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Rapid advancements in hardware, software, and connectivity are helping to shorten the times
needed to develop computer simulations for science education. These advancements, however,
have not been accompanied by corresponding theories of how best to design and use these tech-
nologies for teaching, learning, and testing. Such design frameworks ideally would be guided less
by the strengths/limitations of the presentation media and more by cognitive analyses detailing
the goals of the tasks, the needs and abilities of students, and the resulting decision outcomes
needed by different audiences. This article describes a problem-solving environment and asso-
ciated theoretical framework for investigating how students select and use strategies as they
solve complex science problems. A framework is first described for designing on-line problem
spaces that highlights issues of content, scale, cognitive complexity, and constraints. While this
framework was originally designed for medical education, it has proven robust and has been
successfully applied to learning environments from elementary school through medical school.
Next, a similar framework is detailed for collecting student performance and progress data that
can provide evidence of students’ strategic thinking and that could potentially be used to ac-
celerate student progress. Finally, experimental validation data are presented that link strategy
selection and use with other metrics of scientific reasoning and student achievement.

Keywords: cognitive frameworks, problem solving, science education, undergraduate, strategy.

INTRODUCTION

The knowledge needed to solve problems in a complex do-
main such as biology or chemistry is composed of many prin-
ciples, examples, technical details, generalizations, heuristics,
and other pieces of relevant information. From a cognitive
perspective, these components can be broadly grouped into
factual (declarative), reasoning (procedural), and regulatory
(metacognitive) knowledge/skills (Anderson, 1980), and all
play complementary roles in the construction of such sci-
ence knowledge. Declarative knowledge is characterized by
what people can report (knowing that) and facilitates the con-
struction of organized frameworks of science concepts while
providing scaffolding for the acquisition of new concepts
(Novak and Gowin, 1984). Teacher-centered instructional
practices are often effective at developing declarative knowl-

DOI: 10.1187/cbe.03-02-0006
*Corresponding author. E-mail address: immex ron@hotmail.com.

edge and benefit students who require a more structured-
learning approach (Von Secker and Lissitz, 1999).

Procedural knowledge is characterized by knowledge that
appears in a performance but cannot be easily reported
(knowing how) and, along with regulatory skills, manifests
itself as strategy selection and utilization mechanisms asso-
ciated with hypothesis-driven (Lawson et al., 2000) and goal-
oriented situations. In scientific reasoning, the declarative
and procedural knowledge exists as a continuum from do-
main general skills (for instance, how to graph results) to
domain specific components (how to analyze flow cytometry
graphs). These continua help benchmark the relative levels of
professional expertise that different users apply to complex
simulations.

These reasoning skills are important for achievement in
science (Staver and Halsted, 1985; Krijik and Haney, 1987)
and students may require extended experience for maxi-
mum observable effects. For instance, Johnson and Lawson
(1999) have shown that reasoning abilities accounted for more
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achievement variance in a community college biology course
than did either prior knowledge or the number of biology
courses taken. Improvement in reasoning skills has also been
shown to occur as a result of prolonged instruction and can
lead to long-term gains in science achievement (which may
exhibit transfer to other disciplines) (Shayer and Adey, 1993).
This indicates that the duration and intensity of exposure to
reasoning situations are important factors for the develop-
ment of reasoning skills and that more individually targeted
interventions may enrich/personalize the process. This sug-
gests the need to provide students with diverse, continual and
prolonged problem-solving experiences; others (Pellegrino
et al., 2001) would also argue the need to begin routinely
assessing students in such formats.

Instructional practices for developing scientific reasoning
skills take many forms, including laboratory, inquiry-based
science, and, increasingly, computer simulations, but gener-
ally share the properties of being student-centered, socially
interactive (Seely-Brown et al., 1989), and constructivist, in-
volving many opportunities to gather evidence to support
claims, analyze data quantitatively, and construct explana-
tions. Problem-solving approaches provide such rich reason-
ing environments and have been used as effective instruc-
tional strategies in professional schools for some time (Elstein,
1993; Kolodner, 1993). These approaches have been attractive
and effective not only for the motivational and realistic con-
texts that they provide but also for the balance of knowledge
styles needed during the problem-solving tasks and the dif-
ferent perspectives they reveal about student learning (Barrett
and Depinet, 1991). Along with case-based reasoning, these
approaches are grounded in the belief that real-life reason-
ing and problem-solving behavior is almost never original
and that solutions to new problems are adoptions of previous
problem solutions (Kolodner, 1997). Whether this is through
the recall of exemplar cases (either representative or contra-
dictory) (Berry and Broadbent, 1988) or by mental model gen-
eralizations (Johnson-Laird, 1983) (or scripts [Hudson et al.,
1992]) across a number of cases is less clear, as some aspects of
strategic reasoning may involve the use of compiled knowl-
edge or implicit memory, i.e., for the most part unconscious
(Reder and Schunn, 1996).

The details of the problem-solving approach are often de-
scribed in terms of the hypothetical–deductive learning cy-
cle where explanations of phenomena are investigated and
refined.1 This cycle is derived from a late stage of intellec-
tual development characterized by students beginning to en-
gage in combinatorial thinking, identification and control of
variables, proportional thinking, probabilistic thinking, and
correlational thinking. From a cognitive perspective, situa-
tions requiring hypothetical-deductive thought often involve
a starting condition, a goal condition, and resources to tran-
sit between these two cognitive states. In most situations this
is an iterative process where intermediate goals (hypotheses)
are confirmed/rejected based on the latest information avail-
able. If a student were pursuing a particular hypothesis or
line of reasoning, the goal of acquiring additional informa-
tion would be to increase the confidence in the validity of this
reasoning chain. Conflicting data, if obtained, would instead

1For an historical perspective on learning cycles, see Lawson (1995,
pp. 155–169).

decrease the confidence in the current hypothesis and result
in the initiation of a modified search of the problem space.

An important aspect of this model is that students engaged
in such activities continually select and revise strategies to
optimize the outcomes. Strategies, whether successful or not,
are aggregates of multiple cognitive processes including com-
prehension of the material, search for other relevant informa-
tion, evaluation of the quality of the information, drawing
of appropriate inferences from the information, and use of
self-regulation processes that help keep the student on track.
Documentation of student strategies at various levels of de-
tail therefore not only can provide evidence of a student’s
changing understanding of the task, but also can provide ex-
perimental evidence of the relative contribution of different
cognitive processes to the strategy. Strategies used by stu-
dents can then become a phenotype, or a proxy so to speak,
of the working state of a student’s knowledge.

The theoretical design the IMMEX Project uses for inves-
tigating students’ selection and use of strategies during sci-
entific problem solving is based on extensive work by others
(VanLehn, 1996; Schuun et al., 2001; Haider and Frensch, 1996)
and can be organized around the following principles.
� Principle 1: Each individual selects the best strategy for

them on a particular problem and individuals might vary
because of learning in the domain and/or process parame-
ter differences.

� Principle 2: People adapt strategies to changing rates of
success.

