations that are significant to a Bonferroni-adjusted p < 0.003 
(see Methods) are marked with an asterisk.
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difference between BGS and BF was statistically significant 
(Table 3). Finally, when analyzing the mean percent unex-
pected card pairs, the differences between EBM and ABM and 
between ABM and BGS were statistically significant (Figure 
4B, gray bars, and Table 3).

Comparison of Percent Card Pairings between the Unframed 
and Framed Card Sorts.  To determine how framing affected the 
proportion of surface, deep, or unexpected pairs generated by 
the populations, we calculated the difference between the per-
cent card pairs in the framed versus the unframed condition as 
shown in Figure 4C. A negative difference indicates that there 
were more card pairs of that type in the unframed condition 
compared with the framed condition. A positive difference indi-
cates that there were more card pairs of the type in the framed 
condition compared with the unframed condition. An asterisk 
denotes that the difference in percent card pairs between the 
unframed and framed condition is statistically significant to a 
Bonferroni-adjusted p < 0.003 (see Methods). This representa-
tion shows how card pairs are redistributed in the framed sort 
compared with the unframed sort. For example, in NBM, the 
difference in percent surface pairs between the unframed and 
framed condition was −24.6 ± 2.9%, the difference in percent 
deep pairs was 10.4 ± 3.2%, and the difference in percent unex-
pected pairs was 14.2 ± 2.1%. This indicates that, when shifting 
to the framed condition, NBM move away from surface pairs and 
toward deep and unexpected pairs approximately equally. Simi-
larly, in EBM, the difference in percent surface pairs between the 
unframed and framed condition was −22.5 ± 2.1%, the differ-
ence in percent deep pairs was 9.5 ± 2.4%, and the difference in 
percent unexpected pairs was 13.0 ± 1.6%. All of the differences 
in percent card pairs between the unframed and framed condi-
tions for NBM and EBM were statistically significant to a Bonfer-
roni-adjusted p < 0.003 (see Methods; Figure 4C).

Similarly, in ABM, the difference in percent surface pairs 
between the unframed and framed condition was −22.6 ± 2.8%. 
However, in ABM, the difference in percent deep pairs was 
16.7  ±  3.1%, and the difference in percent unexpected pairs 
was 5.8  ±  2.1%. The difference in percent surface pairs and 
percent deep pairs was statistically significant to a Bonfer-
roni-adjusted p < 0.003 (see Methods), but the difference in 
percent unexpected pairs was not statistically significant. These 
results suggest that, in ABM, there is a shift from surface pairs 
to deep pairs more often than to unexpected pairs.

Neither BGS nor BF showed statistically significant differ-
ences in their percent card pairs in the unframed and framed 
conditions.

Analyses of EDs from the ED-Surface and the ED-Deep Sorts
An alternate method we used to analyze participants’ card 
groupings was to measure ED from the exact hypothesized sur-
face-feature sort (ED-Surface) and an ED from the exact 
hypothesized deep-feature sort (ED-Deep) for each participant. 
As described in Methods, the ED from an exact hypothesized 
sort is the minimum number of card moves necessary to turn an 
individual’s card sort into the hypothesized sort. For example, a 
participant with an exact hypothesized deep-feature sort would 
have an ED-Deep of 0 necessary card moves, and an ED-Surface 
of 12 necessary card moves. From these calculated EDs, an 
average ED-Surface and ED-Deep was calculated and compared 
for each of the populations, as well as between the unframed 
and framed task conditions for each population. Units of ED are 
“necessary card moves.”

ED in the Unframed Card Sort.  EBM constructed card sorts 
with an average ED-Surface of 7.4  ±  0.2 and an average 
ED-Deep of 7.4 ± 0.2 (Figure 5A). ABM constructed card sorts 
with an average ED-Surface of 7.6  ±  0.3 and an average 
ED-Deep of 7.4 ± 0.3. BGS constructed card sorts with an aver-
age ED-Surface of 10.0  ±  0.4 and an average ED-Deep of 
5.4 ± 0.5.

