
CBE—Life Sciences Education Volume 12 June 2013

Table of Contents
FEATURES

Editorial
From Vision to Change: Educational Initiatives and Research at the Intersection of Physics and Biology

Eric Brewe, Nancy J. Pelaez, and Todd J. Cooke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117–119

From the National Science Foundation
Integration of Physics and Biology: Synergistic Undergraduate Education for the 21st Century

Terry Woodin, Helen Vasaly, Duncan McBride, and Gary White . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120–123

Three aspects of the interactions of physics and biology are covered as seen from the viewpoint of four
members of the Division of Undergraduate Education of the National Science Foundation.

From the National Science Foundation
On the Edge of Mathematics and Biology Integration: Improving Quantitative Skills in Undergraduate
Biology Education

Jason Feser, Helen Vasaly, and Jose Herrera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124–128

The feature describes two major efforts to integrate mathematics and biology. A call is made to biologists
to consider the need to address biology undergraduate education changes and to use the resources described.

From the National Research Council
Biology Education Research: Lessons and Future Directions

Susan R. Singer, Natalie R. Nielsen, and Heidi A. Schweingruber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129–132

This feature draws on a 2012 National Research Council report to highlight some of the insights that
discipline-based education research in general—and biology education research in particular—have
provided into the challenges of undergraduate science education. It identifies strategies for overcoming
those challenges and future directions for biology education research.

WWW. Life Sciences Education
Physics and Biology Collaborate to Color the World

Dennis W. C. Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133–138

To understand how life works, it is essential to understand physics and chemistry. Physics informs and
enlightens biology in myriad dimensions, yet many biology courses proceed with little or no consideration
of physical properties or principles. The intersection between physics and biology is explored in this review
of online media.

Perspectives on Interdisciplinary Science Education
Editorial Preface

Elisa M. Stone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Perspectives on Interdisciplinary Science Education
Interdisciplinarity: The Right People, a Supportive Place, and a Program Emerges

David G. L. Van Wylen, Beth R. J. Abdella, Shelly D. Dickinson, Jason J. Engbrecht, and Rebecca Vandiver . . . . . . 140–143

This paper describes the St. Olaf College experience moving to a more interdisciplinary approach to student
learning. The authors place this within the context of the three “P”s of higher education—people, place,
and program. The key for transformation resided in focusing on the people and the place. In so doing,
an interdisciplinary program emerged.

Perspectives on Interdisciplinary Science Education
Preparing High School Students for the Interdisciplinary Nature of Modern Biology

Barbara Nagle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144–147

Preparing students for the interdisciplinary nature of modern biology will require changes in curriculum,
instruction, assessments, and teacher professional development in order to support teaching for conceptual
understanding and for making cross-disciplinary connections.



Perspectives on Interdisciplinary Science Education
A Problem with STEM

Michael Marder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148–150

Everyone loves STEM, the acronym for science, technology, engineering, and mathematics, that sits in every
call to improve U.S. competitiveness. But hidden within “science” are many different ways of thinking
and acting, and unless we protect them separately, the whole scientific enterprise may be at risk.

Book Review
Genesis of What Is Life?: A Paradigm Shift in Genetics History

John R. Jungck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151–152

Erwin Schrödinger’s 1944 book What Is Life? has often been cited as a driving force in figuring out the
structure of DNA and cracking the genetic code. Schrödinger’s book drew upon a paper by Nikolai
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These elegant constructs were first known to mathematics and then to engineers as structures that are physically strong with minimal
mass. As mentioned in the feature on page 133, only later were these shapes found in biology, the products of evolutionary tinkering
iteratively optimizing structure and function. The “saddle” shape on the left is the form of the familiar potato chip, but mathematicians
know it as a hyperbolic paraboloid. Jewelers and builders use it to fashion strong, light structures that distribute loads evenly. In biology
the mantis shrimp incorporates this saddle structure into the joint of its raptorial limb, which is capable of producing shell crushing force
and traveling through water so fast that a trail of evaporative bubbles and light flashes can be detected by high-speed video. The middle
and right images form the softer side of biology; these “gyroid” structures decorate the colorful wings of butterflies, bouncing light to
produce brilliant colors not based on pigment, but on reflection and refraction of light by the physical shape of the gyroid. Before being
found on the wings of butterflies, gyroids were fabricated as a by-product of NASA research into “minimal surfaces.” (image credit: left,
courtesy of mathforum.org; middle and right courtesy of Adam G. Weyhaupt)
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