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ABSTRACT
A primary goal of science and engineering (S&E) education is to produce good problem 
solvers, but how to best teach and measure the quality of problem solving remains un-
clear. The process is complex, multifaceted, and not fully characterized. Here, we present 
a detailed characterization of the S&E problem-solving process as a set of specific inter-
linked decisions. This framework of decisions is empirically grounded and describes the 
entire process. To develop this, we interviewed 52 successful scientists and engineers (“ex-
perts”) spanning different disciplines, including biology and medicine. They described how 
they solved a typical but important problem in their work, and we analyzed the interviews 
in terms of decisions made. Surprisingly, we found that across all experts and fields, the 
solution process was framed around making a set of just 29 specific decisions. We also 
found that the process of making those discipline-general decisions (selecting between 
alternative actions) relied heavily on domain-specific predictive models that embodied 
the relevant disciplinary knowledge. This set of decisions provides a guide for the detailed 
measurement and teaching of S&E problem solving. This decision framework also provides 
a more specific, complete, and empirically based description of the “practices” of science.

INTRODUCTION
Many faculty members with new graduate students and many managers with employ-
ees who are recent college graduates have had similar experiences. Their advisees/
employees have just completed a program of rigorous course work, often with distinc-
tion, but they seem unable to solve the real-world problems they encounter. The 
supervisor struggles to figure out exactly what the problem is and how they can guide 
the person in overcoming it. This paper is providing a way to answer those questions 
in the context of science and engineering (S&E). By characterizing the problem-solv-
ing process of experts, this paper investigates the “mastery” performance level and 
specifies an overarching learning goal for S&E students, which can be taught and 
measured to improve teaching.

The importance of problem solving as an educational outcome has long been rec-
ognized, but too often postsecondary S&E graduates have serious difficulties when 
confronted with real-world problems (Quacquarelli Symonds, 2018). This reflects two 
long-standing educational problems with regard to problem solving: how to properly 
measure it, and how to effectively teach it. We theorize that the root of these difficul-
ties is that good “problem solving” is a complex multifaceted process, and the details 
of that process have not been sufficiently characterized. Better characterization of the 
problem-solving process is necessary to allow problem solving, and more particularly, 
the complex set of skills and knowledge it entails, to be measured and taught more 
effectively. We sought to create an empirically grounded conceptual framework that 

Argenta M. Price,†* Candice J. Kim,‡§ Eric W. Burkholder,† Amy V. Fritz,¶ 
and Carl E. Wieman†‡

†Department of Physics, ‡Graduate School of Education, §School of Medicine, and ¶Department of 
Electrical Engineering, Stanford University, Stanford, CA 94305

A Detailed Characterization of the Expert 
Problem-Solving Process in Science and 
Engineering: Guidance for Teaching and 
Assessment

Jennifer Momsen,  Monitoring Editor
Submitted Dec 2, 2020; Revised Jun 11, 2021; 
Accepted Jun 23, 2021

DOI:10.1187/cbe.20-12-0276

*Address correspondence to: Argenta M. Price 
(argenta@stanford.edu).

© 2021 A. M. Price et al. CBE—Life Sciences 
Education © 2021 The American Society for Cell 
Biology. This article is distributed by The 
American Society for Cell Biology under license 
from the author(s). It is available to the public 
under an Attribution–Noncommercial–Share 
Alike 3.0 Unported Creative Commons License 
(http://creativecommons.org/licenses/
by-nc-sa/3.0).

“ASCB®” and “The American Society for Cell 
Biology®” are registered trademarks of The 
American Society for Cell Biology.

CBE Life Sci Educ September 1, 2021 20:ar43



20:ar43, 2	  CBE—Life Sciences Education  •  20:ar43, Fall 2021

A. M. Price et al.

would characterize the detailed structure of the full prob-
lem-solving process used by skilled practitioners when solving 
problems as part of their work. We also wanted a framework 
that would allow use and comparison across S&E disciplines. To 
create such a framework, we examined the operational deci-
sions (choices among alternatives that result in subsequent 
actions) that these practitioners make when solving problems 
in their discipline.

Various aspects of problem solving have been studied across 
multiple domains, using a variety of methods (e.g., Newell and 
Simon, 1972; Dunbar, 2000; National Research Council [NRC], 
2012b; Lintern et al., 2018). These ranged from expert self-re-
flections (e.g., Polya, 1945), to studies on knowledge lean tasks 
to discover general problem-solving heuristics (e.g., Egan and 
Greeno, 1974), to comparisons of expert and novice perfor-
mances on simplified problems across a variety of disciplines 
(e.g., Chase and Simon, 1973; Chi et al., 1981; Larkin and Reif, 
1979; Ericsson et  al., 2006, 2018). These studies revealed 
important novice–expert differences—notably, that experts are 
better at identifying important features and have knowledge 
structures that allow them to reduce demands on working 
memory. Studies that specifically gave the experts unfamiliar 
problems in their disciplines also found that, relative to novices, 
they had more deliberate and reflective strategies, including 
more extensive planning and managing of their own behavior, 
and they could use their knowledge base to better define the 
problem (Schoenfeld, 1985; Wineburg, 1998; Singh, 2002). 
While these studies focused on discrete cognitive steps of the 
individual, an alternative framing of problem solving has been 
in terms of “ecological psychology” of “situativity,” looking at 
how the problem solver views and interacts with the environ-
ment in terms of affordances and constraints (Greeno, 1994). 
“Naturalistic decision making” is a related framework that spe-
cifically examines how experts make decisions in complex, real-
world, settings, with an emphasis on the importance of assess-
ing the situation surrounding the problem at hand (Klein, 2008; 
Mosier et al., 2018).

While this work on expertise has provided important insights 
into the problem-solving process, its focus has been limited. 
Most has focused on looking for cognitive differences between 
experts and novices using limited and targeted tasks, such as 
remembering the pieces on a chessboard (Chase and Simon, 
1973) or identifying the important concepts represented in an 
introductory physics textbook problem (Chi et al., 1981). It did 
not attempt to explore the full process of solving, particularly 
for solving the type of complex problem that a scientist or engi-
neer encounters as a member of the workforce (“authentic 
problems”).

There have also been many theoretical proposals as to expert 
problem-solving practices, but with little empirical evidence as 
to their completeness or accuracy (e.g., Polya, 1945; Heller and 
Reif, 1984; Organisation for Economic Cooperation and Devel-
opment [OECD], 2019). The work of Dunbar (2000) is a nota-
ble exception to the lack of empirical work, as his group did 
examine how biologists solved problems in their work by ana-
lyzing lab meetings held by eight molecular biology research 
groups. His groundbreaking work focused on creativity and dis-
covery in the research process, and he identified the importance 
of analogical reasoning and distributed reasoning by scientists 
in answering research questions and gaining new insights. 

Kozma et al. (2000) studied professional chemists solving prob-
lems, but their work focused only on the use of specialized 
representations.

The “cognitive systems engineering” approach (Lintern 
et al., 2018) takes a more empirically based approach looking at 
experts solving problems in their work, and as such tends to 
span aspects of both the purely cognitive and the ecological 
psychological theories. It uses both observations of experts in 
authentic work settings and retrospective interviews about how 
experts carried out particular work tasks. This theoretical fram-
ing and the experimental methods are similar to what we use, 
particularly in the “naturalistic decision making” area of 
research (Mosier et al., 2018). That work looks at how critical 
decisions are made in solving specific problems in their real-
world setting. The decision process is studied primarily through 
retrospective interviews about challenging cases faced by 
experts. As described below, our methods are adapted from that 
work (Crandall et  al., 2006), though there are some notable 
differences in focus and field. A particular difference is that we 
focused on identifying what are decisions to be made, which are 
more straight-forward to identify from retrospective interviews 
than how those decisions are made. We all have the same ulti-
mate goal, however, to improve the training/teaching of the 
respective expertise.