� Principle 3: Paths of strategy development emerge as stu-
dents gain experience.

� Principle 4: Improvement in performance is accompa-
nied by an increase in speed and a reduction in the data
processed.

THE IMMEX PROBLEM-SOLVING
ENVIRONMENT

Given the complexity of strategy selection and use in a
problem-solving environment, digital technologies, when
appropriately embedded within the context of a discipline
and a curriculum, could be useful for documenting student
strategies and for using this information to accelerate student
achievement. However, the benefits of technology will not be
maximized without a theoretical framework(s) around which
to design and develop cases. In this article we describe the
design, implementation, and validation constructs associated
with an on-line problem-solving software system termed
IMMEX. For the past 12 years, the IMMEX Project at UCLA
has been developing technologies around the broad model
of problem solving to probe the development of student un-
derstanding in multiple domains (Stevens, 1991; Stevens and
Najafi, 1993; Palacio-Cayetano et al., 1999; Underdahl et al.,
2001). While originally designed for Intranet delivery, IMMEX
cases are now delivered via the Internet (IMMEX, 2003).

The goals of the project have been to
� create a software development environment of the

hypothetical–deductive learning cycle,
� create an analytical environment for documenting the for-

mulation and use of strategies, and
� design implementation environments to document student

learning with time.
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IMMEX problem solving follows a model of scientific inquiry
(Olson and Loucks-Horsley, 2000) and case-based reasoning
(Kolodner, 1993) where students are expected to frame a prob-
lem from a descriptive scenario, judge what information is
relevant, plan a search strategy of the problem space, gather
information, and eventually reach a decision that demon-
strates understanding. The software was originally designed
for medical diagnosis simulations for medical students, a
domain that is rich in problem-solving and deductive rea-
soning (Elstein, 1993). The development of rapid authoring
tools along with an intensive program of outreach and profes-
sional development, however, has extended the usefulness of
IMMEX to elementary, middle, and high schools and to
the preservice teacher training curriculum (Palacio-Cayetano
et al., 2002).

Students solve IMMEX cases by formulating hypothetical
answers, accessing as much information as they feel neces-
sary to test such answers, and then proposing a solution to
the problem by selecting an answer from a list of possible
answers or by typing in their solution. As students proceed
through IMMEX cases, the software records a student’s ev-
ery step as he or she attempts to solve each case. This feature
allows for both real-time and off-line analysis of how stu-
dents solve a particular case, as well as how student abil-
ity changes over time (Stevens, 1991; Stevens et al., 1996;
Vendlinski and Stevens, 2002). Currently over 100 problem
sets exist in science for middle school to medical school curric-
ula, and over the past 3 years there have been 140,000 student
performances.

A Sample IMMEX Case
The sample IMMEX case highlighted in this study is a genet-
ics case involving uncertain parenthood. “True Roots” was
designed and created by a team of biology teachers and uni-
versity faculty to assess student understanding of genetics.
In the problem posed, students are introduced to Leucine,
who fears that she is a victim of “baby swapping” at birth
and begins to conduct a genetic investigation to discover
which of five sets of possible parents are truly hers. The stu-
dents can order tests for blood type, DNA restriction map-
ping, karyotype, fingerprints, and pedigree charts for both
Leucine and each set of parents. For students new to this pro-
cess, the IMMEX environment also provides students with
library resource guides and expert advice enabling students
to confirm or reevaluate their interpretation. But because the
IMMEX menu structure keeps score to encourage efficiency,
use of these items requires decisions that force students to
weigh cost versus benefit, decisions that are hotly debated
when students work these cases in teams trying to achieve a
high score. Using their understanding of inheritance, students
include/exclude sets of parents based upon the possibility
and impossibility of genetic information being transferred to
Leucine and begin to arrive at a solution (Palacio-Cayetano,
1997). There is no predetermined strategy that the students
must follow and there are many pathways that students can—
and do—take to arrive at the answer. This freedom to navi-
gate information and to form a strategy provides the teacher
a great deal of information about student’s problem-solving
strengths and weaknesses and about their understanding,
or lack of, content information (Vendlinski and Stevens,
2001).

Although True Roots was designed for a high school–level
understanding of basic genetics principles, it has also been
used extensively in the community college and university en-
vironments and we have recorded nearly 8,000 performances
from these groups. The overall True Roots solution frequency
in this dataset is 75.6%.

IMMEX DESIGN FRAMEWORKS

There are two broad design frameworks for the IMMEX
problem-solving environment: (1) the design of the problem
space and (2) the accumulation, aggregation, and reporting of
student performance data. In this regard, our development
approach follows the general model of Evidence Centered
Design (Mislevy et al., 1999a, 1999b), where the models of the
knowledge and skills that we hope students will learn/have
learned (student models) are mapped onto behaviors and per-
formance indicators that provide evidence of these constructs
(evidence models), which are then designed into tasks that
will provide that evidence (task models). We have stream-
lined this process by involving teachers in all stages of the
project including design, development, implementation, and
analysis (Palacio-Cayetano et al., 1999; Underdahl et al., 2001).

We are particularly interested in how students develop
and use strategies while engaged in problem solving (student
model) and we use their sequence of actions while engaged
in on-line problem solving (task model) as the evidence from
which to infer strategic skill development (evidence model).
The problem space itself is constituted by the items and con-
structs available to the students to navigate with, as well as
constraints, such as cost or risks that shape the outcomes that
can be expected.

Problem Space Design Framework
There are five specifications that have been used for designing
the IMMEX problem spaces. These specifications are crafted
in response to the first principle of strategy selection: Each in-
dividual selects the best strategy for them on a particular problem
and individuals might vary because of learning in the domain and/or
process parameter differences. This principle suggests that there
is significant strategic information in the way a student first
perceives and approaches a problem and a problem space,
and this may reflect prior knowledge/experience in the do-
main. To help ensure that meaningful strategic information
is captured from the initial and subsequent encounters, we
consider (1) the embedded content, (2) the composition of the
problem space, (3) the cognitive complexity of the problems,
(4) the provision for repeat experiences, and (5) the constraints
placed on the problem space.

1. Document the Embedded Content. During the initial de-
sign and during the development cycle, the problem spaces
and the cases are examined to ensure that the content being
presented is appropriate for the intended audience and that
the cases are valid and align with relevant instructional and
content standards. Teams of teachers, content experts, and ed-
ucators perform these mappings, often with the input from
students, and consider the following issues. First, the con-
tent contained in the problem space must be accurate. Next,
the scenarios should be real ones where students can become

164 Cell Biology Education



5859F/CBE (Cell Biology Education) 03-02-0006 03-02-0006.xml September 3, 2003 17:33

Designing Problem-Solving Simulations

familiar with the discipline and with possible future job op-
tions. This also allows students to practice decision making
in a low-stakes environment prior to an internship or labo-
ratory rotation experience. Third, the data must be causally
consistent within the cases in that the different items point to
the same result of the case. When problem spaces approach
or exceed 75 items this can become challenging. Finally, in
science problem sets, each menu item on its own often has
inherent value, i.e., the molecular weight of a compound, a
method for investigating molecular signaling, etc., and it is
important that these are contemporary and that background
information is provided in the case for students who are less
familiar with this information. These mappings are being for-
malized into on-line searchable XML documents that provide
the detailed dimensions of content, standards alignment, and
cognitive skills within and across the discipline. The goal of
this documentation is to supplement the Dublin Core (2001)
and Gateway to Educational Materials metalanguage quali-
fiers with discipline-specific hierarchies of subject headings to
create descriptive XML documents that can satisfy the needs
of teachers and researchers alike. An example is available on-
line (IMMEX Problem Set Descriptors, 2003).