Statistical comparison of these means showed that, in the 
unframed condition, for both ED-Deep and ED-Surface, only 
the difference between ABM and BGS was statistically signifi-
cant. The ED-Deep and ED-Surface of the three undergraduate 
populations (NBM, EBM, and ABM) were statistically indistin-
guishable (Table 4). The unframed ED-Deep and ED-Surface of 
BGS and BF were also statistically indistinguishable from each 
other (Table 4).

ED in the Framed Card Sort.  To investigate the effect of bio-
logical framing on how participants group their cards, we again 
calculated the ED-Surface and ED-Deep for participant card 
groupings in the framed condition. Here, we report that, in the 
framed condition, EBM constructed card sorts with an average 
ED-Surface of 9.3 ± 0.1 and an average ED-Deep of 5.3 ± 0.2 
(Figure 5B). ABM constructed card sorts with an average 
ED-Surface of 9.7 ± 0.1 and an average ED-Deep of 4.0 ± 0.2. 
BGS constructed card sorts with an average ED-Surface of 
10.3 ± 0.2 and an average ED-Deep of 2.4 ± 0.3.

Statistical comparison of these means showed that, upon 
framing, the ED-Deep of ABM became statistically significantly 
lower than that of EBM (Table 4). This indicates that, upon 
framing, ABM sorts are closer to a perfect hypothesized expert 
sort compared with EBM.

TABLE 3.  Prevalence of surface-feature, deep-feature, and unexpected card pairinga

Participant type n

Unframed task condition Framed task condition

Surface Deep Unexpected Surface Deep Unexpected
Non–biology majors 101 40.8% (2.9) 29.2% (2.2) 30.0% (1.6) 16.2% (0.8) 39.6% (2.0) 44.2% (1.5)
Entering biology majors 185 37.0% (2.1) 35.7% (1.9) 27.3% (1.1) 14.5% (0.5) 45.2% (1.5) 40.3% (1.2)

4 6

Advanced biology majors 109 35.0% (2.9) 38.0% (2.6) 27.0% (1.5) 12.4% (0.7) 54.7% (2.2) 32.8% (1.6)
1 2 3 5 7

Biology graduate students 29 14.9% (3.5) 57.0% (4.5) 28.1% (2.7) 7.8% (1.0) 69.8% (3.6) 22.3% (2.7)
Biology faculty 23 8.6% (2.2) 71.7% (3.9) 19.8% (2.6) 4.3% (0.8) 83.1% (3.3) 12.6% (2.5)
aAdjacent populations with percent card-pair differences that were significant to a Bonferroni-adjusted p < 0.0042 (see Methods) are denoted with a vertical line and a 
number. The numbers correspond to the following p values: 1p = 0.0007; 2p = 0.0003, 3p = 0.0017, 4p = 0.0002, 5p = 0.0005, 6p < 0.0001, 7p = 0.0014.
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ED-Surface in the framed conditions showed very few statis-
tically significant differences. Only the differences between ABM 
and BGS were statistically significant (Figure 5B and Table 4).

Comparison of ED between the Unframed and Framed 
Card Sorts.  To determine how framing affected the ability of 
populations to sort in a more novice or more expert-like man-
ner, we calculated the difference in EDs between the unframed 
and framed conditions. A negative difference indicates that 
framing caused the population to move away from the perfect 
hypothesized sort. A positive difference indicates that framing 
led the population to move toward the perfect hypothesized 
sort (Table 4).

Comparison of ED-Surface and ED-Deep analyses for the 
unframed and framed task conditions revealed significant 
shifts between the two task conditions for all undergraduate 
populations (Table 4). NBM, EBM, and ABM all shifted 
toward perfect deep-feature sorts (smaller ED-Deep) and 
away from perfect surface-feature sorts (bigger ED-Surface). 
In all three populations, the difference between the unframed 

and framed conditions in both ED-Sur-
face and ED-Deep was statistically signif-
icant to a Bonferroni-adjusted p < 0.005 
(see Methods).

For BGS and BF, their shifts away from 
a perfect surface-feature sort upon fram-
ing were not statistically significant. How-
ever, framing allowed both of these popu-
lations to move toward perfect deep-feature 
sorts, and for both populations, the differ-
ence in ED-Deep between the unframed 
and framed conditions was statistically 
significant to a Bonferroni-adjusted p < 
0.005 (see Methods; Table 4).