Problem solving is central to the processes of science, engi-
neering, and medicine, so research and educational standards 
about scientific thinking and the process and practices of sci-
ence are also relevant to this discussion. Work by Osborne and 
colleagues describes six styles of scientific reasoning that can be 
used to explain how scientists and students approach different 
problems (Kind and Osborne, 2016). There are also numerous 
educational standards and frameworks that, based on theory, 
lay out the skills or practices that science and engineering stu-
dents are expected to master (e.g., American Association for the 
Advancement of Science [AAAS], 2011; Next Generation Sci-
ence Standards Lead States, 2013; OECD, 2019; ABET, 2020). 
More specifically related to the training of problem solving, 
Priemer et al. (2020) synthesizes literature on problem solving 
and scientific reasoning to create a “STEM [science, technology, 
engineering, and mathematics] and computer science frame-
work for problem solving” that lays out steps that could be 
involved in a students’ problem-solving efforts across STEM 
fields. These frameworks provide a rich groundwork, but they 
have several limitations: 1) They are based on theoretical ideas 
of the practice of science, not empirical evidence, so while each 
framework contains overlapping elements of the problem-solv-
ing process, it is unclear whether they capture the complete 
process. 2) They are focused on school science, rather than the 
actual problem solving that practitioners carry out and that stu-
dents will need to carry out in future STEM careers. 3) They are 
typically underspecified, so that the steps or practices apply 
generally, but it is difficult to translate them into measurable 
learning goals for students to practice. Working to address that, 
Clemmons et al. (2020) recently sought to operationalize the 
core competencies from the Vision and Change report (AAAS, 
2011), establishing a set of skills that biology students should 
be able to master.

Our work seeks to augment this prior work by building a 
conceptual framework that is empirically based, grounded in 
how scientists and engineers solve problems in practice instead 
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of in school. We base our framework on the decisions that need 
to be made during problem solving, which makes each item 
clearly defined for practice and assessment. In our analysis of 
expert problem solving, we empirically identified the entire 
problem-solving process. We found this includes deciding when 
and how to use the steps and skills defined in the work described 
previously but also includes additional elements. There are also 
questions in the literature about how generalizable across fields 
a particular set of practices may be. Here, we present the first 
empirical examination of the entire problem-solving process, 
and we compare that process across many different S&E 
disciplines.

A variety of instructional methods have been used to try and 
teach science and engineering problem solving, but there has 
been little evidence of their efficacy at improving problem solv-
ing (for a review, see NRC, 2012b). Research explicitly on 
teaching problem solving has primarily focused on text-
book-type exercises and utilized step-by-step strategies or heu-
ristics. These studies have shown limited success, often getting 
students to follow specific procedural steps but with little gain 
in actually solving problems and showing some potential draw-
backs (Heller and Reif, 1984; Heller et  al., 1992; Huffman, 
1997; Heckler, 2010; Kuo et al., 2017). As discussed later, the 
framework presented here offers guidance for different and 
potentially more effective approaches to teaching problem 
solving.

These challenges can be illustrated by considering three dif-
ferent problems taken from courses in mechanical engineering, 
physics, and biology, respectively (Figure 1). All of these prob-
lems are challenging, requiring considerable knowledge and 
effort by the student to solve correctly. Problems such as these 
are routinely used to both assess students’ problem-solving 

skills, and students are expected to learn such skills by practic-
ing doing such problems. However, it is obvious to any expert in 
the respective fields, that, while these problems might be com-
plicated and difficult to answer, they are vastly different from 
solving authentic problems in that field. They all have well-de-
fined answers that can be reached by straightforward solution 
paths. More specifically, they do not involve needing to use 
judgment to make any decisions based on limited information 
(e.g., insufficient to specify a correct decision with certainty). 
The relevant concepts and information and assumptions are all 
stated or obvious. The failure of problems like these to capture 
the complexity of authentic problem solving underlies the fail-
ure of efforts to measure and teach problem solving. Recogniz-
ing this failure motivated our efforts to more completely charac-
terize the problem-solving process of practicing scientists, 
engineers, and doctors.

We are building on the previous work studying expert–novice 
differences and problem solving but taking a different direction. 
We sought to create an empirically grounded framework that 
would characterize the detailed structure of the full prob-
lem-solving process by focusing on the operational decisions 
that skilled practitioners make when successfully solving authen-
tic problems in their scientific, engineering, or medical work. We 
chose to identify the decisions that S&E practitioners made, 
because, unlike potentially nebulous skills or general prob-
lem-solving steps that might change with the discipline, deci-
sions are sufficiently specified that they can be individually prac-
ticed by students and measured by instructors or departments. 
The authentic problems that we analyzed are typical problems 
practitioners encounter in “doing” the science or engineering 
entailed in their jobs. In the language of traditional problem- 
solving and expertise research, such authentic problems are 

FIGURE 1.  Example problems from courses or textbooks in mechanical engineering, physics and biology. Problems from: Mechanical 
engineering: Wayne State mechanical engineering sample exam problems (Wayne State, n.d.), Physics: A standard physics problem in 
nearly every advanced quantum mechanics course, Biology: Molecular Biology of the Cell 6th edition, Chapter 7 end of chapter problems 
(Alberts et al., 2014).



20:ar43, 4	  CBE—Life Sciences Education  •  20:ar43, Fall 2021

A. M. Price et al.

“ill-structured” (Simon, 1973) and require “adaptive expertise” 
(Hatano and Inagaki, 1986) to solve. However, our authentic 
problems are considerably more complex and unstructured than 
what is normally considered in those literatures, because not 
only do they lack a clear solution path, but in many cases, it is 
not clear a priori that they have any solution at all. Determining 
that, and whether the problem needs to be redefined to be solu-
ble, is part of the successful expert solution process. Another 
way in which our set of decisions goes beyond the characteriza-
tion of what is involved in adaptive expertise is the prominent 
role of making judgments with limited information.

A common reaction of scientists and engineers to seeing the 
list of decisions we obtain as our primary result is, “Oh, yes, 
these are things I always do in solving problems. There is noth-
ing new here.” It is comforting that these decisions all look 
familiar; that supports their validity. However, what is new is 
not that experts are making such decisions, but rather that there 
is a relatively small but complete set of decisions that has now 
been explicitly identified and that applies so generally.

We have used a much larger and broader sample of experts 
in this work than used in prior expert–novice studies, and we 
used a more stringent selection criterion. Previous empirical 
work has typically involved just a few experts, almost always in 
a single domain, and included graduate students as “experts” in 
some cases. Our semistructured interview sample was 31 expe-
rienced practitioners from 10 different disciplines of science, 
engineering, and medicine, with demonstrated competence 
and accomplishments well beyond those of most graduate stu-
dents. Also, approximately 25 additional experts from across 
science, engineering, and medicine served as consultants 
during the planning and execution of this work.

Our research question was: What are the decisions experts 
make in solving authentic problems, and to what extent is this 
set of decisions to be made consistent both within and across 
disciplines?

Our approach was designed to identify the level of consis-
tency and unique differences across disciplines. Our hypothesis 
was that there would be a manageable number (20–50) of deci-
sions to be made, with a large amount of overlap of decisions 
made between experts within each discipline and a substantial 
but smaller overlap across disciplines. We believed that if we 
had found that every expert and/or discipline used a large and 
completely unique set of decisions, it would have been an inter-
esting research result but of little further use. If our hypothesis 
turned out to be correct, we expected that the set of decisions 
obtained would have useful applications in guiding teaching 
and assessment, as they would show how experts in the respec-
tive disciplines applied their content knowledge to solve prob-
lems and hence provide a model for what to teach. We were not 
expecting to find the nearly complete degree of overlap in the 
decisions made across all the experts.

METHODS
We first conducted 22 relatively unstructured interviews with a 
range of S&E experts, in which we asked about problem-solving 
expertise in their fields. From these interviews, we developed 
an initial list of decisions to be made in S&E problem solving. To 
refine and validate the list, we then carried out a set of 31 sem-
istructured interviews in which S&E experts chose a specific 
problem from their work and described the solution process in 

detail. The semistructured interviews were coded for the deci-
sions represented, either explicitly stated or implied by a choice 
of action. This provided a framework of decisions that charac-
terize the problem-solving process across S&E disciplines. The 
research was approved by the Stanford Institutional Review 
Board (IRB no. 48785), and informed consent was obtained 
from all the participants.