2. Construct Challenging and Varied Problem Spaces. This
specification addresses the need to accommodate many pos-
sible strategic approaches and this is accomplished through
the selection of the quantity and quality of items that con-
stitute and structure the problem space (or search space). To
avoid linear solutions/thinking and not to limit the diver-
sity of strategies, the problem space should contain many
items (30–100). Within this problem space sufficient informa-
tion should also be present such as library resources, expert
opinions, hints, etc., to support students with weaker content

Figure 1. Template representation of the True Roots problem space.

knowledge and to keep them engaged. To promote integra-
tive thinking, no one item should provide an unambiguous
solution to the case, and if at all possible, most of the infor-
mation a student would need to solve the problem should be
present in the problem space.

As an example, the True Roots problem space contains 54
data items (available as buttons) that students view in any
order they feel appropriate and that contain the information
needed to solve the case. Visual representations, or templates,
of the problem space can be created in IMMEX where related
conceptual items can be grouped together and color-coded
(Figure 1).

For this problem set the menu items are arranged by color-
code into (1) reference information, which helps students to de-
fine and interpret concepts and results (upper right); (2) advice
from “experts,” which is neutral in content but may provide
contextual information (middle right); and (3) research data,
which provide the necessary interpretative data (lower half).
These research items consist of different sets of laboratory
results from blood typing, restriction fragment length poly-
morphism (RFLP; commonly known as DNA fingerprinting),
and chromosomal karyotype tests, as well as pedigree charts
for earlobe attachment inheritance and Punnett squares for
analyzing the inheritance of fingerprints.

Efficient student performance and progress in this environ-
ment requires that students

� develop an elimination strategy where Leucine is tested for
a trait (such as blood typing) and then different parents are
eliminated via discordant parent results;

� reduce their use of redundant data, i.e., if parent set 1
has been eliminated by RFLP, they should not retest them;
and
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� Optimize their strategies on repeat performances of similar
cases by reducing reliance on library material, expert help,
etc.

This progression is not intuitive for many students who ap-
proach these cases in many different ways and take different
trajectories toward becoming efficient problem solvers.

3. Provide and Document Cognitive Complexity. The previ-
ous two specifications help developers make a “best guess”
about the construction of a particular problem space. Once
student performance data are obtained, it is then possible to
derive a more refined perspective through research studies.

Given problem spaces of a sufficient size and scope, prob-
lem solving within this environment should require an inte-
gration of domain knowledge and cognitive process skills,
and research studies have shown that IMMEX provides a
rich cognitive environment for problem solving. For instance,
in a study with 150 undergraduate students, concurrent ver-
bal protocol analysis has indicated that over 90% of student
verbalizations while solving a typical IMMEX case could be
mapped into 12 distinct cognitive and metacognitive pro-
cesses including the need for accurate cause–effect inferences,
accurate evaluation of information, clarification of gaps in
knowledge, monitoring of problem solving behavior, and so
forth (Chung et al., 2002). As expected, outside evaluators
have also documented that students and teachers perceive
the exploratory environment of problem sets like True Roots
more as a tool for reasoning and integrating information than
as a system for learning new facts (Chen et al., 2001).

4. Provide Repeat Problem-Solving Experiences. The second
and third principles of strategy selection and use also sug-
gest that, with time, either within the first simulation, or
through multiple performances of parallel tasks, students
should be able to learn which strategies are “best” and mod-
ify their initial approaches as needed. This implies that op-
portunities should be available for students to improve and
that these changes (or lack thereof) should be documented
to show when, and under what conditions, these changes
occur.

IMMEX addresses this need by designing problem sets that
contain between 5 and 50 different instances (or clones) of
a problem that share the same problem space but contain
different solutions and different data. These cases can be se-
quenced by the teachers either randomly or by difficulty, the
level being established from prior performances and Item
Response Theory analysis. Eventually cases may be auto-
matically staged in response to the current strategic model
of the student obtained from prior problem performances.
These parallel forms have the further advantages of providing
multiple perspectives of a problem space and reducing dis-
cussion among students during learning and/or assessment
episodes.

The provision of repeat problem-solving experiences can
also be extended to a larger design principle that ad-
dresses the construction of integrated curricula. The literature
suggests the importance of prolonged time/experience with
scientific reasoning activities for maximum effect on stu-
dent performance. To provide such year-round coverage of
problem-solving scenarios, we have begun to develop inte-
grated curricular problem sets in chemistry, molecular biol-
ogy, and biology, each with six to eight different problem sets

(each containing 20+ cases). With these problem-solving cur-
ricula students have engaged in over 100 problem-solving
experiences over the course of 9 months.

5. Constrain and Extend the Problem Space. For strategic im-
provement, some measure(s) of success must be a component
of the task (Strategic Principle 2), and while such measures
can be diverse (a “score,” a “solution,” successfully stabiliz-
ing a simulation, submitting an essay to be scored, personal
feedback, etc.), some should be included. These components
fall into the category of constraints and can have powerful
influences on student’s strategies. Constraints are perhaps
the least understood of the design specifications. An over-
all design feature, however, is not to constrain the cases so
much, either through hints or by limiting the scope of the
question asked, so that the exercise becomes directed and
linear.

A common constraint that helps focus student attention on
each decision during the performance is to include a cost (or
risk or time penalty) for each item requested or for each in-
correct “guess” at a solution. A second constraint is the time
provided to solve a case and this can be naturally encour-
aged through a 1- to 2-h course or lab format or can be more
structured (i.e., solve three cases in 60 min). Students can also
work individually on cases or collaboratively in groups. Evi-
dence from Case et al. (2002) suggests that the group environ-
ment not only influences the strategies that students use, but
also can jog students out of persistent poor strategies. Such
constraints can help shape the environment for the students,
keeping them engaged and motivated to pursue additional
cases (Sedighian, 1997).

Finally it is possible to extend the problems by ending the
case in different ways. In most IMMEX cases students choose
an answer from a list. On more sociologically based IMMEX
problem spaces, the cases end with the students submitting an
on-line essay to a question posed in the prologue that is also
scored on-line by the faculty (Palacio-Cayetano et al., 2002).

