
7242F/CBE (Cell Biology Education) 03-06-0026 03-06-0026.xml November 1, 2003 2:22

Cell Biology Education
Vol. 2, 233–247, Winter 2003

Articles

Evolving Strategies for the Incorporation of Bioinformatics
Within the Undergraduate Cell Biology Curriculum
Jerry E. Honts

Department of Biology, Drake University, 2507 University Avenue, Des Moines, Iowa 50325

Submitted June 10, 2003; Revised September 2, 2003; Accepted September 5, 2003
Monitoring Editor: Erin Dolan

Recent advances in genomics and structural biology have resulted in an unprecedented increase in
biological data available from Internet-accessible databases. In order to help students effectively
use this vast repository of information, undergraduate biology students at Drake University were
introduced to bioinformatics software and databases in three courses, beginning with an intro-
ductory course in cell biology. The exercises and projects that were used to help students develop
literacy in bioinformatics are described. In a recently offered course in bioinformatics, students
developed their own simple sequence analysis tool using the Perl programming language. These
experiences are described from the point of view of the instructor as well as the students. A pre-
liminary assessment has been made of the degree to which students had developed a working
knowledge of bioinformatics concepts and methods. Finally, some conclusions have been drawn
from these courses that may be helpful to instructors wishing to introduce bioinformatics within
the undergraduate biology curriculum.

Keywords: undergraduate, bioinformatics, genomics, Perl.

INTRODUCTION

The Importance of Bioinformatics within the
Undergraduate Biology Curriculum
The publication of the first draft of the human genomic DNA
sequence in 2001 (Lander et al., 2001; Venter et al., 2001) her-
alded a new era in biology. The life sciences continue to be
transformed by the rapid accumulation of a rich array of data
of diverse types. In order to access and exploit this informa-
tion, biologists have become increasingly dependent on com-
putational approaches to access, annotate, and analyze these
data sets—that is, the goal of bioinformatics. The importance
of bioinformatics to the future of biology is reflected by its
inclusion among the new topics covered in recent molecular
and cellular biology textbooks (e.g., Lodish et al., 2000, Sect.
7–4). The challenge for biology faculty is to find ways to intro-
duce undergraduate biology students to the basic concepts,
tools, and databases in bioinformatics. This objective has been
the focus on several recent symposia and workshops (e.g., ge-
nomics.wheatoncollege.edu/workshop/).

Several strategies have been employed to incorporate
bioinformatics within the undergraduate cell biology curricu-

DOI: 10.1187/cbe.03-06-0026
Corresponding author. E-mail address: jerry.honts@drake.edu.

lum at Drake University. This paper describes the context of
these efforts, the specific objectives, and specific examples of
activities. Finally, a critical assessment of these strategies is
offered, as well as some practical suggestions based on the
course experiences to date.

The Context of These Efforts
Drake University is a midsized midwestern university with
an enrollment of about 5,000 students. The primary author
is an associate professor in the Department of Biology and
is responsible for teaching courses in cell biology and molec-
ular biology (along with associated laboratories). These two
courses attract students majoring in biology, psychology, and
chemistry, as well as those enrolled in interdisciplinary pro-
grams in biochemistry—cell and molecular biology, pharma-
ceutical sciences, and neurosciences. Each of these courses has
an enrollment of 40–60 undergraduate students at present,
and about half of these students take the associated labora-
tories. Of these students, the majority (up to 70%) are sopho-
mores. For many of these students, this is the first biology
course that they take following an inquiry-based introduc-
tory biology sequence in their freshman year. Most of these
students have completed course work in general chemistry
and are concurrently enrolled in organic chemistry.

C© 2003 by The American Society for Cell Biology 233

7242F/CBE (Cell Biology Education) 03-06-0026 03-06-0026.xml November 1, 2003 2:22

J.E. Honts

In addition, the author has developed elective courses in
structural biology and computational biology, and the latter
course is described in detail in this paper. A strategy to incor-
porate bioinformatics throughout the undergraduate biology
curriculum has been realized through exercises and projects
carried out by students in both introductory and advanced
courses.

Fundamental Objectives in Bioinformatics Education
Bioinformatics as a discipline has seen rapid growth in
the last several years. Programs in bioinformatics are now
being offered at both the graduate and the undergradu-
ate level, at both small colleges and research universities
(biotech.icmb.utexas.edu/pages/bioinform/biprograms us.
html). It is still in its infancy as a discipline, and many funda-
mental problems remain to be solved by students now enter-
ing these programs (genes.mit.edu/burgelab/topten.htm). A
student of bioinformatics will need to develop proficiency in
both biology and computer science in order to be competitive
in today’s job market.

It should be noted that this is not the career goal of most of
our students. The majority of our students are interested in
pursuing careers in biology or the health sciences. For these
students, the objective is not to prepare them for a career in
bioinformatics, but to give them literacy in the basic methods
and applications of bioinformatics. The goal is to teach these
students to be effective users of the vast repository informa-
tion deposited in biological databases. It is likely that these
students will access this information in the workplace or as
private citizens.

A subset of these students will go on to pursue careers in
molecular and cellular biology in academia or industry. It is
expected that the majority of these students will apply these
skills within the context of traditional “wet lab” research. For
these students, the goal was for them to acquire the ability to
work from DNA sequence to protein structure and function—
and back again. Many of us developed this capability during
the course of our research training in a piecemeal fashion. It
would be advantageous for these students to enter graduate
programs or industry with an effective working knowledge
of bioinformatics. It is also essential that these students gain
a deeper and more critical understanding of bioinformatics
methods and their applications, so that they have an appre-
ciation of the strengths and limitations of the tools they use
in their work. Therefore it is important that these students
develop some understanding of how bioinformatics tools are
developed and deployed over the Web.