This work involved interviewing many experts across differ-
ent fields. We defined experts as practicing scientists, engineers, 
or physicians with considerable experience working as faculty 
at highly rated universities or having several years of experi-
ence working in moderately high-level technical positions at 
successful companies. We also included a few longtime post-
docs and research staff in biosciences to capture more details of 
experimental decisions from which faculty members in those 
fields often were more removed. This definition of expert allows 
us to identify the practices of skilled professionals; we are not 
studying what makes only the most exceptional experts unique.

Experts were volunteers recruited through direct contact via 
the research team's personal and professional networks and 
referrals from experts in our networks. This recruitment method 
likely biased our sample toward people who experienced rela-
tively similar training (most were trained in STEM disciplines at 
U.S. universities within the last 15–50 years). Within this lim-
itation, we attempted to get a large range of experts by field 
and experience. This included people from 10 different fields 
(including molecular biology/biochemistry, ecology, and medi-
cine), 11 U.S. universities, and nine different companies or gov-
ernment labs, and the sample was 33% female (though our 
engineering sample only included one female). The medical 
experts were volunteers from a select group of medical school 
faculty chosen to serve as clinical reasoning mentors for medi-
cal students at a prestigious university. We only contacted peo-
ple who met our criteria for being an “expert,” and everyone 
who volunteered was included in the study. Most of the people 
who were contacted volunteered, and the only reason given for 
not volunteering was insufficient time. Other than their disci-
plinary expertise, there was little to distinguish these experts 
beyond the fact they were acquaintances with members of the 
team or acquaintances of acquaintances of team or project advi-
sory board members. The precise number from each field was 
determined largely by availability of suitable experts.

We defined an “authentic problem” to be one that these 
experts solve in their actual jobs. Generally, this meant research 
projects for the science and engineering faculty, design prob-
lems for the industry engineers, and patient diagnoses for the 
medical doctors. Such problems are characterized by complex-
ity, with many factors involved and no obvious solution process, 
and involve substantial time, effort, and resources. Such prob-
lems involve far more complexity and many more decisions, 
particularly decisions with limited information, than the typical 
problems used in previous problem-solving research or used 
with students in instructional settings.

Creating an Initial List of Problem-Solving Decisions
We first interviewed 22 experts (Table 1), most of whom were 
faculty at a prestigious university, in which we asked them to 
discuss expertise and problem solving in their fields as it related 
to their own experiences. This usually resulted in their discuss-
ing examples of one or more problems they had solved. Based 
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on the first seven interviews, plus reflections on personal expe-
rience from the research team and review of the literature on 
expert problem solving and teaching of scientific practices 
(Ericsson et al., 2006; NRC, 2012a; Wieman, 2015), we created 
a generic list of decisions that were made in S&E problem solv-
ing. In the rest of the unstructured interviews (15), we also 
provided the experts with our list and asked them to comment 
on any additions or deletions they would suggest. Faculty who 
had close supervision of graduate students and industry experts 
who had extensively supervised inexperienced staff were partic-
ularly informative. Their observations of the way inexperienced 
people could fail made them sensitive to the different elements 
of expertise and where incorrect decisions could be made. 
Although we initially expected to find substantial differences 
across disciplines, from early in the process, we noted a high 
degree of overlap across the interviews in the decisions that 
were described.

Refinement and Validation of the List of Decisions
After creating the preliminary list of decisions from the infor-
mal interviews, we conducted a separate set of more struc-
tured interviews to test and refine the list. Semistructured 
interviews were conducted with 31 experts from across sci-
ence, engineering, and medical fields (Table 1). For these 
interviews, we recruited experts from a range of universities 
and companies, though the range of institutions is still lim-
ited, given the sample size. Interviews were conducted in per-
son or over video chat and were transcribed for analysis. In 
the semistructured interviews, experts were asked to choose a 
problem or two from their work that they could recall the 
details of solving and then describe the process, including all 
the steps and decisions they made. So that we could get a full 
picture of the successful problem-solving process, we decided 
to focus the interviews on problems that they had eventually 
solved successfully, though their processes inherently involved 
paths that needed to be revised and reconsidered. Transcripts 
from interviewees who agreed to have their interview tran-
script published are available in the supplemental data set.

Our interview protocol (see Supplemental Text) was inspired 
in part by the critical decision method of cognitive task analysis 
(Crandall et al., 2006; Lintern et al., 2018), which was created 
for research in cognitive systems engineering and naturalistic 
decision making. There are some notable differences between 
our work and theirs, both in research goal and method. First, 
their goal is to improve training in specific fields by focusing on 
how critical decisions are made in that field during an unusual 
or important event; the analysis seeks to identify factors 
involved in making those critical decisions. We are focusing on 
the overall problem solving and how it compares across many 
different fields, which quickly led to attention on what decisions 
are to be made, rather than how a limited set of those decisions 
are made. We asked experts to describe a specific, but not nec-
essarily unusual, problem in their work, and focused our analy-
sis on identifying all decisions made, not reasons for making 
them or identifying which were most critical. The specific order 
of problem-solving steps was also less important to us, in part 
because it was clear that there was no consistent order that was 
followed. Second, we are looking at different types of work. 
Cognitive systems engineering work has primarily focused on 
performance in professions like firefighters, power plant opera-

tors, military technicians, and nurses. These tend to require 
time-sensitive critical skills that are taught with modest amounts 
of formal training. We are studying scientists, engineers, and 
doctors solving problems that require much longer and less 
time-critical solutions and for which the formal training occu-
pies many years.

Given our different focus, we made several adaptations to 
eliminate some of the more time-consuming steps from the 
interview protocol, allowing us to limit the interview time to 
approximately 1 hour. Both protocols seek to elicit an accurate 
and complete reporting of the steps taken and decisions made 
in the process of solving a problem. Our general strategy was: 
1) Have the expert explain the problem and talk step by step 
through the decisions involved in solving it, with relatively few 
interruptions from the interviewer except to keep the discussion 
focused on the specific problem and occasionally to ask for clar-
ifications. 2) Ask follow-up questions to probe for more detail 
about particular steps and aspects of the problem-solving pro-
cess. 3) Occasionally ask for general thoughts on how a novice's 
process might differ.

While some have questioned the reliability of information 
from retrospective interviews (Nisbett and Wilson, 1977), we 
believe we avoid these concerns, because we are only identifying 
a decision to be made, which in this case, means identifying a 
well-defined action that was chosen from alternatives. This is 
less subjective and much more likely to be accurately recalled 
than is the rationale behind such a decision. See Ericsson and 
Simon (1980). However, the decisions identified may still be 
somewhat limited—the process of deciding among possible 
actions might involve additional decisions in the moment, when 
the solution is still unknown, that we are unable to capture in 
the retrospective context. For the decisions we can identify, we 
are able to check their accuracy and completeness by comparing 
them with the actions taken in the conduct of the research/
design. For example, consider this quote from a physician who 
had to re-evaluate a diagnosis, “And, in my very subjective sense, 
he seemed like he was being forthcoming and honest. Granted 
people can fool you, but he seemed like he was being forthcom-
ing. So we had to reevaluate.” The physician then considered 
alternative diagnoses that could explain a test result that at first 
had indicated an incorrect diagnosis. While this quote does 
describe the (retrospective) reasoning behind a decision, we do 
not need to know whether that reasoning is accurately recalled. 
We can simply code this as “decision 18, how believable is info?” 
The physician followed up by considering alternative diagnoses, 
which in this context was coded as “26, how good is solution?” 
and “8, potential solutions?” This was followed by the descrip-
tion of the literature and additional tests conducted. These indi-
cated actions taken that confirm the physician made a decision 
about the reliability of the information given by the patient.