Data Accumulation and Aggregation Specifications
Data collection, aggregation, and reporting should serve the
needs of different audiences and link to existing student
achievement metrics. IMMEX provides detailed performance
data to students and teachers at different levels and in differ-
ent formats. These reports provide (a) immediate on-line feed-
back of class and student performance that can link problem-
solving efficiency and proficiency to other metrics (AP scores,
course grades); (b) visual maps of students’ search of the prob-
lem space that reveal problem-solving approaches and strate-
gic changes over time; and (c) research-based predictive mod-
els of classroom progress that allow inferences to be made
about student progress, which can then suggest points of in-
tervention or allow comparison of problem-solving progress
across diverse educational settings.

1. Efficiency and Proficiency Specifications. Student
problem-solving proficiency is reflected in the number
of cases that students perform and correctly solve, while
efficiency takes into account the time spent on the case(s)
and the resulting scores. On-line, teachers can view graphs
of these metrics that plot the number of problems completed
versus the number solved and then drill down to look at this
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ratio for individual students. These further hyperlink to indi-
vidual performances where student progress throughout the
course is documented. Examples of these reporting formats
can be found at IMMEX (http://www.immex.ucla.edu).

These reporting features are therefore useful for provid-
ing a quick snapshot of student performance. Often, how-
ever, teachers wish to dig deeper into the foundations of
their students thinking and the data reporting features of
the strategic specifications equip teachers with the tools to
do so.

2. Strategic Specifications. A schema for the collection, aggre-
gation, and reporting of strategic performance data is shown
in Figure 2. The data collection begins with the recording of
each item selected (Figure 2, I) by students as they navigate the
problem space in response to the problem posed. While hu-
mans perform many parallel mental operations, our explicit
actions are mostly serial and deliberate. The microinforma-
tion of students’ individual choices during problem solving
would therefore be expected to contain strategic information,
and in fact, when combined with time latencies, this informa-
tion also provides some information about the distribution of
effort during the problem-solving episode. For instance, Paek
(2002) demonstrated that on a series of IMMEX mathematics
problems, students solving these cases spent 35% more time

Figure 2. IMMEX performance reporting constructs.

on the first step of the problem than students who missed
the problems. This is analogous to the finding that experts
spend proportionally more time in framing a problem than
do novices (Baxter and Glaser, 1997).

While a single student action during the performance is
occasionally informative in IMMEX problem solving (such as
“guessing” when a student chooses to solve a case as an ini-
tial move and without viewing any information), experience
suggests that a sequence of actions is more consistently re-
vealing. These sequences are seldom random, and while stu-
dents may eventually look at all the information contained
in a problem space, they will often view menu items se-
quentially along pathways that share some common features
rather than following entirely haphazard approaches. We be-
lieve that the paths that students employ while completing
an IMMEX case provide evidence of a (complex) strategy,
which we define as a sequence of steps needed to identify,
interpret, and use appropriate and necessary facts to reach a
logical conclusion or to eliminate or discount other reasonable
conclusions.

This sequence and search information is captured in the
completed performance (Figure 2, II), which is the next level
of data aggregation. Here, students have searched the prob-
lem space, made a decision(s) about the embedded prob-
lem, and received feedback as to whether or not they were
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successful. To help make these complex data understandable
to teachers and students, we generate visual maps of their
search through each problem space. This search path map-
ping software (Stevens, 1991) displays each data item selected
by the student (represented by the color-coded rectangles ar-
ranged by content, concepts, or type), the sequence in which
the information was selected (indicated by the line traveling
from the left corner to the center of the rectangle), and the
time spent on each concept (see Figure 3).

Because these maps are information-rich they can be used
in multiple ways. For researchers and teachers who are in-
volved in authoring the case, these maps provide a validity
check to ensure that the case is performing as intended. These
maps can also be provided to students to encourage reflec-
tion and support their own analysis of their performance and
progress (Lawton, 1998). Classroom interventions are further
suggested by comparing the strategies used by the students
who solved or missed the case. Finally, search path maps can
be important for examining the more metacognitive aspects
of problem solving such as persistence, elimination of alterna-
tive hypotheses, efficiency, confidence, and certainty. Profes-

Figure 3. Sample search path map. The performance of student 00STAV11 has been overlaid on the True Roots template with lines connecting
the sequence of test selection. The lines go from the upper left-hand corner of the “from” test to the lower center of the “to” test. Items not
selected are shown in transparent gray. At the top are the overall statistics of the case performance. At the bottom is a time line where the colors
of the squares link to the colors of the items selected and the width of each rectangle is proportional to the time spent on that item. These maps
are immediately available to teachers and students at the completion of a problem.

sional development activities for faculty and teachers center
around the use of search path mapping techniques for these
types of educational interventions.

DYNAMICS OF STRATEGY CHOICE
AND CHANGE

Close examination of many of these maps has revealed that
the use of different strategies (Figure 2, III) by students when
solving a series of True Roots cases is a dynamic process and
that there is extensive restructuring of the strategic approach
as experience is developed. While this was originally identi-
fied by examination of hundreds of search path maps, over the
past years we have used artificial neural technologies to be-
gin to automate this process. Details of these techniques have
been reported previously (Stevens and Najafi, 1991; Hurst
et al., 1999; Vendlinski and Stevens, 2002) and are outside the
scope of this article.

For the True Roots problem set, we have studied these
dynamics in a series of controlled experiments involving
community college and university students. Using over 500

168 Cell Biology Education



5859F/CBE (Cell Biology Education) 03-02-0006 03-02-0006.xml September 3, 2003 17:33

Designing Problem-Solving Simulations

Table 1. “True Roots” strategy type descriptions

Strategy type Description

Prolific Categorized by a thorough search of the
problem space including the five relevant
concept/data domains as well as resource
and conjecture menu items

Redundant Shows a reduction in the use of resource and
conjecture items but maintains a
comprehensive search of the data domains.
Reordering tests for parents who have
already been eliminated by prior testing is
also characteristic of this type of search

Efficient Depicts searches that access only that
information needed to solve the case, and do
not order tests for parents who have been
eliminated through prior test selections

Limited/guessing Demonstrates premature closure of the problem
as indicated by not gathering enough
information to solve the case conclusively

performances from these students, we have aggregated the
most common strategies into four main categories or strategy
types (Figure 2, IV), which appear to be the most representative
of the cognitive requirements of the task. These are defined
by the criteria in Table 1. The dynamic changes in the use of
these strategies as students perform the five cases in the True
Roots problem sets are detailed below.

Prolific Strategies
Typically, students who are being introduced into a new
IMMEX problem-solving environment begin with a broad in-
vestigation of relevant and irrelevant information coupled
with the recognition and/or learning of key concepts. It is
not unusual to see students use this strategy on the first case
of a problem set as they are exploring and defining the prob-
lem space, collectively called framing. However, if learning
is occurring, then we would expect that with practice on
multiple cases, task-relevant items will be separated from
task-redundant information and the most relevant aspects of
the task will be focused on (Haider and Frensch, 1996). This
should result in the abandonment of the prolific strategy, an
increase in the solve rate, and a decrease in the amount of
time spent per case. As shown in Figure 4 most students be-
gan with a prolific strategy type, and on subsequent cases
the use of this strategy type declined. By the fourth case, the
students still using this strategy were particularly at risk for
missing the solution.