Analyses and Comparison of 
Constructed Card-Group Names
The metrics described above give insights 
into how participants grouped their cards 
in both the unframed and framed condi-
tions. Another source of information is 
how participants chose to name their 
groups in the unframed condition. Quanti-
fying the frequency with which specific 
hypothesized surface or deep features are 

used as group names can give insights into how different popu-
lations categorize their biological knowledge. Below we quan-
tify the prevalence of the four hypothesized deep features and 
the prevalence of the four hypothesized surface features in the 
group names that participants assigned their card groups in the 
unframed condition.

Hypothesized Deep-Feature Group Names.  Analysis of the 
prevalence of card-group names related to the four hypothe-
sized deep features (see columns in Figure 1) is shown in 
Figure 6. With the exception of the deep feature “storage and 
passage of information,” the use of each deep-feature card cat-
egory was less than 50% among every student population.

For the deep feature “evolution and natural selection,” 
the prevalence of this group name among the NBM (20.8%), 
EBM (22.7%), and ABM (22.0%) was statistically indistin-
guishable (χ2 = 0.14, df = 2, p = 0.293; Figure 6A). Com-
pared with the undergraduate populations, the group name 
“evolution and natural selection” was twice as prevalent 
among BGS (48.3%) and four times as prevalent among BF 

FIGURE 5.  Edit distance to the perfect hypothesized expert sort (ED-Deep) or perfect 
hypothesized novice sort (ED-Surface). ED-Deep (black bars) and ED-Surface (white bars) 
in the (A) unframed and (B) framed conditions. Units of ED are “necessary card moves.” 
Error bars represent the SEM. Differences between adjacent populations that are 
significant to a Bonferroni-adjusted p < 0.006 (see Methods) are marked with an asterisk.
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TABLE 4.  Edit distances (EDs) from the hypothesized surface-feature sort and the hypothesized deep-feature sorta

Participant type n

ED from surface sort ED from deep sort

Unframed Framed Differenceb Unframed Framed Differenceb

Non–biology major 101 7.0 (0.3) 9.1 (0.1) −2.1* (0.3) 8.2 (0.3) 5.9 (0.2) 2.2* (0.4)
Entering biology major 185 7.4 (0.2) 9.3 (0.1) −1.9* (0.2) 7.4 (0.2) 4 5.3 (0.2) 2.2* (0.3)

Advanced biology major 109 1 7.6 (0.3) 2 9.7 (0.1) −2.0* (0.2) 3 7.4 (0.3) 5 4.0 (0.2) 3.5* (0.4)
Biology graduate students 29 10.0 (0.4) 10.3 (0.2) −0.4 (0.6) 5.4 (0.5) 2.4 (0.3) 3.0* (0.7)
Biology faculty 23 10.9 (0.3) 11.0 (0.2) −0.1 (0.7) 4.5 (0.5) 1.2 (0.3) 3.3* (0.8)
aNote that lower ED numbers indicate sorts more similar to the hypothesized sort. Differences between the unframed and framed conditions that were significant to a 
Bonferroni-adjusted p < 0.005 (see Methods) are denoted with an asterisk. NBM and BF data are reprinted from Smith et al. (2013). Adjacent populations with ED dif-
ferences that were significant to a Bonferroni-adjusted p < 0.006 (see Methods) are denoted with a vertical line and a number. The numbers correspond to the following 
p values: 1p = 0.0004; 2p = 0.0049; 3p = 0.0007; 4p < 0.0001; 5p = 0.0016.
bDifference represents the difference in ED between the unframed and framed conditions. A negative number denotes that the population moved away from the hypoth-
esized perfect sort in the framed condition. A positive number denotes that the population moved toward the hypothesized perfect sort in the framed condition.
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(87.0%). Only the difference between ABM and BGS (χ2 = 
7.27, df = 1, p = 0.007) and the difference between BGS and 
BF (χ2 = 7.24, df = 1, p = 0.007) were statistically significant 
(Figure 6A).