Interview Coding
We coded the semistructured interviews in terms of decisions 
made, through iterative rounds of coding (Chi, 1997), follow-
ing a “directed content analysis approach,” which involves cod-
ing according to predefined theoretical categories and updating 
the codes as needed based on the data (Hsieh and Shannon, 
2005). Our predefined categories were the list of decisions we 
had developed during the informal interviews. This approach 
means that we limited the focus of our qualitative analysis—we 
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were able to test and refine the list of decisions, but we did not 
seek to identify all possible categories of approach to selecting 
and solving problems. The goals of each iterative round of 
coding are described in the next three paragraphs. To code for 
decisions in general, we matched decisions from the list to 
statements in each interview, based on the following criteria: 
1) there was an explicit statement of a decision or choice made 
or needing to be made; 2) there was the description of the out-
come of a decision, such as listing important features of the 
problem (that had been decided on) or conclusions arrived at; 
or 3) there was a statement of actions taken that indicated a 
decision about the appropriate action had been made, usually 
from a set of alternatives. Two examples illustrate the types of 
comments we identified as decisions: A molecular biologist 
explicitly stated the decisions required to decompose a problem 
into subproblems (decision 11), “Which cell do we use? The 
gene. Which gene do we edit? Which part of that gene do we 
edit? How do we build the enzyme that is going to do the cut-
ting? … And how do we read out that it worked?” An ecologist 
made a statement that was also coded as a decomposition deci-
sion, because it described the action taken: “So I analyze the 
bird data first on its own, rather than trying to smash all the 
taxonomic groups together because they seem really apples and 
oranges. And just did two kinds of analysis, one was just sort of 
across all of these cases, around the world.” A single statement 
could be coded as multiple decisions if they were occurring 
simultaneously in the story being recalled or were intimately 
interconnected in the context of that interview, as with the ecol-
ogy quote, in which the last sentence leads into deciding what 
data analysis is needed. Inherent in nearly every one of these 
decisions was that there was insufficient information to know 
the answer with certainty, so judgment was required.

Our primary goal for the first iterative round of coding was 
to check whether our list was complete by checking for any 
decisions that were missing, as indicated by either an action 
taken or a stated decision that was not clearly connected to a 
decision on our initial list. In this round, we also clarified word-
ing and combined decisions that we were consistently unable to 
differentiate during the coding. A sample of three interviews 
(from biology, medicine, and electrical engineering) were first 
coded independently by four coders (AP, EB, CK, and AF), then 
discussed. The decision list was modified to add decisions and 
update wording based on that discussion. Then the interviews 
were recoded with the new list and rediscussed, leading to more 
refinements to the list. Two additional interviews (from physics 
and chemical engineering) were then coded by three coders 
(AP, EB, and CK) and further similar refinements were made. 
Throughout the subsequent rounds of coding, we continued to 
check for missing decisions, but after the additions and adjust-
ments made based on these five interviews, we did not identify 
any more missing decisions.

In our next round of coding, we focused on condensing over-
lapping decisions and refining wording to improve the clarity of 
descriptions as they applied across different disciplinary con-
texts and to ensure consistent interpretation by different coders. 
Two or three coders independently coded an additional 11 
interviews, iteratively meeting to discuss codes identified in the 
interviews, refining wording and condensing the list to improve 
agreement and combine overlapping codes, and then using the 
updated list to code subsequent interviews. We condensed the 

list by combining decisions that represented the same cognitive 
process taking place at different times, that were discipline-spe-
cific variations on the same decision, or that were substeps 
involved in making a larger decision. We noticed that some 
decisions were frequently co-coded with others, particularly in 
some disciplines. But if they were identified as distinct a reason-
able fraction of the time in any discipline, we listed them as 
separate. This provided us with a list, condensed from 42 to 29 
discrete decisions (plus five additional non-decision themes 
that were so prevalent that they are important to describe), that 
gave good consistency between coders.

Finally, we used the resulting codes to tabulate which deci-
sions occurred in each interview, simplifying our coding process 
to focus on deciding whether or not each decision had occurred, 
with an example if it did occur to back up the “yes” code, but no 
longer attempting to capture every time each decision was 
mentioned. Individual coders identified decisions mentioned in 
the remaining 15 interviews. Interviews that had been coded 
with the early versions of the list were also recoded to ensure 
consistency. Coders flagged any decisions they were unsure 
about occurring in a particular interview, and two to four coders 
(AP, EB, CK, and CW) met to discuss those debated codes, with 
most uncertainties being resolved by explanations from a team 
member who had more technical expertise in the field of the 
interview. Minor wording changes were made during this pro-
cess to ensure that each description of a decision captured all 
instantiations of the decision across disciplines, but no signifi-
cant changes to the list were needed or made.

Coding an interview in terms of decisions made and actions 
taken in the research often required a high level of expertise in 
the discipline in question. The coder had to be familiar with the 
conduct of research in the field in order to recognize which 
actions corresponded to a decision between alternatives, but 
our team was assembled with this requirement in mind. It 
included high-level expertise across five different fields of sci-
ence, engineering, and medicine and substantial familiarity 
with several other fields.

Supplemental Table S1 shows the final tabulation of deci-
sions identified in each interview. In the tabulation, most deci-
sions were marked as either “yes” or “no” for each interview, 
though 65 out of 1054 total were marked as “implied,” for one 
of the following reasons: 1) for 40/65, based on the coder's 
knowledge of the field, it was clear that a step must have been 
taken to achieve an outcome or action, even though that deci-
sion was not explicitly mentioned (e.g., interviewees describe 
collecting certain raw data and then coming to a specific con-
clusion, so they must have decided how to analyze the data, 
even if they did not mention the analysis explicitly); 2) for 
15/65, the interview context was important, in that multiple 
statements from different parts of the interview taken together 
were sufficient to conclude that the decision must have hap-
pened, though no single statement described that decision 
explicitly; 3) 10/65 involved a decision that was explicitly dis-
cussed as an important step in problem solving, but they did not 
directly state how it was related to the problem at hand, or it 
was stated only in response to a direct prompt from the inter-
viewer. The proportion of decisions identified in each interview, 
broken down by either explicit or explicit + implied, is presented 
in Supplemental Tables S1 and S2. Table 2 and Figure 2 of the 
main text show explicit + implied decision numbers.
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Two of the interviews that had not been discussed during 
earlier rounds of coding (one physics [AP and EB], one medi-
cine [AP and CK]) were independently coded by two coders to 
check interrater reliability using the final list of decisions. The 
goal of our final coding was to tabulate whether or not each 
expert described making each decision at any point in the 
problem-solving process, so the level of detail we chose for 
coding and interrater reliability was whether or not a decision 
was present in the entire interview. The decisions identified in 
each interview were compared for the two coders. For both 
interviews, the raters disagreed on whether or not only one of 
the 29 decisions occurred. Codes of “implied” were counted as 
agreement if the other coder selected either “yes” or “implied.” 
This equates to a percent agreement of 97% for each interview 
(28 agree/29 total decisions per interview = 97%). As a side 
note, there was also one disagreement per interview on the 
coding of the five other themes, but those themes were not a 
focus of this work nor the interviews.

RESULTS
We identified a total set of 29 decisions to be made (plus five 
other themes), all of which were identified in a large fraction of 
the interviews across all disciplines (Table 2 and Figure 2). There 
was a surprising degree of overlap across the different fields 
with all the experts mentioning similar decisions to be made. All 
29 were evident by the fifth semistructured interview, and on 
average, each interview revealed 85% of the 29 decisions. Many 
decisions occurred multiple times in an interview, with the num-
ber of times varying widely, depending on the length and com-
plexity of the problem-solving process discussed.