Developing a Basic Toolbox for Undergraduates
Studying Bioinformatics
An instructor’s ability to provide students with practical ex-
periences in bioinformatics has been dependent on the tech-
nology readily available to students. Dramatic changes in
computer technology, and the proportion of students with
ready access to it, have taken place since the author began
teaching in 1995. The rapid pace of these changes has been
as exciting as it has been challenging, and it is clearly only
the beginning of the transformation of society in general, and
education in particular. Given the dynamic nature of these
advances, and the diversity of ways in which students have

access to personal computing and the Internet, how is it possi-
ble to provide students training in bioinformatics? How does
an instructor deal with the different computing environments
used by individual students?

The first solution to this problem was to use campus com-
puter laboratories to provide a common computing environ-
ment for all of the students. However, this solution proved
to be problematic for a number of reasons. Students found
it difficult to gain access to these facilities outside of class
time, or if they had access, a variety of software or hardware
problems interfered with the conduct of their work. In order
to address this problem a strategy has been evolved where
demonstrations in the classroom or computer laboratory are
used to familiarize students with programs that they will sub-
sequently download and run on their own computers.

Through trial and error several cross-platform software
packages have been identified that provide students with a
“toolbox” for bioinformatics. Students are asked to down-
load the software appropriate to their personal computer’s
operating system at the beginning of the semester. This bioin-
formatics toolbox contains some basic utilities: software for
editing text and graphics, a molecular graphics viewer, and
so on. These tools, and the URL of their sources, are listed in
Table 1.

These tools have been chosen because versions exist for
computers running Windows, Macintosh, or UNIX-based op-
erating systems such as Linux. In addition, for each category,
at least one example is freeware, obviating the need for stu-
dents to buy additional software for these courses. This does
not mean that students cannot use commercial software for
these tasks; it just means that they can carry out the assigned
course work without the purchase of additional software.
And in some cases the freeware solution is superior—using
Microsoft Word for the editing of sequences can lead to prob-
lems if the files are not deliberately saved in a simple ASCII
text format.

This situation has continued to improve, and within the last
several years a large number of bioinformatics-oriented sites
have appeared on the Web. The key sites used in our courses
are listed in Table 2. The easy access to these tools has made
the teaching of bioinformatics feasible on campuses lacking
the resources to license the proprietary software commonly
found in laboratories at research universities and in industry.
The ability of undergraduate students to learn how to use the
basic tools of bioinformatics will only help them appreciate
the convenience of commercial bioinformatics tools that they
will encounter as they progress in their careers.

EVOLUTION OF THESE STRATEGIES

The goal of introducing bioinformatics in the undergraduate
biology curriculum was implemented in three stages from
1995 to 2001. The first exercises were introduced in the cell bi-
ology laboratory in the fall of 1995. Additional exercises were
developed during the second offering of a course in struc-
tural biology in 1999. Finally, a dedicated course in bioinfor-
matics was offered for the first time in the spring of 2001, at
the same time that the first draft of the human genome se-
quencing project was published in Science and Nature. These
efforts were not independent of one another, and what has
been learned in one course has strongly influenced the ongo-
ing development of the other courses. It has also led to the

234 Cell Biology Education

7242F/CBE (Cell Biology Education) 03-06-0026 03-06-0026.xml November 1, 2003 2:22

Bioinformatics for Undergraduates

Table 1. Software tools for bioinformaticsa

Text editors used to edit sequence files
BBEdit Lite (Macintosh)

ftp://ftp.barebones.com/pub/freeware/
NoteTab Light (PC/Windows)

http://www.notetab.com/ntl.htm
Web browsers

Netscape Communicator
http://browsers.netscape.com/browsers/main.tmpl

Microsoft Internet Explorer
http://www.microsoft.com/windows/ie/default.asp
http://www.microsoft.com/mac/products/ie/ie default.asp

Java support for Microsoft Windows—required to run some
bioinformatics software
Java Plug-inb

http://java.sun.com/getjava/download.html
Molecular graphics viewers

RasMol and OpenRasMol
http://www.umass.edu/microbio/rasmol/index2.htm
http://www.OpenrasMol.org/

Chimec

http://www.mdlchime.com/chime/
CN3D

http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml
Deep View/SwissPDBViewer (Macintosh, PC/Windows)

http://www.usm.maine.edu/spdbv/
Phylogenetic tree drawing software

TreeView
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html

Image editors to label figures
GIMP is the GNU Image Manipulation Program

http://www.gimp.org/
http://www.gimp.org/∼tml/gimp/win32/
http://www.macgimp.org/

Perl binary distributions
ActiveState Perl for Windows

http://www.activestate.com/Products/ActivePerl/
MacPerl for Macintosh/

http://www.macperl.com/
General software download sites

http://download.cnet.com/
http://www.versiontracker.com/

aPrograms are distributed free of charge but most are not in the public
domain. Some of this software is subject to end user license agree-
ments.
bMicrosoft Windows XP no longer installs a Java virtual machine to
support Java applets in Web pages. This plug-in from Sun Microsys-
tems provides support for Java in this operating system.
cThe Chime plug-in from MDL has compatibility problems with some
versions of Internet. See www.mdlchime.com/chime/ for the latest
information.

development of different strategies to accomplish the goals
described above. Specific examples of how these courses were
implemented and refined follow.