In the case of the deep feature “pathways and transforma-
tions of energy and matter,” we observed a gradual increase in 
the prevalence of this group name with increasing biology edu-
cation: NBM (11.9%), EBM (25.4%), ABM (34.9%), and BGS 
(41.4%; Figure 6B). However, in BF, the prevalence of a “path-
ways and transformation of energy and matter” group name 
was 82.6%, or about twice that of BGS (41.4%). Only the differ-
ence between NBM and EBM (χ2 = 8.48, df = 1, p = 0.0036) and 
the difference between BGS and BF (χ2 = 9.06, df = 1, p = 0.0026) 
were statistically significant.

“Storage and passage of information” 
was by far the most prevalent group 
name. We found that 38.6% of NBM, 
50.8% of EBM, 63.3% of ABM 79.3% of 
BGS, and 95.7% of BF used a group name 
that fell into this category (Figure 6C). 
The differences among all populations 
were statistically significant (χ2 = 37.6, 
df = 4, p < 0.0001). However, none of the 
differences between adjacent popula-
tions were statistically significant. It 
should be noted that the group name 
“genetics” was accepted in this category 
(Supplemental Table S1), and that more 
than 90% of respondents in all popula-
tions who were coded as having a “stor-
age and passage of information” group 
name used the category name “genetics” 
(unpublished data).

Finally, “relationships between struc-
ture and function” was by far the least 
prevalent group name, with only 3.0% of 
NBM, 4.3% of EBM, 13.8% of ABM, 17.2% 
of BGS, and 39.1% of BF using a group 
name that fell into this category (Figure 
6D). Only the difference between EBM 
and ABM was statistically significant (χ2 = 
9.51, df = 1, p = 0.002).

Hypothesized Surface-Feature Group 
Names.  Analysis of the prevalence of 
card-group names related to the four 
hypothesized surface features (see rows 
in Figure 1) is shown in Figure 7. Sur-
face-feature group names appeared in a 
similar proportion in NBM, EBM, and 
ABM, and these populations were statisti-
cally indistinguishable from one another 
by these metrics. Surface-feature group 
names appeared in a much smaller pro-
portion of BGS and BF, and these two 
populations were indistinguishable from 
each other by these metrics.

Specifically, the surface feature “human” 
appeared in the group names of similar 
proportions of NBM (47.5%), EBM 

(37.3%), and ABM (42.2%, χ2 = 2.87, df = 2, p = 0.24; Figure 7A). 
The surface feature “human” also appeared in a similar propor-
tion of BGS (10.3%) and BF (8.7%, χ2 = 0.04, df = 1, p = 0.84). 
Of the adjacent populations, only the difference between ABM 
and BGS was statistically significant (χ2 = 8.11, df = 1, p = 
0.0044).

Similarly the surface feature “insect” appeared in the 
group names of similar proportions of NBM (43.6%), EBM 
(38.9%), and ABM (32.1%, χ2 = 3.0, df = 2, p = 0.23; 
Figure 7B). The surface feature “insect” also appeared in a 
similar proportion of BGS (6.9%) and BF (0%, χ2 = 1.6, df = 
1, p = 0.19). Again, of the adjacent populations, only the dif-
ference between ABM and BGS was statistically significant 
(χ2 = 12.2, df = 1, p = 0.0005).

FIGURE 6.  Prevalence of deep-feature card-group names in the unframed condition. In 
the unframed sort, the proportion of participants who did (black bars) or did not (white 
bars) include a group name corresponding to one of the four hypothesized deep features: 
evolution and natural selection (A), pathways and transformations of energy and matter 
(B), storage and passage of information (C), and relationships between structure and 
function (D). For each panel, differences between adjacent populations that are significant 
to a Bonferroni-adjusted p < 0.0125 (see Methods) are marked with an asterisk.
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Analyses and Comparison of 
Card-Sorting Strategy Explanations 
from Responses to Posttask Reflection 
Questions
To gain a deeper understanding of how par-
ticipants organize their biological knowl-
edge, participants were asked in a posttask 
reflection question: 1) Describe why you 
grouped certain problems together. Give an 
example of your reasoning; and 2) How did 
you decide on the names of your groups? 
As detailed in Methods, the answers were 
analyzed and coded using a grounded the-
ory approach. Using this approach, we 
found that, in addition to providing ratio-
nales based on the hypothesized surface 
features and hypothesized deep features, 
sizable fractions of certain populations also 
used an explicit curricular rationale (sort-
ing based on university course titles, text-
book chapter titles, etc.; Table 2).