We focused our analysis on what decisions needed to be 
made, not on the experts’ processes for making those decisions: 
noting that a choice happened, not how they selected and chose 
among different alternatives. This is because, while the deci-
sions to be made were the same across disciplines, how the 
experts made those decisions varied greatly by discipline and 
individual. The process of making the decisions relied on 

specialized disciplinary knowledge and experience and may 
vary depending on demographics or other factors that our study 
design (both our sample and nature of retrospective interviews) 
did not allow us to investigate. However, while that knowledge 
was distinct and specialized, we could tell that it was consis-
tently organized according to a common structure we call a 
“predictive framework,” as discussed in the “Predictive Frame-
work” section below. Also, while every “decision” reflected a 
step in the problem solving involved in the work, and the expert 
being interviewed was involved in making or approving the 
decision, that does not mean the decision process was carried 
out only by that individual. In many cases, the experts described 
the decisions made in terms of ideas and results of their teams, 
and the importance of interpersonal skills and teamwork was 
an important non-decision theme raised in all interviews.

We were particularly concerned with the correctness and 
completeness of the set of decisions. Although the correctness 
was largely established by the statements in the interviews, we 
also showed the list of decisions to these experts at the end of 
the interviews as well as to about a dozen other experts. In all 
cases, they all agreed that these decisions were ones they and 
others in their field made when solving problems. The com-
pleteness of the list of decisions was confirmed by: 1) looking 
carefully at all specific actions taken in the described prob-
lem-solving process and checking that each action matched a 
corresponding decision from the list; and 2) the high degree of 
consistency in the set of decisions across all the interviews and 
disciplines. This implies that it is unlikely that there are import-
ant decisions that we are missing, because that would require 
any such missing decisions to be consistently unspoken by all 
31 interviewees as well as consistently unrecognized by us from 
the actions that were taken in the problem-solving process.

In focusing on experts’ recollections of their successful solv-
ing of problems, our study design may have missed decisions 
that experts only made during failed problem-solving attempts. 
However, almost all interviews described solution paths that 
were not smooth and continuous, but rather involved going 

TABLE 1.  Number of interviews conducted, by field of interviewee

Discipline
Informal interviews 

(creation of initial list)
Structured interviews 

(validation/refinement) Notes

Biology (5 biochem/molecular bio, 2 cell bio, 
1 plant bio, 1 immunology, 1 ecology)

2 8 Female: 6, URM: 2 
5 faculty, 2 industry 
3 acad staff/postdoc (year 5+)

Medicine (6 internal med or pediatrics, 
1 oncology, 2 surgery)

4 6 Female: 4, URM: 1 
All medical faculty

Physics (4 experiment, 3 theory) 2 5 Female: 1, URM: 1 
All faculty

Electrical Engineering 4 3 2 faculty, 4 industry, 1 acad. staff
Chemical Engineering 2 2 Female: 1 

3 industry, 1 acad. staff
Mechanical Engineering 2 2 URM: 1, 2 faculty, 2 industry
Earth Science 1 2 Female: 2, 2 faculty, 1 industry
Chemistry 1 2 Female: 2, all faculty
Computer Science 2 1 Female: 1, 2 faculty, 1 industry
Biological Engineering 2 – All faculty or acad. staff
Total 22 31 Female: 17, URM: 5

URM (under-represented minority) included 3 African American and 2 Hispanic/Latinx. One medical faculty member was interviewed twice – in both informal and 
structure interviews, for a total of 53 interviews with 52 experts.
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down numerous dead ends. There were approaches that were 
tried and failed, data that turned out to be ambiguous and 
worthless, and so on. Identifying the failed path involved 
reflection decisions (23–26). Often decision 9 (is problem 
solvable?) would be mentioned, because it described a path 
that was determined to be not solvable. For example, a biolo-
gist explained, “And then I ended up just switching to a differ-
ent strain that did it [crawling off the plate] less. Because it 
was just … hard to really get them to behave themselves. I 
suppose if I really needed to rely on that very particular one, I 
probably would have exhausted the possibilities a bit more.” 
Thus, we expect unsuccessful problem solving would entail a 
smaller subset of decisions being made, particularly lack of 
reflection decisions, or poor choices on the decisions, rather 
than making a different set of decisions.

The set of decisions represent a remarkably consistent struc-
ture underlying S&E problem solving. For the purposes of pre-
sentation, we have categorized the decisions as shown in 
Figure 3, roughly based on the purposes they achieve. How-
ever, the process is far less orderly and sequential than implied 
by this diagram, or in fact any characterization of an orderly 
“scientific method.” We were struck by how variable the 
sequence of decisions was in the descriptions provided. For 
example, experts who described how they began work on a 

problem sometimes discussed importance and goals (1–3, 
what is important in field?; opportunity fits solver’s expertise?; 
and goals, criteria, constraints?), but others mentioned a curi-
ous observation (20, any significant anomalies?), important 
features of their system that led them to questions (4, import-
ant features and info?, 6, how to narrow down problem?), or 
other starting points. We also saw that there were flexible con-
nections between decisions and repeated iterations—jumping 
back to the same type of decision multiple times in the solution 
process, often prompted by reflection as new information and 
insights were developed. The sequence and number of itera-
tions described varied dramatically by interview, and we can-
not determine to what extent this was due to legitimate differ-
ences in the problem-solving process or to how the expert 
recalled and chose to describe the process. This lack of a con-
sistent starting point, with jumping and iterating between deci-
sions, has also been identified in the naturalistic decision-mak-
ing literature (Mosier et  al., 2018). Finally, the experts also 
often described considering multiple decisions simultaneously. 
In some interviews, a few decisions were always described 
together, while in others, they were clearly separate decisions. 
In summary, while the specific decisions themselves are fully 
grounded in expert practice, the categories and order shown 
here are artificial simplifications for presentation purposes.

The decisions contained in the seven categories are summa-
rized here. See Supplemental Table S2 for specific examples of 
each decision across multiple disciplines.

Category A. Selection and Goals of the Problem
This category involves deciding on the importance of the prob-
lem, what criteria a solution must meet, and how well it 
matches the capabilities, resources, and priorities of the expert. 
As an example, an earth scientist described the goal of her proj-
ect (decision 3, goals, criteria, constraints?) to map and date 
the earliest volcanic rocks associated with what is now Yellow-
stone and explained why the project was a good fit for her 
group (2, opportunity fits solver’s expertise?) and her decision 
to pursue the project in light of the significance of this type of 
eruption in major extinction events (1, what is important in 
field?). In many cases, decisions related to framing (see cate-
gory B) were mentioned before decisions in this category or 
were an integral part of the process for developing goals.

Decisions in this category are:

1.	 What is important in the field?
What are important questions or problems? Where is the 
field heading? Are there advances in the field that open 
new possibilities?

2.	 Opportunity fits solver's expertise?
If and where are there gaps/opportunities to solve in 
field? Given experts’ unique perspectives and capabilities, 
are there opportunities particularly accessible to them? 
(This could involve challenging the status quo, question-
ing assumptions in the field.)

3.	 Goals, criteria, constraints?
What are the goals for this problem? Possible consider-
ations include:

a.	 What are the goals, design criteria, or requirements of the 
problem or its solution?

FIGURE 2.  Proportion of decisions coded in interviews by field. 
This tabulation includes decisions 1–29, not the additional themes. 
Error bars represent standard deviations. Number of interviews: 
total = 31; physical science = 9; biological science = 8; engineering 
= 8; medicine = 6. Compared with the sciences, slightly fewer 
decisions overall were identified in the coding of engineering and 
medicine interviews, largely for discipline-specific reasons. See 
Supplemental Table S2 and associated discussion.
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b.	 What is the scope of the problem?
c.	 What constraints are there on the solution?
d.	 What will be the criteria on which the solution is 

evaluated?

Category B. Frame Problem
These decisions lead to a more concrete formulation of the 
solution process and potential solutions. This involves identi-
fying the key features of the problem and deciding on predic-

tive frameworks to use (see “Predictive 
Framework” section below), as well as 
narrowing down the problem, often 
forming specific questions or hypotheses. 
Many of these decisions are guided by 
past problem solutions with which the 
expert is familiar and sees as relevant. 
The framing decisions of a physician can 
be seen in his discussion of a patient with 
liver failure who had previously been 
diagnosed with HIV but had features (4, 
important features and info?; 5, what 
predictive framework?) that made the 
physician question the HIV diagnosis (5, 
what predictive framework?; 26, how 
good is solution?). His team then 
searched for possible diagnoses that 
could explain liver failure and lead to a 
false-positive HIV test (7, related prob-
lems?; 8, potential solutions?), which led 
to their hypothesis the patient might 
have Q fever (6, how to narrow down 
problem?; 13, what info needed?; 

TABLE 2.  Problem-solving decisions and percentages of expert interviews in which they occura

A. Selection and 
goals (Occur in 
100%b)

B. Frame problem 
(100%)

C. Plan process for 
solving (100%)

D. Interpret info 
and choose 

solutions (100%) E. Reflecte (100%)

F. Implications and 
communicate results 

(84%)

1.c (61%) What is 
important in field?