Introductory Cell Biology Course
The author was still in the process of acquiring the equip-
ment needed to set up the teaching laboratory during his first
semester as an assistant professor. In addition to the wet lab
experiments carried out during this semester, several labo-
ratories were conducted using pencil and paper in the labo-
ratory or in 1-h sessions at one of the computer laboratories

Table 2. Some of the key Web sites used by students for
bioinformatics

General databases and tools for bioinformatics studies
National Center for Biotechnology Information

http://www.ncbi.nlm.nih.gov/
• BLAST

http://www.ncbi.nlm.nih.gov/BLAST/
• PubMed

http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db =
PubMed

• Online Mendelian Inheritance in Man (OMIM)
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db

OMIM
• NCBI Conserved Domain Search

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
• CDART: Conserved Domain Architecture Retrieval Tool

http://www.ncbi.nlm.nih.gov/Structure/lexington/lexing-
ton.cgi?cmd = rps

Protein Data Bank
http://www.rcsb.org/pdb/

Access points for integrated suites of sequence analysis tools
BCM Search Launcher

http://searchlauncher.bcm.tmc.edu/
European Bioinformatics Institute

http://www.ebi.ac.uk/index.html
• ClustalWa

http://www.ebi.ac.uk/clustalw/
Biology Workbench

http://workbench.sdsc.edu/
Some resources for human genomics

The Human Genome (NCBI)
http://www.ncbi.nlm.nih.gov/genome/guide/human/

Human Genome Browser Gateway (UCSC)
http://genome.ucsc.edu/cgi-bin/hgGateway?db = hg10

Example of a specialized structure prediction tool
COILS Server

http://www.ch.embnet.org/software/COILS form.html

aA note at the bottom of the ClustalW Web page asks that instructors
contact EBI if the EBI ClustalW server is used in courses.

on campus. It was not reasonable at this time to assume that
most of the off-campus students had ready access to the Inter-
net, and at this time there was considerable competition for
access to the limited number of Internet-linked computers in
these laboratories. The simple exercises described in Table 3
can be incorporated within the classroom as an introduction
to bioinformatics, without a requirement for extended access
by students to an Internet-capable computer.

The first exercise in Table 3 has given students insight into
the nature of gene structure and expression and, as such, il-
lustrates how exposure to bioinformatics can help students
better understand fundamental concepts in molecular cell bi-
ology encountered in the research literature. Students in the
cell biology course were given a one-page handout contain-
ing the DNA sequence of a 6.6-kb BamHI fragment from the
genome that contains the human H-Ras gene. This piece of
DNA transforms NIH 3T3 cells to cancer cells when only a
single nucleotide in codon 12 of the Ras gene is changed from
G to T, resulting in the substitution of valine for glycine in
the encoded protein (Tabin et al., 1982). As they work to-
gether in groups to carry out the conceptual translation of
the gene from the nucleotide sequence, students occasionally
make mistakes, making it necessary for the group to backtrack

Vol. 2, Winter 2003 235

7242F/CBE (Cell Biology Education) 03-06-0026 03-06-0026.xml November 1, 2003 2:22

J.E. Honts

Table 3. Introductory cell biology exercises in bioinformatics

1. Pencil-and-paper exercise that illustrates the central dogma of molecular biology using the human H-Ras gene

In this exercise students were given a two-page handout containing the coding strand DNA sequence containing the human H-Ras gene
(GenBank accession number J00277; also accessible as a Adobe Acrobat document, human hras.pdf), the coordinates of the coding
segments, and a copy of the standard genetic code dictionary. Students were given a practical demonstration of the relationship between
DNA sequence and protein structure, by carrying out the conceptual translation of this gene. This assignment was completed as a group
exercise within about 60 min. The students were introduced to a variety of important concepts such as the central dogma, eukaryotic gene
organization (for a split gene), the relationship between the sequence of the coding strand of DNA and the derived mRNA molecule, and
the nature of the genetic code. Students come away from this exercise with a better understanding of how proteins are encoded by the
sequence of bases in the DNA molecule.

2. Experience with the use of BLAST as a gene identification tool

Another early example of an exercise had the students identify the source of an unknown protein or a DNA sequence when they were
supplied with either a protein or a DNA sequence. As an example, students were given the amino acid sequence of another member of the
Ras family of GTPases. Alternatively, students determined the DNA sequence of the gel in Figure 10.9 of Alberts et al., Essential Cell Biology,
and used the derived DNA sequence in a BLAST search. In this exercise students learned how a relatively short DNA or protein sequence
could be used to identify and retrieve a database entry containing the entire DNA or protein sequence.

3. Use of RasMol to visualize the location of affected amino acids in oncogenic forms of Ras

Students were introduced to the RasMol molecular graphics program in the computer laboratory. Students were instructed as to how to
load the atomic coordinates for the Ras protein (1p21.pdb), which had been downloaded from the Protein Data Bank
(www.rcsb.org/pdb/). Students were shown how to alter the display of the protein molecule to highlight the portion of the molecule
affected by common oncogenic mutations in Ras. In this exercise students were able to see how the location of oncogenic mutations in Ras
correlated with the location of the bound guanine nucleotide and key amino acid residues required for the GTPase activity of this protein.

Software required: Web Browser, RasMol
Useful Web sites: BLAST @ NCBI, RCSB

or even start over. It impresses them to see how precise the
cellular machinery must be to faithfully duplicate and express
the information in DNA. As they work through this exercise,
they also encounter what is often a surprise—an intron that
interrupts a codon. Once again, they see how precise the cell
must be, in terms of splicing the transcribed RNA. Finally,
they see a remarkable aspect of human gene organization:
only about one tenth of this genomic fragment encodes the
H-Ras protein.

It is now possible to assume that nearly every student has
ready access to a personal computer and the Internet (both
on and off campus). This situation has been exploited in that
additional Web-based exercises have been developed to ac-
quaint students with the diversity of information available
on-line as a result of the genomics revolution in biology. The
development of these new exercises has been closely tied to
activities in the introductory cell biology course, in particu-
lar, the course’s required discussion section. In this discussion
section students read seven papers that describe key aspects
of the cell biology of the Ras gene and its role in cancer.

In the last 2 years, these Web-based exercises have been
a required assignment in the cell biology course. These ex-
ercises (with hyperlinks) can be accessed at www.cellbio.
drake.edu/ASCB/present.html. These exercises focus on var-
ious aspects of the Ras gene and protein, giving students
specific examples of how these tools can be applied to give
insight into the function of a protein that has obvious rele-
vance to human medicine.