Hypothesized Surface-Feature Ratio-
nales.  For the surface feature–based 
rationales, we found that four times the 
proportion of NBM (37.6%) used sur-
face-feature rationales compared with BF 
(8.7%; Table 2). Still, there were no signif-
icant differences between the use of 
hypothesized surface-feature rationales by 
adjacent populations, with 33% of EBM, 
32.1% of ABM, and 13.8% of BGS also 
using these types of rationales (Table 2).

Hypothesized Deep-Feature Rationales.  
For hypothesized deep-feature rationales, 
we found that 22.8% of NBM, 37.8% of 
EBM, 32.1% of ABM, 48.3% of BGS, and 
100% of BF used such rationales (Table 
2). The differences between NBM and 
EBM (χ2 = 6.8, df = 1, p = 0.0093) and 
between BGS and BF (χ2 = 16.7, df = 1, 
p < 0. 0001) were found to be statistically 
significant (Table 2).

Unhypothesized Rationale: Curricular Rationales.  There 
were also many differences between populations in the prev-
alence of curricular rationales in the card sorting–strategy 
explanations. This category included sorting strategies based 
on undergraduate or graduate course titles, textbook chap-
ter titles, and so on. Unsurprisingly, the prevalence of this 
category among students increased with increasing formal 
biology education: 6.9% of NBM, 10.3% of EBM, 28.4% of 
ABM, and 48.3% of BGS reported using curricular rationales 
in the sorting of their cards, as did 39.1% of BF (Table 2). 
Interestingly, the only statistically significant difference 
between adjacent populations was between EBM and ABM 
(χ2 = 16.0, df = 1, p < 0.0001; Table 2).

The surface feature “plants” appeared in the group names of 
similar proportions of NBM (47.5%), EBM (37.3%), and ABM 
(42.2%, χ2 = 2.9, df = 2, p = 0.24; Figure 7C). The surface fea-
ture “plants” also appeared in a similar proportion of BGS 
(20.7%) and BF (17.4%, χ2 = 10.1, df = 1, p = 0.76). Again, of 
the adjacent populations, only the difference between ABM and 
BGS was statistically significant (χ2 = 8.18, df = 1, p = 0.0042).

Finally, the surface feature “microorganisms” appeared in the 
group names of similar proportions of NBM (36.6%), EBM 
(34.6%), ABM (38.5%), and BGS (24.1%, χ2 = 2.2, df = 3, p = 
0.53; Figure 7D), while 0% of BF had a group named “microor-
ganisms.” For this group name, only the difference between BGS 
and BF was statistically significant (χ2 = 11.1, df = 1, p = 0.0009).

FIGURE 7.  Prevalence of surface-feature card-group names in the unframed condition. In 
the unframed sort, the proportion of participants who did (black bars) or did not (white 
bars) include a group name corresponding to one of the four hypothesized surface 
features: humans (A), insects (B), plants (C), and microorganisms (D). For each panel, 
differences between adjacent populations that are significant to a Bonferroni-adjusted 
p < 0.0125 (see Methods) are marked with an asterisk.
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DISCUSSION
Instructors and researchers have many choices for assessing 
student understanding of biological concepts, including 
constructed-response questions and concept inventories (Smith 
and Tanner, 2010). Unlike many methods of assessment how-
ever, the BCST probes the frameworks that students use to 
organize their conceptual biological knowledge, rather than the 
content of that knowledge itself. Previous research has demon-
strated the ability of the BCST to differentiate between NBM 
and BF, two populations hypothesized to be on the extreme 
ends of the scale of biology expertise among adults (Smith 
et al., 2013). Here, we used the BCST to investigate whether we 
could detect differences in conceptual biology expertise among 
students at intermediate points during their biology education. 
To this end, we administered the BCST to three additional pop-
ulations: EBM, ABM, and BGS. In the following sections, we 
describe new insights into how students organize their concep-
tual biological knowledge gleaned from these additional popu-
lations and discuss the implications of our findings.