4. (100%) Important 
features and info?

10. (100%) 
Approximations 
and simplifica-
tions to make?

16. (81%) Which 
calculations and 
data analysis?

23. (77%) Assumptions 
and simplifications 
appropriate?

27. (65%) Broader 
implications?

2. (77%) Opportunity 
fits solver’s 
expertise?

5. (100%) What 
predictive 
framework?d

11. (68%) How to 
decompose into 
sub-problems?

17. (68%) How to 
represent and 
organize 
information?

24. (84%) Additional 
knowledge needed?

28. (55%) Audience 
for communication?

3. (100%) Goals, 
criteria, 
constraints?

6. (97%) How to 
narrow down 
problem?

12. (90%) Most 
difficult or 
uncertain areas?

18. (77%) How 
believable is 
information?

25. (94%) How well is 
solving approach 
working?

29. (68%) Best way 
to present work?

7. (97%) Related 
problems?

13. (100%) What 
info needed?

19. (100%) How 
does info compare 
to predictions?

26. (100%) How good 
is solution?

8. (100%) Potential 
Solutions?

14. (87%) 
Priorities?

20. (71%) Any 
significant 
anomalies?

9. (74%) Is problem 
solvable?

15. (100%) Specific 
plan for getting 
information?

21. (97%) Appropri-
ate conclusions?

22. (97%) What is 
best solution?

aSee supplementary text and Table S2 for full description and examples of each decision. A set of other non-decision knowledge and skill development themes were also 
frequently mentioned as important to professional success: Staying up to date in the field (84%), intuition and experience (77%), interpersonal and teamwork (100%), 
efficiency (32%), and attitude (68%).
bPercentage of interviews in which category or decision was mentioned.
cNumbering is for reference. In practice ordering is fluid – involves extensive iteration with other possible starting points.
dChosen predictive framework(s) will inform all other decisions.
eReflection occurs throughout process, and often leads to iteration. Reflection on solution occurs at the end as well.

FIGURE 3.  Representation of problem-solving decisions by categories. The black arrows 
represent a hypothetical but unrealistic order of operations, the blue arrows represent 
more realistic iteration paths. The decisions are grouped into categories for presentation 
purposes; numbers indicate the number of decisions in each category. Knowledge and 
skill development were commonly mentioned themes but are not decisions.
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15, specific plan for getting info?). While each individual 
decision is strongly supported by the data, the categories are 
groupings for presentation purposes. In particular, framing 
(category B) and planning (see category C) decisions often 
blended together in interviews.

Decisions in this category are:

4.	 Important features and info?
What are the important underlying features or concepts 
that apply? Could include:

a.	 Which available information is relevant to problem solv-
ing and why?

b.	 (When appropriate) Create/find a suitable abstract repre-
sentation of core ideas and information Examples: phys-
ics, equation representing process involved; chemistry, 
bond diagrams/potential energy surfaces; biology, dia-
gram of pathway steps.

5.	 What predictive framework?
Which potential predictive frameworks to use? (Decide 
among possible predictive frameworks or create frame-
work.) This includes deciding on the appropriate level of 
mechanism and structure that the framework needs to 
embody to be most useful for the problem at hand.

6.	 How to narrow down the problem?
How to narrow down the problem? Often involves formu-
lating specific questions and hypotheses.

7.	 Related problems?
What are related problems or work seen before, and what 
aspects of their problem-solving process and solutions 
might be useful in the present context? (This may involve 
reviewing literature and/or reflecting on experience.)

8.	 Potential solutions?
What are potential solutions? (This is based on experi-
ence and fitting some criteria for solution they have for a 
problem having general key features identified.)

9.	 Is problem solvable?
Is the problem plausibly solvable and is the solution 
worth pursuing given the difficulties, constraints, risks, 
and uncertainties?

Category C. Plan the Process for Solving
These decisions establish the specifics needed to solve the prob-
lem and include: how to simplify the problem and decompose it 
into pieces, what specific information is needed, how to obtain 
that information, and what are the resources needed and priori-
ties? Planning by an ecologist can be seen in her extensive dis-
cussion of her process of simplifying (10, approximations/sim-
plifications to make?) a meta-analysis project about changes in 
migration behavior, which included deciding what types of data 
she needed (13, what info needed?), planning how to conduct 
her literature search (15, specific plan for getting info?), difficul-
ties in analyzing the data (12, most difficult/uncertain areas?; 
16, which calculations and data analysis?), and deciding to ana-
lyze different taxonomic groups separately (11, how to decom-
pose into subproblems?). In general, decomposition often 
resulted in multiple iterations through the problem-solving deci-
sions, as subsets of decisions need to be made about each 
decomposed aspect of a problem. Framing (category B) and 

planning (category C) decisions occupied much of the inter-
views, indicating their importance.

Decisions in this category are:

10.	 Approximations and simplifications to make?
What approximations or simplifications are appropriate? 
How to simplify the problem to make it easier to solve? 
Test possible simplifications/approximations against es-
tablished criteria.

11.	 How to decompose into subproblems?
How to decompose the problem into more tractable 
subproblems? (Subproblems are independently solvable 
pieces with their own subgoals.)

12.	 Most difficult or uncertain areas?
Which are areas of particular difficulty and/or uncertain-
ty in plan of solving process? Could include deciding:

a.	 What are acceptable levels of uncertainty with which to 
proceed at various stages?

13.	 What info needed?
What information is needed to solve the problem? Could 
include:

a.	 What will be sufficient to test and distinguish between 
potential solutions?

14.	 Priorities?
What to prioritize among many competing consider-
ations? What to do first and how to obtain necessary re-
sources?
Considerations could include: What's most important? 
Most difficult? Addressing uncertainties? Easiest? Con-
straints (time, materials, etc.)? Cost? Optimization and 
trade-offs? Availability of resources? (facilities/materials, 
funding sources, personnel)

15.	 Specific plan for getting information?
What is the specific plan for getting additional informa-
tion? Includes:

a.	 What are the general requirements of a problem-solving 
approach, and what general approach will they pursue? 
(These decisions are often made early in the prob-
lem-solving process as part of framing.)

b.	 How to obtain needed information? Then carry out those 
plans. (This could involve many discipline- and prob-
lem-specific investigation possibilities such as: designing 
and conducting experiments, making observations, 
talking to experts, consulting the literature, doing calcu-
lations, building models, or using simulations.)

c.	 What are achievable milestones, and what are metrics for 
evaluating progress?

d.	 What are possible alternative outcomes and paths that 
may arise during the problem-solving process, both con-
sistent with predictive framework and not, and what 
would be paths to follow for the different outcomes?

Category D. Interpret Information and Choose Solution(s)
This category includes deciding how to analyze, organize, and 
draw conclusions from available information, reacting to unex-
pected information, and deciding upon a solution. A biologist 
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studying aging in worms described how she analyzed results 
from her experiments, which included representing her results in 
survival curves and conducting statistical analyses (16, which 
calculations and data analysis?; 17, how to represent and orga-
nize info?), as well as setting up blind experiments (15, specific 
plan for getting info?) so that she could make unbiased interpre-
tations (18, how believable is info?) of whether a worm was alive 
or dead. She also described comparing results with predictions to 
justify the conclusion that worm aging was related to fertility (19, 
how does info compare to predictions?; 21, appropriate conclu-
sions?; 22, what is best solution?). Deciding how results com-
pared with expectations based on a predictive framework was a 
key decision that often preceded several other decisions.