An Elective Course in Structural Biology
Students responded very favorably to these early exercises,
especially those involving molecular visualizations through
the use of the RasMol program. To cultivate this interest, a

course in structural biology was subsequently developed to
give interested students an opportunity to further explore the
relationship between the three-dimensional structure and the
biological function of cellular macromolecules. In the fall of
1997 this course in structural was offered for the first time,
and it has been offered three more times in subsequent years.
In its first manifestation the course work focused on the use of
molecular graphics and model building activities as a way for
students to gain insight into the function of protein molecules.
In 1997 student use of the Web was largely confined to finding
and downloading relevant PDB files. The goals, organization,
and activities of this course in structural biology will be de-
scribed in detail in a separate paper (in preparation).

By the time the course was offered a second time in the
spring of 1999, the technological context had changed such
that a more comprehensive approach to the study of protein
structure, function, and evolution could be attempted. In this
second iteration, much more emphasis was placed on the use
of Internet-based tools to analyze and relate a protein’s amino
acid sequence to its structure and function. The course orga-
nization also changed at this time to represent the author’s
current strategy in teaching bioinformatics and structural bi-
ology. First, students are introduced to tools and databases via
simple exercises and assignments during the beginning of the
semester. Students then apply these methods to a major in-
dividual or group research project during the latter portion
of the semester. The students’ research culminates in class
presentations and final, formal written reports.

In the last several years, this course has emphasized the de-
velopment of the bioinformatics skills most relevant to struc-
tural biology. In addition to the visualization activities in-
herent in this course, students now carry out a variety of
activities that require the development of basic bioinformatics
skills. Students use on-line tools to compare the sequences and

236 Cell Biology Education

7242F/CBE (Cell Biology Education) 03-06-0026 03-06-0026.xml November 1, 2003 2:22

Bioinformatics for Undergraduates

Table 4. Structural biology exercises and projects that served to develop bioinformatics skills

Training exercises

Before the following exercises, students were given reading assignments from reviews relevant to the particular class of structure or
structural element being examined.

1. Coiled-coil protein prediction. It is important to get students to think of sequence analysis as a kind of experimental process. In particular,
get them to do “experiments” with the appropriate controls to test the algorithms. One particular algorithm for the prediction of coiled
coil-forming segments in proteins from amino acid sequences (Lupas et al., 1994) was tested using a variety of proteins with known
structures that either contained or lacked coiled coils. After testing the algorithm (www.ch.embnet.org/software/COILS form.html) with
positive and negative “control” proteins, the algorithm was then tested on an “unknown” protein. As examples of positive controls,
students used tropomyosin and myosin protein sequences. As examples of negative controls, students used the sequences for an
immunoglobulin domain (β-sheet structure) and a hemoglobin subunit (α-helical but lacking coiled coils). Finally, they compared the
prediction obtained from α- or β-tubulin sequences (noted in Lupas et al., 1994) with the crystal structure of the tubulin dimer (1tub.pdb)
using the RasMol program.

2. Identification of EF-hand Ca2+-binding protein motifs. Pencil-and-paper exercises first trained students to identify the presence of a protein
motif common to calcium-binding proteins such as calmodulin and tropomyosin. The students were then given the sequences of two actin
cross-linking proteins: human L-plastin (shows Ca2+-regulated cross-linking of actin filaments) and yeast fimbrin (a plastin homologue).
They were asked whether or not they would predict that the actin cross-linking activity of yeast fimbrin was likely to be regulated by
calcium.

3. Phylogenetic trees derived by comparison of globin protein sequences. Students were given numbered but otherwise unlabeled proteins
sequences for globins from a diverse set of organisms. Students carried out a multiple sequence alignment using ClustalW, followed by the
generation of a phylogenetic tree using TreeView. Students were then given a key indicating the identity of the organism from which each
of the numbered globin sequences was derived. They were asked whether the phylogenetic tree they generated was consistent with our
understanding of the evolutionary relationships of these organisms.

Research projects

1. Modular organization of titin. Students examined the modular organization of this large protein, with an emphasis on structure of the
numerous type I and II repeats found in this protein.

2. Sequence and structural analysis of common protein modules. Students carried out a comparative study of one of several common protein
modules or domains. Examples include SH2, SH3, pleckstrin homology (PH), calponin homology (CH), and WD or WD-like domains.

3. Sequence and structural analysis of specific components of complex biological assemblies. Students looked at the structure and function of
specific protein components of cellular or viral machines such as the proteasome, chaperonin, ATP synthase, and picornavirus capsids.

Software required: Web Browser, RasMol, TreeView
Useful Web sites: BLAST @ NCBI, Clustal W @ EBI, RCSB, COILS, VAST

three-dimensional structures of homologous proteins. Exam-
ples of training exercises and research projects used in this
course, which are relevant to the development of bioinfor-
matics skills, are listed in Table 4.

Structural bioinformatics will certainly develop as an im-
portant subdiscipline of bioinformatics, especially as struc-
tural genomics efforts come to fruition (Burley et al., 1999).
Within the last year an excellent overview of this impor-
tant aspect of bioinformatics has been published (Bourne and
Weissig, 2003).

An Elective Course in Bioinformatics
In the spring of 2001, an introductory course in bioinformat-
ics, entitled “Computational Biology,” was offered for the first
time at Drake University. Although the terms bioinformatics
and computational biology are sometimes used as synonyms,
the usage has evolved such that the latter term would seem
to be more appropriate for describing the use of computa-
tional methods in the modeling and simulation of biological
systems (grants1.nih.gov/grants/bistic/CompuBioDef.pdf;
Noble, 2002). In contrast to the structural biology course, the
introductory bioinformatics course emphasized the process
of deducing protein structure and function (when possible)
from the genomic DNA sequence of an organism. The empha-

sis in this course was on sequence analysis of the sequences
of DNA and protein molecules.