ABM Demonstrated More Deep-Feature Card 
Sorts Than EBM, but Only When Provided with 
Deep-Feature Categories
How does undergraduate biology education influence the way 
ABM organize their biological conceptual knowledge compared 
with EBM? One might assume that, as a result of their under-
graduate course work, ABM would organize their biological 
conceptual knowledge more like putative biology experts. How-
ever, our results indicate that an undergraduate biology educa-
tion does not seem to lead to a shift in the way biology students 
think toward a more expert-like or deep-feature framework 
when organizing their knowledge without guidance. This is a 
somewhat troubling but not necessarily surprising finding. Sev-
eral studies have shown that biology students improve in their 
content knowledge and acquire more expert-like attitudes 
toward science (as measured by the CLASS-Bio attitudinal 
survey) during their undergraduate biology education 
(Marbach-Ad et al., 2010; Hansen and Birol, 2014; Newman 
et  al., 2016). However, this is not always the case (Garvin-
Doxas and Klymkowsky, 2008; Abraham et al., 2014). Further-
more, a prominent study using the Collegiate Learning Assess-
ment—a standardized test designed to measure general (as 
opposed to discipline-specific) critical thinking—showed that 
students’ scores on this exam showed no statistically significant 
increase during the first 2 years of their college education 
(Arum and Roksa, 2011). Taken together, these results suggest 
that, while students may be gaining content knowledge as a 
result of their undergraduate education, it is unclear whether 
they are organizing that content knowledge in ways that disci-
plinary experts might expect. In fact, to what extent do instruc-
tors regularly teach students how to connect ideas “among 
seemingly disparate pieces of information, concepts, and ques-
tions,” as Vision and Change (AAAS, 2011) recommends?

Intriguingly, while NBM, EBM, and ABM were statistically 
indistinguishable by all of the metrics analyzed in the unframed 
condition, once the subjects were given the hypothesized deep 
feature–based categories and asked to sort the cards into these 
four categories, ABM were statistically distinguishable from 
EBM and NBM. Specifically, ABM generated more deep-feature 
pairs and had smaller EDs to the hypothesized deep-feature sort 

compared with EBM. These results suggest that ABM are per-
haps able to use the hypothesized framework if it is provided to 
them, but that they have not developed and do not use this 
framework themselves unprompted. Alternatively, ABM may 
have developed this framework, but they do not readily recall it 
without cuing. A major question that arises from our observa-
tion that ABM—but not EBM—are able to use the deep-feature 
framework once it is presented to them, is whether this is evi-
dence of student learning, or whether this represents a process 
of student selection during education. Are ABM able to use the 
deep-feature framework because of what they have learned 
during their time in college? Or are students who were able to 
use the framework in the first place somehow “selected” for in 
undergraduate environments, enabling them to persist as biol-
ogy majors? Our results further raise the question: If ABM are 
not using the deep-feature framework to organize their concep-
tual biology knowledge, what kinds of frameworks are they 
using, and how do those frameworks differ—if at all—from the 
frameworks used by other student populations?

The Largest Differences in Conceptual Expertise Were 
between ABM and BGS
Our results demonstrate that BGS organize their biology knowl-
edge using a deep-feature framework to a much greater extent 
than do any of the undergraduate populations. Specifically, we 
showed that in the absence of external prompting, the only adja-
cent populations that were statistically distinguishable in any of 
the quantitative analytical metrics of the card sorts were ABM 
and BGS. So, if there are few differences between undergraduate 
populations in how students organize their biological knowl-
edge in the absence of external prompting, but we know that 
NBM and BF organize their knowledge very differently, when 
does this reorganization happen? Our results suggest either that 
students undergo significant reorganization of their conceptual 
biology knowledge sometime between being ABM and BGS, or 
that students who choose to go on to graduate school are more 
likely to have developed a deep-feature conceptual framework. 
(Or, at an extreme, that these students already possessed this 
framework when entering college.) We propose that this phe-
nomenon of BGS and BF having much more similar ways of 
organizing their biology knowledge than ABM and BF could be 
an example of “self-selection,” wherein students who have orga-
nizational frameworks that more closely resemble those of 
faculty are more likely to have a science identity and the self-
efficacy required to choose to pursue graduate education in biol-
ogy (Tanner and Allen, 2004; Trujillo and Tanner, 2014).