Redundant Strategy Type
When students can distinguish relevant and irrelevant infor-
mation, they begin selectively visiting the content domains
they are most comfortable with to eliminate possible par-
ents. In this regard, it is not unusual for students to start
to develop favorite sets of test items, such as blood typing
or fingerprinting, that they will consistently embed into their

strategies. The selection of a favorite repertoire of tests is com-
plex and, from the verbal protocols, is at least in part influ-
enced by familiarity with the terms from prior experiences
(TV, newspapers, science courses) and/or by the format in
which the data are displayed. For instance, pattern match-
ing between RFLP digests seems easier for some students
than does antibody agglutination, which has more complex
fundamentals.

The redundant strategy type appears to be an intermediate
stage in the development of efficient strategies in that the stu-
dent understands the need for comparing the child Leucine
with the different parents across a particular test to eliminate
possible parents. The strategy is not optimized, however, as
the same parents are often retested multiple times with dif-
ferent laboratory tests even though they should have been
eliminated.

As shown in Figure 5, the redundant strategy was the sec-
ond most frequent starting strategy and students using it ini-
tially had a relatively poor success rate. The frequency of use
of this strategy increased on the second case (with a corre-
sponding decrease in the prolific strategy) and then progres-
sively declined.

Efficient Strategy Type
The solve rate for the efficient strategy type is high (80%) and
consistent (Figure 6). Few students in this test set understood
the problem space well enough on the first case to employ
an efficient strategy. The use of this strategy slowly increased
with each case attempt, peaking at case 4.

Limited Strategy Type
Students who are attempting to solve the case with insuf-
ficient information (at least on the early problem sets) are
grouped into the limited strategy type (Figure 7). The fre-
quency of use of this strategy is highly implementation-
site–dependent, with some high school classes showing a
preponderance of guessing strategies. In this tightly con-
trolled experimental situation, however, few of these more
advanced students initially used a limited strategy. Paradox-
ically, the use of this strategy increased on subsequent cases
and was accompanied by a high solution frequency. Retro-
spective analysis of their verbal protocols indicated that some
of the students were going outside the scope of the problem
space and learning a higher strategy (i.e., knowing there are
only five parents and eliminating those they had experienced
in prior cases). Following this result, we suggest that a prob-
lem set contain a minimum of 10+ cases to restrict the use of
this particular strategy. The decrease in all the numbers on the
fifth case is due to students not completing the five problem
sets in the allotted time.

An example of such strategic transitions for a single high-
school student is shown in a search path map format in
Figure 8. Here a student on the first True Roots case performed
a thorough exploration of the problem, spent 65 min on it, and
did not solve it correctly. Several days later, the student spent
29 min on the second case and, at this time, had discarded
the use of library resources. While laboratory data were be-
ing accessed, some of them were redundant. By the third case
the student’s strategy had become efficient, requiring only
6.5 min to solve the case.
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VALIDATING THE CONSTRUCTS OF
STRATEGIES AND STRATEGY TYPES

Previous validation studies (Kanowith-Klein et al., 1998;
Palacio-Cayetano, 1998; Chung et al., 2002) have shown that
IMMEX in general and True Roots in particular are

� cognitively complex,
� engaging and motivating for students and teachers, and
� capable of being implemented in a wide number of disci-

plines and settings.

We have also shown that it is possible to create cases with the
same level of difficulty (as measured by Item Response The-
ory) as well as with predictable levels of difficulty (Vendlinski
and Stevens, 2002).

The following studies were conducted to examine whether
the True Roots problem set behaved in a predictable way
when developed and analyzed according to the above frame-
work. Our hypotheses were (1) that students of different abil-
ities would approach and solve these cases with strategies
consistent with these abilities, (2) that students with higher
measures of scientific reasoning would employ more effective
strategies, and (3) that students who are developing effective
strategies would show greater improvement in speed with
practice. These studies address the concurrent validity (the
ability to distinguish between groups it should theoretically
be able to distinguish between) and convergent validity (the
degree to which the construct converged on other constructs).

Relating Ability to Problem-Solving
Strategic Approaches
The student populations that could potentially provide us
with varying degrees of ability were recruited from a uni-
versity freshman class (n = 94) and entering students from
a nearby community college (n = 105). We predicted that by
tapping two different levels of the institutionalized selection
process, we would gain the maximum variability within the
17- to 18-year-old range to link to the strategic trends that
emerge along this spectrum.

The ability of the two groups of students was also signifi-
cantly different on the task itself: the university students were
above (82%) the average solution frequency of the 8,000+
performances of True Roots in our database (76%), while the
community-college students were below this average, at 67%
(p < .001). Differences were also seen in the way that the stu-
dents approached the cases. The community-college students
accessed significantly more resource (p < .001) and conjecture
(p < .001) items than did the university-level students.

A more detailed indicator of ability level differences be-
tween the community-college level and the university par-
ticipants involved the linkage between what students said
during the concurrent verbalization and what they did si-
multaneously on the IMMEX task. The community-college
students used more “simple statements”—repeating of text
from the item ordered indicative of nonanalysis—(p < .001),
had fewer “correct cause and effect” statements (p = .014),
were less able to evaluate information correctly (p = .003),
and asked fewer questions during decision making, which
indicates lack of hypothesis building (p = .026). Moreover,
the university students were more likely to make state-
ments that clarified gaps in knowledge (p = .012) and ar-

Table 2. Strategy type use by community-college and university
students: Strategy type by ability level

Ability level

Strategy type University Community college Total

Prolific
Count 58 98 156
Expected count 73.8 82.2 156.0

Redundant
Count 91 105 196
Expected count 92.7 103.3 196.0

Efficient
Count 218 181 399
Expected count 188.7 210.3 399.0

Limited
Count 34 63 97
Expected count 45.9 51.1 97.0

Total
Count 401 447 848
Expected count 401.0 447.0 848.0

ticulate judgments of information relevancy (p < .001), while
the community-college students verbalized more awareness
of task goals and their progress—or lack thereof—toward
achieving those goals (p < .001).

While both university and community-college students
used all four strategy types defined in Table 1 across the five
cases, the university students used a higher proportion of Ef-
ficient strategies, while the community college students used
more Prolific and Limited strategy types (Table 2) (Pearson
χ2 = 44.2, p < .001).