The course organization was slightly different from that
used in the structural biology course. First, a series of training
exercises was carried out, but this time in a computer labora-
tory in the presence of the instructor. The objectives of these
initial computer laboratory sessions were for the students to
learn what bioinformatics tools were available and to under-
stand what they can be used to do. These activities were con-
ducted in a computer laboratory to see if the instructor could
help students address some of the common questions arising
from the use of these software tools. Some examples of these
training exercises are listed in Table 5. Typically there would
be a follow up assignment that would be carried out on the
students’ personal computers before the next class meeting.

In addition to these training sessions, students were also
given reading assignments in the course textbook (Baxvanis
and Ouellette, 2001) and from recent reviews (e.g.,
Vukmirovic and Tilghman, 2000). The students were also
asked to read through the on-line documentation for a pro-
gram such as BLAST (www.ncbi.nlm.nih.gov/Education/
BLASTinfo/guide.html) or to work through on-line tuto-
rial for a program such as Cn3D (www.ncbi.nlm.nih.gov/
Structure/CN3D/cn3dtut.shtml). Although students were
usually content to accept the default parameters for a BLAST

Vol. 2, Winter 2003 237

7242F/CBE (Cell Biology Education) 03-06-0026 03-06-0026.xml November 1, 2003 2:22

J.E. Honts

Table 5. Computational biology exercises and projects for developing bioinformatics skills

Training exercises

1. Annotation of a genomic DNA sequence. Students were given the human H-Ras genomic sequence and asked to use on-line tools to
identify as many of the following features as possible: intron–exon boundaries, promoter or transcription factor binding sites, transcription
initiation and termination sites, polyadenylation sites, polymorphisms found in human populations, sites of oncogenic mutations, splicing
acceptor and donor sites, repetitive DNA elements within this segment of DNA, and low-complexity segments. The students were asked to
use a search engine such as Google to find the appropriate tool on the Internet. One goal of this assignment was to show them that a large
number of specialized bioinformatics tools could be found on the Web. The other goal was to give them practice with the kind of analyses
they would carry out in their group research project.

2. Compare prokaryotic and eukaryotic gene organization and gene identification. See the text for a description of this exercise.

3. Compare the success of various programs for prediction of transmembrane segments in protein sequences (using both “knowns” and
“unknowns”). See the text for a description of this exercise.

4. Comparative analysis of the domain structure of actin cross-linking proteins. Using tools like Conserved Domain Database at NCBI,
students were asked to compare and contrast the modular organization of actin cross-linking proteins such as fimbrin/plastin, α-actinin,
β-spectrin, and dystrophin, with a view to understanding differences in their structure and function within the actin cytoskeleton.

Group research project

Sequence and structural analysis of a large, multidomain protein (human ryanodine receptor genes/proteins). See the text for a description of
this exercise.

Group programming project

Development of a Web-based Perl program that determines the amino acid composition of any protein sequence in FASTA format. See the
text for a description of this exercise.

Software required: Web Browser, RasMol, TreeView
Useful Web sites: Most of the sites listed in Table 2

search, it is important that they understand some of the
underlying theory behind the program’s function, that they
understand how to correctly and critically interpret the re-
sults, and that they understand when and why it may be
necessary to change the default parameters. It should be un-
derstood that it was not intended that the students would end
up with a graduate-level understanding of these programs,
but that they would at least start to think critically about the
meaning of the results obtained.

One of the issues addressed in this course was why some
problems in bioinformatics are difficult to solve. Given the
publicity surrounding the publication of the first draft of the
human genome sequence in the spring of 2001, one such
problem was identified: How many genes are there in the
human genome? Why is it that not everyone agrees on the
answer to this question? Questions like this are very valu-
able in that they highlight the limitations of our understand-
ing and in that they serve to present new opportunities for
advancement.

Toward the very beginning of the course students carried
out an exercise that gave them insight into the nature of
this problem. Students were asked to use on-line tools (e.g.,
www.ncbi.nlm.nih.gov/gorf/gorf.html) to predict the posi-
tion and extent of open reading frames in two pieces of DNA,
one from the human genome containing the H-Ras gene (ac-
cession number J00277) and another from E. coli containing
the lac operon (accession number J01636). They were asked to
compare this information to the known coding sequence co-
ordinates for the encoded gene products. From this exercise
the students gain a perspective on how hard it is to iden-
tify and define the coding segments for a split eukaryotic
gene like human H-Ras without additional information being

provided, such as the corresponding cDNA sequence. After
this exercise students were asked to look at more sophisti-
cated approaches to eukaryotic gene prediction, such as the
GrailEXP program (compbio.ornl.gov/grailexp/). This type
of exercise also demonstrates the differences in gene struc-
ture typically seen when eukaryotic and eubacterial genomic
DNA sequences are compared.

This exercise also gave students the opportunity to see ex-
amples of the type of exceptions to rules that molecular biolo-
gists are familiar with but that puzzle the beginning student.
One example of this type of anomaly is seen for the lacA gene,
where the start codon is UUG instead of the expected AUG
(according to the annotation for this gene). Students were also
initially puzzled to see the order of the genes in this sequence
file (J01636) being apparently backward compared to what
they have seen in their textbooks, until they realize that the
sequence represents the complement of the coding strand for
the genes of the lac operon. This emphasizes to them that the
coding strand for a given gene may be the template strand
for a neighboring gene. Students may have encountered these
points in textbooks or lectures, but real-world examples pro-
vide concrete illustrations of these principles.

After carrying out these training exercises in the first third
of the semester, students began work on a group research
project that applied these tools and concepts. Two groups of
about five students worked together to analyze DNA and
protein sequence the same type of protein, the ryanodine re-
ceptor, an enormous ion channel found in skeletal muscle sar-
coplasmic reticulum (Takeshima et al., 1989). Students were
asked to take advantage of the data that had recently been
submitted to the NCBI sequence database as a result of the
human genome project. They were instructed to focus their

238 Cell Biology Education

7242F/CBE (Cell Biology Education) 03-06-0026 03-06-0026.xml November 1, 2003 2:22

Bioinformatics for Undergraduates

research on the three members of the ryanodine receptor gene
family in humans (RYR1, RYR2, and RYR3).