Decisions in this category are:

16.	 Which calculations and data analysis?
What calculations and data analysis are needed? Once 
determined, these must then be carried out.

17.	 How to represent and organize information?
What is the best way to represent and organize available 
information to provide clarity and insights? (Usually this 
will involve specialized and technical representations re-
lated to key features of predictive framework.)

18.	 How believable is the information?
Is information valid, reliable, and believable (includes 
recognizing potential biases)?

19.	 How does information compare to predictions?
As new information comes in, particularly from experi-
ments or calculations, how does it compare with expected 
results (based on the predictive framework)?

20.	 Any significant anomalies?
If a result is different than expected, how should one fol-
low up? (This entails first noticing the potential anoma-
ly.) Could involve deciding:

a.	 Does potential anomaly fit within acceptable range of 
predictive framework(s) (given limitations of predictive 
framework and underlying assumptions and approxima-
tions)?

b.	 Is potential anomaly an unusual statistical variation or 
relevant data? Is it within acceptable levels of uncer-
tainty?

21.	 Appropriate conclusions?
What are appropriate conclusions based on the data? 
(This involves making conclusions and deciding if they 
are justified.)

22.	 What is the best solution?
Deciding on best solution(s) involves evaluating and re-
fining candidate solutions throughout the problem-solv-
ing process, although they are not always narrowed down 
to a single solution. May include deciding:

a.	 Which of multiple candidate solutions are consistent with 
all available information and which can be rejected? 
(This could be based on comparing data with predicted 
results.)

b.	 What refinements need to be made to candidate 
solutions?

Category E. Reflect
Reflection decisions occur throughout the process and include 
deciding whether assumptions are justified, whether addi-
tional knowledge or information is needed, how well the 
solution approach is working, and whether potential and then 
final solutions are adequate. These decisions match the cate-
gories of reflection identified by Salehi (2018). A mechanical 
engineer described developing a model (to inform surgical 
decisions) of which muscles allow the thumb to function in 
the most useful manner (22, what is best solution?), includ-
ing reflecting on how well engineering approximations 
applied in the biological context (23, assumptions and simpli-
fications appropriate?). He also described reflecting on his 
approach, that is, why he chose to use cadaveric models 
instead of mathematical models (25, how well is solving 
approach working?), and the limitations of his findings in that 
the “best” muscle identified was difficult to access surgically 
(26, how good is solution?; 27, broader implications?). 
Reflection decisions are made throughout the problem-solv-
ing process, often lead to reconsidering other decisions, and 
are critical for success.

Decisions in this category are:

23.	 Assumptions and simplifications appropriate?
Are previous decisions about simplifications and predic-
tive frameworks still appropriate?

a.	 Do the assumptions and simplifications made previously 
still look appropriate considering new information?

b.	 Does predictive framework need to be modified?

24.	 Additional knowledge needed?
Is additional knowledge/information needed? (This is 
based on ongoing review of one's state of knowledge.) 
Could involve:

a.	 Is solver's relevant knowledge sufficient?
b.	 Is more information needed and, if so, what?
c.	 Does some information need to be checked? (Is there a 

need to repeat experiment or check a different source?)

25.	 How well is the problem-solving approach working?
How well is the problem-solving approach working, and 
does it need to be modified? This includes possibly mod-
ifying the goals. (One needs to reflect on one's strategy 
by evaluating progress toward the solution.) and reflect-
ing on one’s strategy by evaluating progress toward the 
solution.

26.	 How good is the solution?
How adequate is the chosen solution? Includes ongoing 
reflection on potential solutions, as well as final reflection 
after selecting preferred solution. Can include:

a.	 Decide by exploring possible failure modes and limita-
tions—“try to break” solution.

b.	 Does it “make sense” and pass discipline-specific tests for 
solutions of this type of problem?

c.	 Does it completely meet the goals/criteria?

Category F. Implications and Communication of Results
These are decisions about the broader implications of the work, 
and how to communicate results most effectively. For example, 
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a theoretical physicist developing a method to calculate the 
magnetic moment of the muon decided on who would be inter-
ested in his work (28, audience for communication?) and what 
would be the best way to present it (29, best way to present 
work?). He also discussed the implications of preliminary work 
on a simplified aspect of the problem (10, approximations and 
simplifications to make?) in terms of evaluating its impact on 
the scientific community and deciding on next steps (27, 
broader implications?; 29, best way to present work?). Many 
interviewees described that making decisions in this category 
affected their decisions in other categories.

Decisions in this category are:

27.	 Broader implications?
What are the broader implications of the results, including 
over what range of contexts does the solution apply? What 
outstanding problems in the field might it solve? What 
novel predictions can it enable? How and why might this 
be seen as interesting to a broader community?

28.	 Audience for communication?
What is the audience for communication of work, and 
what are their important characteristics?

29.	 Best way to present work?
What is the best way to present the work to have it under-
stood, and its correctness and importance appreciated? 
How to make a compelling story of the work?

Category G. Ongoing Skill and Knowledge Development
Although we focused on decisions in the problem-solving 
process, the experts volunteered general skills and knowl-
edge they saw as important elements of problem-solving 
expertise in their fields. These included teamwork and inter-
personal skills (strongly emphasized), acquiring experience 
and intuition, and keeping abreast of new developments in 
their fields.

Non-decision themes in this category are:

30.	 Stay up to date in field
Staying up to date could include:
a.	 Reviewing literature, which does involve making deci-

sions as to which is important.
b.	 Learning relevant new knowledge (ideas and technology 

from literature, conferences, colleagues, etc.)

31.	 Intuition and experience
Acquiring experience and associated intuition to improve 
problem solving.

32.	 Interpersonal, teamwork
Includes navigating collaborations, team management, 
patient interactions, communication skills, etc., partic-
ularly as how these apply in the context of the various 
types of problem-solving processes.

33.	 Efficiency
Time management including learning to complete certain 
common tasks efficiently and accurately.

34.	 Attitude
Motivation and attitude toward the task. Factors such 
as interest, perseverance, dealing with stress, and confi-
dence in decisions.

Predictive Framework
How the decisions were made was highly dependent on the 
discipline and problem. However, there was one element that 
was fundamental and common across all interviews: the early 
adoption of a “predictive framework” that the experts used 
throughout the problem-solving process. We define this frame-
work as “a mental model of key features of the problem and 
the relationships between the features.” All the predictive 
frameworks involved some degree of simplification and 
approximation and an underlying level of mechanism that 
established the relationships between key features. The frame-
works provided a structure of knowledge and facilitated the 
application of that knowledge to the problem at hand, allow-
ing experts to repeatedly run “mental simulations” to make 
predictions for dependencies and observables and to interpret 
new information.

As an example, an ecologist described her predictive frame-
work for migration, which incorporated important features 
such as environmental conditions and genetic differences 
between species and the mechanisms by which these interacted 
to impact the migration patterns for a species. She used this 
framework to guide her meta-analysis of changes in migration 
patterns, affecting everything from her choice of data sets to 
include to her interpretation of why migration patterns changed 
for different species. In many interviews, the frameworks used 
evolved as additional information was obtained, with addi-
tional features being added or underlying assumptions modi-
fied. For some problems, the relevant framework was well 
established and used with confidence, while for other problems, 
there was considerable uncertainty as to a suitable framework, 
so developing and testing the framework was a substantial part 
of the solution process.

A predictive framework contains the expert knowledge orga-
nization that has been observed in previous studies of expertise 
(Egan and Greeno, 1974) but goes further, as here it serves as 
an explicit tool that guides most decisions and actions during 
the solving of complex problems. Mental models and mental 
simulations that are described in the naturalistic decision-mak-
ing literature are similar, in that they are used to understand the 
problem and guide decisions (Klein, 2008; Mosier et al., 2018), 
but they do not necessarily contain the same level of mechanis-
tic understanding of relationships that underlies the predictive 
frameworks used in science and engineering problem solving. 
While the use of predictive frameworks was universal, the indi-
vidual frameworks themselves explicitly reflected the relevant 
specialized knowledge, structure, and standards of the disci-
pline, and arguably largely define a discipline (Wieman, 2019).