The dynamic changes in the use of prolific and efficient
strategies, which showed the greatest disparity between the
community-college and the university students, were then
examined across the five cases. As shown in Figure 9, the
university students appeared to be a step ahead of the
community-college students in the abandonment of prolific

Figure 9. Dynamics of prolific and efficient strategy type use by
community-college (CC) and university (U) students. The number of
students using the prolific and efficient strategies is plotted vs. the
case performed.
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Table 3. Strategy type use by students with different CTSR scores:
University and community-college strategy types by CTSR scores

Strategy type 100–80 79–60 59–50 49–30 29–0 Total

Prolific
Count 31 46 31 34 26 168
Expected count 40.1 51.2 29.2 29.4 17.9 168.0

Redundant
Count 24 48 20 28 21 141
Expected count 33.7 43.0 24.5 24.7 15.1 141.0

Efficient
Count 129 140 78 61 26 434
Expected count 103.7 132.3 75.5 76.1 46.4 434.0

Limited
Count 15 20 16 23 16 90
Expected count 21.5 27.4 15.7 15.8 9.6 90.0

Total
Count 199 254 145 146 89 833
Expected count 199.0 254.0 145.0 146.0 89.0 833.0

and redundant strategies and between one and two steps in
the adoption of efficient strategies.

To provide additional evidence of the difference in student
ability, both student populations completed the Classroom
Test of Scientific Reasoning (CTSR) (Lawson, 2000) as an in-
dependent measure of scientific reasoning ability level. The
modified version of the CTSR (22 multiple-choice items) is
designed to assess a student’s ability to separate variables,
conserve weight and volume, and use proportional logic as
well as combinational reasoning and correlations. The univer-
sity students had a mean score of 71%, while the community-
college students had a mean score of 49%, and this disparity
was significant (t = 7.844, p < .001).

Next, the students’ use of different strategy types was mea-
sured as a function of their CTSR scores. As shown below,
those students who scored on the lower end of the CTSR used
more Prolific, Redundant, and Limited strategies, while those
students who scored on the upper end of the CTSR used more
Efficient strategies than expected (Table 3).

Figure 10. Problem solution times as a function of practice. The mean solution time for a group of 15 students who solved at least four True
Roots cases (red) and a group that missed at least four cases (blue) is plotted vs. the case number.

Strategy Improvement Reduces Performance Time
A final hypothesis was that as students begin to develop suc-
cessful strategies the time needed to solve each subsequent
case should decrease. This hypothesis derives from the power
law of practice as it relates to the use of strategies on complex
tasks (Delaney et al., 1998). Practice on a task almost always
improves performance, both by reducing the number of er-
rors and by reducing the time to perform the task. With True
Roots, the reduction of errors is reflected in the refinement of
the strategies toward more efficient ones. This should also be
reflected in a decrease in the time needed to solve the case.

The performance times of a group of 15 community-college
students that solved all of their True Roots cases and showed
strategic improvement and a group of 15 students that missed
at least three of the five cases are shown in Figure 10. The high-
solve group spent more time on the first case than the low-
solve group and then showed a more rapid (p < .01) decrease
in the solution time on subsequent cases.

Combined, these data also suggest that the search path
mapping and artificial neural network analytic tools embed-
ded in the IMMEX system can discern differences in the level
of expertise of the user. This, in fact, has been confirmed in the
domain of medical immunology, where performances of ex-
pert clinicians could be distinguished from those of medical
students (Stevens et al., 1996).

DISCUSSION

Linking the IMMEX Design Environment with
Other Multimedia Frameworks
The previous sections have described design frameworks for
investigating student strategies and have provided valida-
tion evidence. Similar analyses have been/are being con-
ducted for high-school and university chemistry problem sets
(Vendlinski and Stevens, 2002) and middle-school science
and medical education (Casillas et al., 1999) applications. We
therefore believe that the principles can be generalized to
many, if not most, of the 100+ existing IMMEX problem sets.
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In this final section we situate the IMMEX design frame-
work within the context of other frameworks that can, and do,
influence the strategies that students use while engaged in on-
line learning or assessment. Such frameworks include the in-
structional presentation modes and issues of implementation
(classroom vs. homework assignments, individual vs. group
performance, and teaching and learning vs. assessment).

Instructional Presentation Modes. One complementary
topic is the theory of multimedia learning that addresses dif-
ferent instructional presentation modes. This theory, elabo-
rated by Mayer and associates (Mayer, 2000; Mayer et al.,
2001) and others (Swiller and Chandler, 1994), is based around
six different principles that relate to the most effective ap-
proaches for presenting material through verbal and nonver-
bal modes. These results suggest that students learn better
(1) when verbal information is presented verbally as opposed
to on-screen text (Modality Principle), (2) when they do not
need to split their attention between multiple sources of infor-
mation (Split Attention Principle), (3) when visual and spoken
materials are temporally synchronized (Temporal Contiguity
Principle), (4) when on-screen text and visual materials are
physically integrated (Spatial Contiguity Principle), (5) when
students are simultaneously presented animation and narra-
tion then animation, narration, and text (Redundancy Prin-
ciple), and (6) when extraneous material is excluded rather
than included in the multimedia explanations (Coherence
Principle).

Currently most IMMEX simulations present data in a more
static and concise format than those of Mayer et al. and we
have not explored the influence of these different factors
on student strategic approaches, although we would expect
them to be significant. One approach we are exploring is to
begin to replace static data items with more dynamic applets
where students need to manipulate variables in a dynamic
model in order to derive a piece of information relating to the
problem. Nevertheless, irrespective of the presentation for-
mat(s) of the investigative data, for the investigation of stu-
dent strategies each item should require/help each student
(1) to understand the data being presented and (2) to relate
these new data to information previously acquired and to the
current hypothesis.

The above theory of Mayer et al. does raise the questions
of how much practice is required to “master” the IMMEX in-
terface and how much of student improvement is based on
simply learning to navigate this interface. The interface used
in IMMEX, where there are cascading menus of potential data
items, has undergone steady refinement since the early 1990s,
when the program was Microsoft Windows–based. The con-
sistency of the problem presentation has had the advantage
that when students engage in year-round problem solving,
with multiple problem sets (i.e., some in chemistry, some in
biology, etc.), they do not need to learn a new interface each
time, and they can more effectively focus their efforts on the
problem at hand. But what about students’ first use of IM-
MEX? Currently students beginning at Grade 6 are perform-
ing the cases and they navigate the menu structure with lit-
tle difficulty, and repeated student surveys across a range of
grades and disciplines seldom mention user interface issues.
More concretely, during two separate verbal protocol studies
with nearly 100 students each, students were given the op-
portunity to practice with the interface on a middle-school

science problem until they felt comfortable before perform-
ing a series of True Roots cases. Most students in both of these
groups felt that they were comfortable with the interface after
the performance of a single practice case. Furthermore, within
the verbal protocols, comments regarding the user interface
were rare (<1% of utterances) (Chung et al., 2003).

Implementation Issues. There are also the implementation is-
sues of infrastructure and teacher preparation that can influ-
ence the distribution of strategies that students use on the
IMMEX simulations. Both of these are complex issues. Re-
garding infrastructure, data for validating this study were ob-
tained from controlled conditions conducted by researchers
and, while restricted to a 1-h time frame, nevertheless was
administered in a research setting with a high-speed Inter-
net connection, conditions not often found in most class-
rooms or in curricula where student contact time is lim-
ited. In response to these constraints, users of IMMEX are
exploring different implementation modalities. For instance,
some faculty and teachers have assigned the cases as home-
work rather than use classroom time. This has provided stu-
dents more problem-solving opportunities (up to 100 over
the course of a year) and the on-line data reporting tools have
let teachers follow the progress of different classes and stu-
dents on-line (Stevens et al., 1999). Other teachers have be-
gun to explore the challenges of using these cases for stu-
dent assessment or have explored the effects of collaborative
learning.