Interestingly, we found no statistically significant differences 
in the quantitative analytical metrics of the card sorts between 
BGS and BF, suggesting that both populations use the deep-fea-
ture conceptual framework to a similar extent, consistent with 
the idea that acquiring a deep-feature knowledge framework is 
a key part of continuing on to postgraduate studies and a career 
in academic science.

There Are Few Differences in How NBM and EBM Organize 
Their Conceptual Biology Knowledge
Another notable finding was that there were no apparent differ-
ences in how NBM and EBM organized their biological knowl-
edge. Specifically, in both the unframed and framed conditions, 
there were no statistically significant differences between NBM 
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and EBM in the percent surface, deep, or unexpected card pair-
ings, nor was there a difference between these two populations 
in ED-Surface or ED-Deep. These results suggest that NBM and 
EBM do not organize their biology knowledge in fundamentally 
different ways, an important finding that contributes to the body 
of research on whether and how biology majors and nonmajors 
are different from one another as they enter higher education 
(Sundberg and Dini, 1993; Knight and Smith, 2010). Our results 
suggest that NBM and EBM are indistinguishable in terms of 
their biological knowledge framework, and therefore our results 
provide an important reminder that our biology majors may not 
be as advanced as we might think compared with our nonmajors 
students, and that distinctions we may make between these 
groups may not be functionally important.

The BCST Revealed a New, Unhypothesized Organizational 
Framework: Curricular Content
One advantage of the BCST over other assessment approaches 
is that the BCST is able to reveal unhypothesized knowledge 
frameworks that participants use to organize their biological 
knowledge. This is because participants are asked to provide a 
rationale for why they grouped certain cards together after they 
sorted the 16 cards. We originally hypothesized that partici-
pants with greater biological experience would describe a 
sorting rationale based on hypothesized deep features, while 
participants with less biological experience would describe a 
sorting rationale based on surface features. This was true for 
BF, 100% of whom described using a sorting strategy based on 
deep features (Table 2). However, undergraduate students 
used both surface-feature rationales and deep-feature ratio-
nales, but less than 40% of the time.

So, what other sorting rationales do students report? Rather 
than the hypothesized surface-feature rationales, we found that 
students used a variety of other rationales when describing 
their card-sorting strategies. The most prominent framework 
that was brought up by students was a curricular framework. 
Individuals were coded as having a curricular framework if they 
reported that they sorted their cards based on explicit curricular 
rationales, including in what class they would expect to see the 
questions, or in which chapter of a textbook they would expect 
to find the problem.

Interestingly, among the three rationales that we coded for, 
the curricular rationale was the only one in which there was a 
statistically significant shift between EBM and ABM. Certainly 
this makes intuitive sense, as in the transition between high 
school and college, classes go from being called “biology” to 
having more specific names, and from a student’s perspective, it 
would stand to reason that departments and publishers would 
structure their classes and textbooks around important divisions 
in biology. As reform efforts in undergraduate biology education 
gain more momentum, our results suggest that careful choice of 
the organizational frameworks of classes—such as organizing 
and naming classes based on the organizing principles laid out 
in Vision and Change (AAAS, 2011)—could be an important 
contribution to helping students develop a deep feature–based 
framework for organizing their conceptual biology knowledge.