Their group research project emphasized the integration of
information gleaned from various informatics resources: the
biomedical literature, the genomic databases, and the struc-
ture databases. Students were asked to use the tools encoun-
tered in the training exercise, as well as any suitable tools
they found on the Internet. Students were asked to divide
up the responsibilities for the different types of analyses to
be carried out. This instructor met with the students regu-
larly throughout the remainder of the semester to assess their
progress and to help them troubleshoot problems they had
encountered.

One other question was addressed in the initial training
exercises: Are some programs superior to others in terms
of the validity of their output? Students were asked to test
the success of a variety of programs that predicted the lo-
cation of transmembrane segments in integral membrane
proteins. This experience would have obvious benefit when
they analyzed the ryanodine receptor protein sequences.
Students were asked to use a variety of programs (e.g.,
www.ebi.ac.uk/∼moeller/transmembrane.html) to predict
the transmembrane segments in bacteriorhodopsin, a well-
studied membrane protein for which this information was
available. By comparing predictions of these different pro-
grams with the biochemical and structural studies of this
protein, students could see which programs performed better
than others for this task.

This naturally leads to the question, What makes some com-
puter programs better than others in accomplishing a specific
task? The answer is, of course, the nature of the computer
algorithm employed by the program, as well as the under-
lying assumptions that led to the development of the algo-
rithm. In order to give students a better appreciation of the
importance of algorithms in bioinformatics, students worked
in two groups to develop a very simple sequence analysis pro-
gram, which is described in the next section. An additional
goal of this particular assignment was that they would de-
velop an appreciation of what happens after they click the
“Submit” button on the Web page of a typical sequence anal-
ysis program. While it is certainly not necessary that students
become computer scientists in order to effectively use bioin-
formatics programs, an acquaintance with the process of de-
signing, writing, and testing a simple bioinformatics program
was intended to demystify the process while providing some
understanding of the ways in which even simple computer
programs can go astray.

PROGRAMMING A SIMPLE BIOINFORMATICS
APPLICATION IN PERL

The most experimental (and perhaps risky) aspect of this
bioinformatics course was having the students develop a sim-
ple sequence analysis computer program. It was not clear at
the beginning how difficult it would be for the students to
achieve this goal. Several observations made this author be-
lieve that it would be reasonable for them to try to develop
this program. First, since most of the enrolled students were
biology majors, it seemed reasonable that at least some of
them may have taken a college-level programming course as
one way to fulfill a mathematics requirement for our major.

A survey was conducted at the very beginning of the course
to assess how many of the enrolled students had prior expe-
rience with computer programming. In a class of 10 students,
2 had a fair amount of experience with programming, and a
few others had some limited experience. Finally, it was the
author’s earnest belief that all of the students could at least
think about the logic of the program, even if they did not have
previous experience with encoding this logic into the form of
the algorithm used by the program.

The first issue faced in designing this assignment was
what would be a suitable task for this program. The task
had to be simple since time was limited, but it also needed
to accomplish something of use to the students. In the end
it was decided that the students would construct a pro-
gram that calculated the percentage composition of amino
acid residues from any protein sequence supplied in the
FASTA format (www.ncbi.nlm.nih.gov/BLAST/fasta.html).
The program would simply need to tally the number of each
type of amino acid residue present and the total number of
residues, use this information to calculate the percentage com-
position for each residue, and then report the result back to
the user. Many programming books start with a program-
ming exercise in which a very simple program generates the
text “Hello, world!” This program can be thought of as a kind
of “Hello, world!” program for bioinformatics.

The next issue to be addressed was which computer pro-
gramming language should be used for this exercise. Clearly
any number of programming languages would be suitable,
ranging from BASIC to C++. Some of these programs have
steep learning curves, and not all could be obtained for free
by the students. It was decided that they should use the pro-
gramming language used by many bioinformaticists—Perl
(Practical Extraction Report Language; see www.perl.com).

There were several reasons to use Perl for this assignment.
It could be obtained without cost for either the Macintosh or
the PC (Table 1). It would be reasonably easy for students to
learn enough Perl to accomplish the assigned task, and there
are numerous resources on-line for learning Perl. One of the
key arguments made for Perl’s suitability for this and other
programming projects is that it is a good language “for getting
things done.” It seems likely, however, that other comparable
programming languages such as Python (www.python.org)
and Ruby (www.ruby-lang.org/en/index.html) could also be
used for this purpose. Perl, Python, and Ruby are all used
in open source efforts to develop bioinformatics software
(www.bioperl.org).

The programming assignment was described for the stu-
dents at the beginning of the semester, and from the informa-
tion in the surveys the two students with prior programming
experience were asked to be the leaders of the two groups. The
team leader and the group members would work together to
design, code, and test the program. Early in the semester the
goal of the program was discussed, and the class worked out
the basic logic of how the program would achieve this goal.
It was described how the program could first be developed
in the form of pseudocode—a detailed English language rep-
resentation of what a program must do—and then, with the
team leaders’ help, the program would be coded into Perl. The
importance of the full participation of the group was stressed.
It was stressed that programming is ultimately an exercise in
clear and logical expression of the means by which a particu-
lar goal is achieved—and that all of the students, even those

Vol. 2, Winter 2003 239

7242F/CBE (Cell Biology Education) 03-06-0026 03-06-0026.xml November 1, 2003 2:22

J.E. Honts

Figure 1. A flowchart showing the overall flow of information in the amino acid composition calculator Perl program.

lacking computer programming experience, had the ability
to participate in this aspect of the program’s development.
The particulars of how the code would actually be written
in Perl were worked out by the two team leaders, the indi-
viduals who had the most experience with the process (and
frustrations) of coding.