We have examined the performances of hundreds of the
8,000+ field-based student strategies of True Roots using the
same rubrics and artificial neural network clusters developed
for this study and have obtained evidence regarding indi-
vidual student strategic performance and progress consistent
with the research-based results presented here. What is more
noteworthy, however, occurs at the aggregate classroom level,
where there is significant variance of strategy usage across
different schools and classrooms. At one extreme there are
classrooms that show a distribution of strategy use similar to
that reported here. At the other extreme there are classrooms
where the majority of the students use an unproductive lim-
ited approach. These results suggest implementation effects
reflecting infrastructure and/or teacher preparation differ-
ences (Palacio-Cayetano et al., in preparation).

Finally, while technology infrastructures continue to im-
prove (and be adequate for the more simple IMMEX presen-
tation formats), the preparation required by both faculty and
students for the implementation of these technologies and
the analysis of student performance is not yet formalized.
This is a broad topic, impossible to discuss more than sum-
marily in this article, and in fact, an entire program of the
U.S. Department of Education has been devoted to training
the educational community on these issues (PT3; Preparing
Tomorrow’s Teachers to Use Technology). This has resulted
in a comprehensive series of standards and guiding imple-
mentation frameworks, many of which can be found on-line
(International Society for Technology in Education, 2003).

Accessing Materials
IMMEX problem sets can be accessed by teachers and
educators from the IMMEX Project’s home page (http://
www.immex.ucla.edu). To begin, users should select the link
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“New User Registration,” which will generate a unique ID
and provide access to dozens of sample cases including True
Roots. Once cases are identified for classroom use, faculty can
request to stage a class by selecting the link “Staging Request
Form.” Here, the faculty can enter the name of the course, the
number of students, dates the cases should be available, etc.

Detailed instructions for accessing and using the data re-
porting tools can be found at http://www.immex.ucla.edu/
IMMEXMainFrame.htm. Additional manuscripts and back-
ground information can be found at “Publications” at
http://www.immex.ucla.edu/ProjMainFrame.htm. There is
no charge for using the IMMEX cases.

ACKNOWLEDGMENTS

This work was supported in part by grants from the National Science
Foundation (NSF-ROLE 0231995, DUE Award 0126050, ESE 9453918),
the PT3 Program of the U.S. Department of Education (Implementa-
tion Grant P342A-990532), and the Howard Hughes Medical Institute
Precollege Initiative. The author thanks Dr. Terry Vendlinski as well
as Jennifer Underdahl of IMMEX, Dr. Greg Chung and Linda DeVries
of CRESST, Dr. Melanie Cooper and Edward Case of Clemson, and
Dr. Marcia Sprang of Esperanza High School for their outstanding
collaborative efforts.

REFERENCES

Anderson, J.D. (1980). Cognitive Psychology and Its Implications, San
Francisco: W.H. Freeman.

Barrett, G.V., and Depinet, R.L. (1991). A reconsideration of testing for
competence rather than for intelligence. Am. Psychol. 46, 1012–1024.

Baxter, G.P., and Glaser, R. (1997). An Approach to Analyzing the Cog-
nitive Complexity of Science Performance Assessments, Los Angeles:
National Center for Research on Evaluation, Standards and Student
Testing (CRESST), Center for the Study of Evaluation, University of
California, Los Angeles.

Berry, D.C., and Broadbent, D.E. (1988). Interactive tasks and the
implicit-explicit distinction. Br. J. Psychol. 79, 251–272.

Case, E.L., Cooper, M., Stevens, R., and Vendlinski, T. (2002). Using
the IMMEX system to teach and assess problem solving in general
chemistry. ACS Annual Meeting Presentation, Orlando, FL. http://
www.acs.org/portal/PersonalScheduler/EventView.jsp?paper key=
200723&session key=34422.

Casillas, A.M., Clyman, S.G., Fan, Y.V., and Stevens, R.H. (1999). Ex-
ploring alternative models of complex patient management with ar-
tificial neural networks. Adv. Health Sci. Educ. 1, 1–19.

Chen, E., et al. (2001). How teachers use IMMEX in the classroom.
http://www.immex.ucla.edu/TopMenu/WhatsNew/EvaluationFor
Teachers.PDF.

Chung, G.R., de Vries, L.F., Cheak, A.M., Stevens, R.H., and Bew-
ley, W.L. (2002). Cognitive process validation of an online problem
solving assessment. Comput. Hum. Behav. 18, 669–684.

Delaney, P.F., Reder, L.M., Staszewski, J.J., and Ritter, F.E. (1998). The
Strategy-specific nature of improvement: The power law applies by
strategy within task. Psychol. Sci. 9, 1–7.

Dublin Core Qualifiers (2001). http://purl.org/dc/Gateway to Edu-
cational Materials (2001). http://www.geminfo.org/Workbench.

Elstein, A.S. (1993). Beyond multiple-choice questions and essays:
The need for a new way to assess clinical competence. Acad. Med.
68, 244–249.

Haider, H., and Frensch, P. (1996). The role of information reduction
in skill acquisition. Cognit. Psychol. 30, 304–337.

Hudson, J., Fivush, R., and Kuebli, J. (1992). Scripts and episodes:
The development of event memory. Appl. Cognit. Psychol. 6, 625–
636.

IMMEX Problem Set Descriptors (2003). http://www.immex.ucla.
edu/SubjectHeadingDocs/hazmat.htm.

IMMEX Project Web Site (2003). http://www.immex.ucla.edu.

International Society for Technology in Education (2003). Cen-
ter for Applied Research in Educational Technology (CARET).
http://caret.iste.org.

Johnson, M.A., and Lawson, A.E. (1999). What are the relative effects
of reasoning ability and prior knowledge on biology achievement in
expository and inquiry classes. J. Res. Sci. Teach. 35, 89–103.

Johnson-Laird, P.N. (1983). Mental Models, Cambridge, UK: Cam-
bridge University Press.

Kanowith-Klein, Burch, C., and Stevens, R. (1998). Sleuthing for sci-
ence. Natl. Staff Dev. Council J. Staff Dev. 19(3), 48–53.

Kolodner, J.L. (1993). Case-Based Reasoning. San Mateo, CA: Morgan
Kaufman.

Kolodner, J.L. (1997). Educational implications of analogy. A view
from case-based reasoning. Am. Psychol. 52, 57–66.

Krijik, J., and Haney, R. (1987). Proportional reasoning and achieve-
ment in high school chemistry. School Sci. Math. 70, 813–820.

Lawson, A.E. (1995). Science Teaching and the Development of Think-
ing. Belmont, CA: Wadsworth.