Implications
Vision and Change (AAAS, 2011) was a collaboratively pro-
duced document that proposed five big-picture organizing prin-

ciples in biology. The BCST can be used to measure to what 
extent students use four of those core concepts to organize their 
biological knowledge. The finding that, in the absence of cuing, 
the conceptual frameworks of ABM do not seem to be based on 
deep features to any greater extent than those of EBM is trou-
bling and suggests opportunities for improvement. After all, 
when students go out into the real world and need to make 
decisions about genetically modified organisms, personalized 
medicine, climate change, or any number of other real-world 
issues that we might think their biology education should pre-
pare them to address, they will not have anyone there to pro-
vide the big-picture framework for them. What might we be 
able to do as instructors to ensure that our students are able to 
employ that deep-feature framework for themselves? Many of 
our ABM and BGS used an explicit curricular framework to 
organize their biological conceptual knowledge, but to what 
extent do our course names or textbooks align with the organiz-
ing principles set forth in Vision and Change (Wagner et  al., 
2015)? To what extent do we explicitly organize the material 
we teach within the Vision and Change framework? Or are our 
course names and textbooks organized around surface features, 
such as “plant biology” or “human biology”? And to what extent 
do we give our students practice connecting the content in our 
classrooms to the Vision and Change framework?

Limitations and Future Directions
One limitation of this study and the previous BCST study is that 
they were both conducted in the context of a single, large, 
diverse, master’s-granting institution where more than 89% of 
biology department instructors have undergone at least 40 h of 
pedagogical training (unpublished data). This raises a number 
of interesting questions. For example, how might faculty at 
other institutions, where there are fewer teaching responsibili-
ties, organize their biology knowledge differently from the fac-
ulty experts in Smith et al. (2013)? And how might the students 
at those institutions organize their knowledge differently from 
the students in these studies? Another limitation of conducting 
this study at a single institution is that we could not measure 
the effect of different curricula on the frameworks that students 
use to organize their biology knowledge. It is tempting to spec-
ulate that the organization of the content of the biology courses 
that students take might affect how students organize their 
biology knowledge. But are students who learn biology in a 
department that has adopted a curriculum more in line with the 
suggestions in Vision and Change (AAAS, 2011) more likely to 
organize their biology knowledge like experts compared with 
students who are taught using a more traditional curriculum? A 
final important variable is pedagogical differences between 
instructors. Many studies have demonstrated that classes that 
take an active-learning approach result in improved student 
outcomes compared with traditional lecture-only classes 
(Freeman et  al., 2014). How might students in classrooms 
where their instructor has been trained in effective pedagogy 
perform differently on the BCST specifically, compared with 
students taught in a more traditional setting?

Another limitation of this work is that it is a cross-sectional 
study, and therefore we cannot make specific conclusions about 
how individual students may or may not be changing how they 
organize their conceptual biology knowledge over time. As 
mentioned previously, a major question that arises from our 
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observation that ABM—but not EBM—are able to use the 
deep-feature framework once it is presented to them, is whether 
this is evidence of student learning, or whether this represents 
a process of student selection during education. One way to 
investigate these questions would be to conduct a longitudinal 
study in which the BCST is administered to a cohort of EBM and 
then administered again when these same students are ABM. If 
the same students who were unable to use the framework as 
EBM are able to use the framework as ABM, this would be evi-
dence for the idea that students are learning. On the other 
hand, if the students who are able to use the framework as ABM 
are primarily those same students who could use the frame-
work as EBM, this may indicate that those students were 
selected for and persisted. This work is currently ongoing in 
our labs.

Conclusions
We have demonstrated the utility of the BCST in assessing con-
ceptual expertise in biology among three distinct student popu-
lations: EBM, ABM, and BGS. Our results indicate that the 
BCST will be a powerful class or departmental assessment tool, 
enabling individual instructors or entire departments to answer 
the question of whether students are becoming more expert-
like in their thinking as a result of a single biology course or as 
a result of their entire biology education. In fact, the BCST has 
already begun to be used in class-based assessments, which 
have demonstrated that the BCST is able to detect changes in 
students’ conceptual biology expertise over the course of a sin-
gle semester (Hoskinson, personal communication). In the 
future, longitudinal studies using the BCST will enable depart-
ments to assess whether students are changing the way they 
organize their knowledge as a result of their biology education, 
or whether we are simply selecting for students who already 
have a more expert-like organizational framework, and failing 
to retain students who do not develop that framework. Answer-
ing this question will be a critical contribution toward under-
standing how—or if— biology education affects how students 
organize their conceptual biology knowledge.
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