Each group began their planning, and in order to expedite
their progress a working version of the program was demon-

Figure 2. An excerpt of code from the Perl program for the amino acid composition calculator.

strated by the instructor. This resulted in one of the most
surprising statements that this instructor has heard since he
began teaching: “We can do better than that!” Within a few
weeks, each group had a working version of the program, dif-
ferent in detail from that written by the instructor. A flowchart
from one of the two groups illustrates the overall organization
of their program (Figure 1), and an excerpt from their program
is shown in Figure 2. It was clear from their relatively rapid

240 Cell Biology Education

7242F/CBE (Cell Biology Education) 03-06-0026 03-06-0026.xml November 1, 2003 2:22

Bioinformatics for Undergraduates

progress that learning to code in the Perl language was not
an impediment to progress, even though neither of the team
leaders had prior programming experience with this partic-
ular language. One remarkable aspect of their programs’ de-
velopment was that they themselves identified and used a
key feature of the language (the use of so-called regular ex-
pressions) that greatly shortened the work of tabulating the
numbers of the individual amino acids. This is consistent with
the Perl philosophy of programming that laziness is actually
a virtue!

The program’s specifications were outlined at the begin-
ning of the semester, but later the students were offered an
opportunity to obtain extra credit in this project if they im-
plemented it as a program accessible over the Web, from a
form-containing Web page. A user would copy-and-paste the
sequence of a protein (or upload it from a local text file) into
a text field on a specific Web page (illustrated in Figure 3).
Upon clicking the submit button, the data would be sent
to a Web server hosting their program, and the program (a
Perl script) would receive the data as an input. Following the
execution of the program, a new Web page with the results
of the amino acid composition calculation was returned to
the user, either represented as a table or graphically repre-
sented as a bar chart (as shown in Figure 4). By the end of the
semester the students had done just that, greatly exceeding
this instructor’s expectations.

The final versions of each program were thoroughly tested
and found to yield the expected results. Therefore at the end
of the semester, the two groups had come up with two inde-
pendent solutions of the problem posed in the assignment.

Figure 3. A screenshot of the Web page containing the form used to submit protein sequences for analysis by the Web server-based Perl script
for calculating amino acid compositions. The amino acid sequence for the ryanodine receptor (RYR1) protein has been pasted in the text field.
The program depends on the sequence being in FASTA format.

This fits well with the stated philosophy of the Perl program-
ming language: “There’s more than one way to do it.” One
of the team leaders, Srdan Kobsa, describes the process of the
development of his group’s program in the Appendix to this
article.

Despite this apparent success, there were problems that
must be solved before this type of assignment is used again.
These problems were made apparent by discussions with the
students and in reading the course evaluations. These prob-
lems and possible solutions are described in the next section.

CRITICAL ASSESSMENT OF THESE EFFORTS

Several types of assessment have been employed to assay the
success of these efforts including in-class and take-home ex-
aminations, a lab practical examination, and individual and
group research project presentations and reports, as well as
end-of- semester student evaluations of the course. Taken col-
lectively over the last 7 years, these assessments indicate that
some success has been achieved in realizing the goal of giving
students practical experience in the use of these bioinformat-
ics tools and databases. However, much more work needs to
be done to see that students think about the biological mean-
ing of the results of their analyses.

In lieu of an in-class final examination, the students in the
bioinformatics course were given a take-home examination
to assess their individual abilities at the end of the semester.
This examination consisted of a focused set of questions to be
addressed using tools and concepts previously covered (see
Table 6). Nearly all of the students that passed the course

Vol. 2, Winter 2003 241

7242F/CBE (Cell Biology Education) 03-06-0026 03-06-0026.xml November 1, 2003 2:22

J.E. Honts

Figure 4. A screenshot of the Web page containing the results of the amino acid composition analysis carried out by the Web server-based Perl
script. In this version, the analysis is returned in the form of a bar graph generated through the use of a specific Perl module (HTML::Template).

showed evidence from their individual examinations that
they had mastered specific technical skills used in bioinfor-
matics (Table 7). The critical question is whether these hard-
won skills had resulted in the development of increased in-
sight into the biology of the systems at which the students
were looking. This is a harder and more subjective assess-
ment. With regard to this point, the students clearly differed
in their ability to understand and articulate the biological sig-
nificance of the results of their bioinformatics studies. This is,

Table 6. Take-home final examination for the bioinformatics course

Using a combination of computer and Internet-based tools, you should write a minireview that summarizes what is known about the
structure and function of each of the protein or RNA molecules associated with (1) the vault ribonucleoprotein and (2) the apoptosis-
inducing factor (AIF). You should also briefly describe the biological and medical relevance of these findings.

Address the specific issues associated with each of the two topics.

1. Vault: A cytoplasmic ribonucleoprotein particle (refer to Kong et al., 1999, 2000).
• Identify the sequence data file for each of the vault components from the human genome database. In this case there will be both protein

and RNA components.
• Analyze these sequences for insights into (1) structure, (2) function(s), and (3) interactions.
• Construct a multiple sequence alignment for one of the proteins and for the vault RNA.
• Describe the phylogenetic distribution of the structure and its individual components.
• Identify and annotate the gene for a human vault RNA.
• For the vault RNA, use Web-based tools to predict its secondary structure. See tools like MFOLD: http://bioinfo.math.rpi.edu/∼mfold/

rna/form1.cgi.
2. AIF (apoptosis-inducing factor): Caspase-independent mechanisms of programmed cell death (refer to Joza et al., 2001; Miramar et al., 2001).

• Identify the closest protein homologue with a known function.
• Use Cn3D or other tools to produce an approximate model of the AIF structure.
• Discuss the multiple functions of the AIF protein within the cell.
• Look for signal sequences that would target this protein to the mitochondrion and the nucleus.

of course, a far more valuable assessment than whether the
students say that they enjoyed the course or whether they say
that they had learned a lot about bioinformatics during the
semester.