Lawson, A.E. (2000). Classroom test of scientific reasoning [multi-
ple choice version]. Based on the development and validation of the
classroom test of formal reasoning. J. Res. Sci. Teach. 15, 11–24.

Lawson, A.E., Clark, B., Cramer-Meldrum, E., Falconer, K.A., Sequist,
J.M., and Kwon, Y.-J. (2000). Development of scientific reasoning in
college biology: Do two levels of general hypothesis-testing skills
exist? J. Res. Sci. Teach. 37, 81–101.

Lawton, M. (1998). Making the most of assessments. Educa-
tion Week on the Web, October. http://www.edweek.org/sreports/
tc98/cs/cs9.htm.

Mayer, R.E., and Moreno, R. (2000). A learner-centered ap-
proach to multimedia explanations: Deriving instructional design
principles from cognitive theory. Interactive multimedia. Electronic
Journal of Coumputer-Enahnced Learning. http://imej.wfu.edu/
articles/2000/2/05/index.asp.

Mayer, R.E., Heiser, J., and Lonn, S. (2001). Cognitive constraints on
multimedia learning: When presenting more material results in less
understanding. J. Educ. Psychol. 93, 187–198.

Mislevy, R.J., Steinberg, L.S., Breyer, F.J., Almond, R.G., and Johnson,
L. (1999a). A cognitive task analysis, with implications for designing a
simulation-based assessment system. Comput. Hum. Behav. 15, 335–
374.

Mislevy, R.J., Almond, R.G., Yan, D., and Steinberg, L.S. (1999b). Bayes
nets in educational assessment: Where do the numbers come from? In:
Proceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence, eds. K.B. Laskey and H. Prade, San Francisco: Morgan
Kaufmann.

Novak, J., and Gowin, D. (1984). Learning How to Learn, New York:
Cambridge University Press.

Olson, A., and Loucks-Horsley, S., eds. (2000). Inquiry and the Na-
tional Science Education Standards: A Guide for Teaching and Learn-
ing, Washington, DC: National Academy Press.

Paek, P. (2002). Problem solving strategies and metacognitive skills on
SAT mathematics items. Unpublished thesis, University of California,
Berkeley.

Palacio-Cayetano, J. (1998). Unpublished thesis, University of South-
ern California, Los Angeles.

178 Cell Biology Education



5859F/CBE (Cell Biology Education) 03-02-0006 03-02-0006.xml September 3, 2003 17:33

Designing Problem-Solving Simulations

Palacio-Cayetano, J., Kanowith-Klein, S., and Stevens, R. (1999).
UCLA’s outreach program of science education in the Los Angeles
schools. Acad. Med. 7(4), 348–351.

Palacio-Cayetano, J., Schmier, S., and Dexter, S. (2002). Experi-
ence counts: Comparing preservice and inservice students technol-
ogy integration decisions. Society for Information Technology and
Teacher Education International Conference (SITE 2002). Nashville,
TN, March 18–23.

Pelligrino, J., Chudowski, N., and Glaser, R. (2001). Knowing What
Students Know: The Science and Design of Educational Assessment.
Washington, DC: National Academies Press.

Reder, L., and Schuun, C. (1996). Metacognition does not imply
awareness: Strategy choice is governed by implicit memory and
learning. In: Implicit Memory and Cognition, Mahwah, NJ: Lawrence
Erlbaum Associates. Mahwah, NJ.

Schuun, C.D., and Anderson, J.R. (2002). The generality/specificity
of expertise in scientific reasoning. Cognit. Sci. 23(3), 337–370.

Schuun, C.D., Lovett, M.C., and Reder, L.M. (2001). Awareness and
working memory in strategy adaptivity. Memory Cognit. 29(2), 254–
266.

Sedighian, K. (1997). Challenge-driven learning: A model for chil-
dren’s multimedia mathematics learning environments. ED-MEDIA
97: World Conference on Educational Multimedia and Hypermedia,
Calgary, Canada. http://taz.cs.ubc.ca/egems/reports/kamran5.doc.

Seely-Brown, J., Collins, A., and Duguid, P. (1989). Situated cognition
and the culture of learning. Educ. Res. 18, 32–42.

Shayer, M., and Adey, P. (1993). Accelerating the development of for-
mal thinking in middle and high school students. IV: Three years after
a two-year intervention. J. Res. Sci. Teach. 30, 351–366.

Staver, J., and Halsted, D., (1985). The effects of reasoning, use of
models, sex type, and their interactions on posttest achievement in
chemical bonding after constant instruction. J. Res. Sci. Teach. 22,
437–447.

Stevens, R.H. (1991). Search path mapping: A versatile approach for
visualizing problem-solving behavior. Acad. Med. 66(9), S72–S75.

Stevens, R.H., and Najafi, K. (1993). Artificial neural networks as ad-
juncts for assessing medical students’ problem-solving performances
on computer-based simulations. Comput. Biomed. Res. 26(2), 172–
187.

Stevens, R.H., Kwak, A.R., and McCoy, J.M. (1992). Solving the prob-
lem of how medical students solve problems. M.D. Comput. 8(1),
1320.

Stevens, R., Wang, P., and Lopo, A. (1996). Artificial neural net-
works can distinguish novice and expert strategies during complex
problem-solving. J. Am. Med. Inform. Assoc. 3(2), 131–138.

Stevens, R.H., Ikeda, J., Casillas, A., Palacio-Cayetano, J., and Clyman,
S. (1999). Artificial neural network-based performance assessments.
Comput. Hum. Behav. 15, 295–314.

Stevens, R.H., Sprang, M., Simpson, E., Vendlinski, T., Palacio-
Cayetano, J., and Paek, P. (2001). Tracing the development, trans-
fer and retention of problem–solving skills. American Educa-
tional Research Association Symposium, Seattle, WA, presentation
44.38.

Swiller, J., and Chandler, P. (1994). Why some material is difficult to
learn. Cognit. Instruct. 12, 185–233.

Underdahl, J., Palacio-Cayetano, J., and Stevens, R. (2001). Practice
makes perfect: Assessing and enhancing knowledge and problem-
solving skills with IMMEX software. Learn. Lead. Technol. 28, 26–31.

VanLehn, K. (1996). Cognitive skill acquisition. Annu. Rev. Psychol.
47, 513–539.

Vendlinski, T., and Stevens, R. (2000). The use of artificial neural nets
(ANN) to help evaluate student problem solving strategies. In: Inter-
national Conference of the Learning Sciences, University of Michigan,
Mahwah, NJ: Lawrence Erlbaum Associates.

Vendlinski, T., and Stevens, R. (2002). A Markov model analysis
of problem-solving progress and transfer. J. Technol. Learn. Assess.
1(3), 1–20.

Von Secker, C.E., and Lissitz, R.W. (1999). Estimating the impact of
instructional practices on student achievement in science. J. Res. Sci.
Teach. 36, 1110–1126.

Vol. 2, Fall 2003 179