Discipline-Specific Variation
While the set of decisions to be made was highly consistent 
across disciplines, there were extensive differences within and 
across disciplines and work contexts, which reflected the differ-
ences in perspectives and experiences. These differences were 
usually evident in how experts made each of the specific deci-
sions, but not in the choice of which decisions needed to be 
made. In other words, the solution methods, which included 
following standard accepted procedures in each field, were very 
different. For example, planning in some experimental sciences 
may involve formulating a multiyear construction and data-col-
lection effort, while in medicine it may be deciding on a simple 
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blood test. Some decisions, notably in categories A, D, and F, 
were less likely to be mentioned in particular disciplines, 
because of the nature of the problems. Specifically, decisions 
1 (what is important in field?), 2 (opportunity fits solver’s 
expertise?), 27 (broader implications?), 28 (audience for com-
munication?), and 29 (best way to present work?) were depen-
dent on the scope of the problem being described and the 
expert's specific role in it. These were mentioned less frequently 
in interviews where the problem was assigned to the expert 
(most often engineering or industry) or where the importance 
or audience was implicit (most often in medicine). Decisions 16 
(which calculations and data analysis?) and 17 (how to repre-
sent and organize info?) were particularly unlikely to be men-
tioned in medicine, because test results are typically provided to 
doctors not in the form or raw data, but rather already analyzed 
by a lab or other medical technology professional, so the doc-
tors we interviewed did not need to make decisions themselves 
about how to analyze or represent the data. Qualitatively, we 
also noticed some differences between disciplines in the pat-
terns of connections between decisions. When the problem 
involved development of a tool or product, most commonly the 
case in engineering, the interview indicated relatively rapid 
cycles between goals (3), framing problem/potential solutions 
(8), and reflection on the potential solution (26), before going 
through the other decisions. Biology, the experimental science 
most represented in our interviews, had strong links between 
planning (15), deciding on appropriate conclusions (21), and 
reflection on the solution (26). This is likely because the respec-
tive problems involved complex systems with many unknowns, 
so careful planning was unusually important for achieving 
definitive conclusions. See Supplemental Text and Supplemen-
tal Table S2 for additional notes on decisions that were men-
tioned at lower frequency and decisions that were likely to be 
interconnected, regardless of field.

DISCUSSION
This work has created a framework of decisions to character-
ize problem solving in science and engineering. This frame-
work is empirically based and captures the successful prob-
lem-solving process of all experts interviewed. We see that 
several dozen experts across many different fields all make a 
common set of decisions when solving authentic problems. 
There are flexible linkages between decisions that are guided 
by reflection in a continually evolving process. We have also 
identified the nature of the “predictive frameworks” that S&E 
experts consistently use in problem solving. These predictive 
frameworks reveal how these experts organize their disci-
plinary knowledge to facilitate making decisions. Many of the 
decisions we identified are reflected in previous work on 
expertise and scientific problem solving. This is particularly 
true for those listed in the planning and interpreting informa-
tion categories (Egan and Greeno, 1974). The priority experts 
give to framing and planning decisions over execution com-
pared with novices has been noted repeatedly (e.g., Chi et al., 
1988). Expert reflection has been discussed, but less exten-
sively (Chase and Simon, 1973), and elements of the selection 
and implications and communication categories have been 
included in policy and standards reports (e.g., AAAS, 2011). 
Thus, our framework of decisions is consistent with previous 
work on scientific practices and expertise, but it is more 

complete, specific, empirically based, and generalizable across 
S&E disciplines.

A limitation of this study is the small number of experts we 
have in total, from each discipline, and from underrepre-
sented groups (especially lack of female representation in 
engineering). The lack of randomized selection of participants 
may also bias the sample toward experts who experienced 
similar academic training (STEM disciplines at U.S. universi-
ties). This means we cannot prove that there are not some 
experts who follow other paths in problem solving. As with 
any scientific model, the framework described here should be 
subjected to further tests and modifications as necessary. 
However, to our knowledge, this is a far larger sample than 
used in any previous study of expert problem solving. Although 
we see a large amount of variation both within and across 
disciplines in the problem-solving process, this is reflected in 
how experts make decisions, not in what decisions they make. 
The very high degree of consistency in the decisions made 
across the entire sample strongly suggests that we are captur-
ing elements that are common to all experts across science 
and engineering. A second limitation is that decisions often 
overlap and co-occur in an interview, so the division between 
decision items is often somewhat ambiguous and could be 
defined somewhat differently. As noted, a number of these 
decisions can be interconnected, and in some fields are nearly 
always interconnected.

The set of decisions we have observed provides a general 
framework for characterizing, analyzing, and teaching S&E 
problem solving. These decisions likely define much of the set of 
cognitive skills a student needs to practice and master to per-
form as a skilled practitioner in S&E. This framework of deci-
sions provides a detailed and structured way to approach the 
teaching and measurement of problem solving at the undergrad-
uate, graduate, and professional training levels. For teaching, we 
propose using the process of “deliberate practice” (Ericsson, 
2018) to help students learn problem solving. Deliberate prac-
tice of problem solving would involve effective scaffolding and 
concentrated practice, with feedback, at making the specific 
decisions identified here in relevant contexts. In a course, this 
would likely involve only an appropriately selected set of the 
decisions, but a good research mentor would ensure that train-
ees have opportunities to practice and receive feedback on their 
performance on each of these 29 decisions. Future work is 
needed to determine whether there are additional decisions that 
were not identified in experts but are productive components of 
student problem solving and should also be practiced. Measure-
ments of individual problem-solving expertise based on our 
decision list and the associated discipline-specific predictive 
frameworks will allow a detailed measure of an individual's dis-
cipline-specific problem-solving strengths and weaknesses rela-
tive to an established expert. This can be used to provide tar-
geted feedback to the learner, and when aggregated across 
students in a program, feedback on the educational quality of 
the program. We are currently working on the implementation 
of these ideas in a variety of instructional settings and will report 
on that work in future publications.

As discussed in the Introduction, typical science and engi-
neering problems fail to engage students in the complete 
problem-solving process. By considering which of the 29 deci-
sions are required to answer the problem, we can more clearly 
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articulate why. The biology problem, for example, requires 
students to decide on a predictive framework and access the 
necessary content knowledge, and they need to decide which 
information they need to answer the problem. However, other 
decisions are not required or are already made for them, such 
as deciding on important features and identifying anomalies. 
We propose that different problems, designed specifically to 
require students to make sets of the problem-solving decisions 
from our framework, will provide more effective tools for 
measuring, practicing, and ultimately mastering the full S&E 
problem-solving process.

Our preliminary work with the use of such decision-based 
problems for assessing problem-solving expertise is showing 
great promise. For several different disciplines, we have given 
test subjects a relevant context, requiring content knowledge 
covered in courses they have taken, and asked them to make 
decisions from the list presented here. Skilled practitioners in 
the relevant discipline respond in very consistent ways, while 
students respond very differently and show large differences 
that typically correlate with their different educational experi-
ences. What apparently matters is not what content they have 
seen, but rather what decisions they have had practice making. 
Our approach was to identify the decisions made by experts, 
this being the task that educators want students to master. Our 
data do not exclude the possibility that students engage in and/
or should learn other decisions as a productive part of the prob-
lem-solving process while they are learning. Future work would 
seek to identify decisions made at intermediate levels during 
the development of expertise, to identify potential learning pro-
gressions that could be used to teach problem solving more effi-
ciently. What we have seen is consistent with previous work 
identifying expert–novice differences but provides a much more 
extensive and detailed picture of a student's strengths and 
weaknesses and the impacts of particular educational experi-
ences. We have also carried out preliminary development of 
courses that explicitly involve students making and justifying 
many of these decisions in relevant contexts, followed by feed-
back on their decisions. Preliminary results from these courses 
are also encouraging. Future work will involve the more exten-
sive development and application of decision-based measure-
ment and teaching of problem solving.
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