Other observations of students at work in the computer lab-
oratory have highlighted the need for an instructor to directly
confront this problem. When working on the exercises in the
computer laboratory, some students were observed to rush
through the individual steps of an exercise, spending little

242 Cell Biology Education

7242F/CBE (Cell Biology Education) 03-06-0026 03-06-0026.xml November 1, 2003 2:22

Bioinformatics for Undergraduates

Table 7. An assessment of individual bioinformatics skills from
the take-home final examination in computational biology

Proportion of enrolled students
demonstrating technical ability

Skill to perform specified task

Find required sequences in
GenBank

9/11

Generate multiple sequence
alignments using ClustalW

10/11

Identify conserved domains in
proteins

9/11

Predict secondary structure for
RNA molecules

10/11

Model homology via Cn3D 10/11

time thinking about the meaning of the results they obtained
along the way. Although they quite successfully followed the
instructions for these exercises to completion, they were oc-
casionally unable to verbalize what insight they have gained
from their analysis or how the result obtained related to what
they have learned in previous course work. For other stu-
dents, with weaker computer skills, the technical challenge
of completing the exercises also served to distract them from
thinking about the meaning of their results.

What can an instructor do to address this problem? First, it
is important to recognize that some undergraduate students
confuse technical mastery with insight. These students think
of their ability to list facts, to carry out a procedure, to make
calculations, or to run a computer program as being equiva-
lent to understanding in a discipline. On examinations, they
may write about the words that make up a question without
ever addressing the specific question being posed. It is not
always easy to convince these students that there is a differ-
ence between a listing of facts or observations and drawing
inferences from those facts or observations.

One way to address this persistent problem is for the in-
structor to take students step by step through several specific
examples of how the results of bioinformatics studies can lead
to biological insights. It was clear from in-class observations
that most students can quickly learn to perform the specific
computational tasks required for bioinformatics studies. In
the classroom the instructor should focus on the interpreta-
tion of the results, instead of the methods by which the results
were obtained. Fortunately for instructors, textbooks are now
available that take just this sort of approach to the study of
bioinformatics (e.g., Campbell and Heyer, 2002).

The course evaluations from the bioinformatics course, as
well as conversations with individual students, highlighted
another problem that needs attention. The majority of the stu-
dents indicated on their course evaluations that they were un-
happy with respect to their participation in the programming
project. Even though these evaluations were anonymous, it
was clear that this dissatisfaction emanated from the mem-
bers of the group other than the team leaders. The students
were instructed in the guidelines for this assignment that “ev-
erybody is to be involved in the design, development, and
testing of the [Perl] program.” Despite the overall success of
the groups in completing the projects, it was clear that this did
not take place in the way that this instructor had intended.

The obvious solution in the future is that during the course
of a programming project, individual students will be given
specific assignments to complete, for which they will be ac-
countable, to both their fellow group members and the in-
structor. It should be emphasized that there are many aspects
to a programming project that do not involve the direct cod-
ing of an algorithm. Students could be assigned to specific
tasks such as documentation of the program’s features, an-
notation of the source code, testing of the program with a
variety of data (including nonsensical data), and validation
that the program reports the correct result for any input data.
Another important task for a student in the group could be
the evaluation of the user interface of the Web pages used for
data submission or the Web page used to report the data anal-
ysis. All of these activities represent the work of individuals
or divisions in companies that develop commercial software
packages.

Although there is clearly room for improvement of the im-
plementation of these courses, there is also evidence that these
courses have provided some of the students with a working
knowledge of bioinformatics that they subsequently put in
practice in the research laboratory. A student recently sent the
following note: “I wanted to let you know that I have used a
lot of what I learned in your classes to do my work [a summer
research internship], which has been entirely molecular meth-
ods! My mentor was impressed that I had experience using
many bioinformatics programs that he uses himself.” This is
the kind of feedback that makes these efforts worthwhile.

SOME FINAL OBSERVATIONS
AND SUGGESTIONS

A number of observations and suggestions come to mind
about the practical aspects of developing and running courses
that include bioinformatics content. These issues and some
possible solutions are described below.

Computer Laboratory Problems. Ideally an instructor will
have access to a dedicated computer laboratory for the first
part of the semester. It is important that the instructor be di-
rectly involved in the installation, configuration, and testing
of the required software packages on these computers, in or-
der to ensure that the exercises can be carried out by the stu-
dents without unnecessary difficulty. Unfortunately this is
more difficult if an instructor is using university-wide com-
puter labs where he or she will have to effect the installation
through the college or university’s IT staff. In the latter case,
it is important to give the IT staff adequate lead time for in-
stallation so that the instructor can make sure that the labora-
tory time with the students will not be unnecessarily wasted
on time devoted to troubleshooting software or hardware
problems.

Student Complaints. A common complaint heard from some
students in the advanced courses is that this course work takes
too much time. More often than not, this is because some stu-
dents completely underestimate the amount of time it takes
to carry out computing tasks. It may seem counterintuitive to
some students, but it is actually possible to become more ef-
ficient through lots of practice at the beginning of the course.
The more students do this work, the more likely they will find
efficient ways to carry out the procedures. With practice it is

Vol. 2, Winter 2003 243

7242F/CBE (Cell Biology Education) 03-06-0026 03-06-0026.xml November 1, 2003 2:22

J.E. Honts

also possible for them to avoid many of the pitfalls that can
consume large amounts of time.

Need to Establish Checkpoints in Research Projects. Stu-
dents often get behind on individual or group projects for
the reason stated above. As a result the quality of their final
presentations or papers suffers. Consequently the particular
portions of the research are now assigned to be due on specific
dates. Meetings are set up with the students at regular inter-
vals to look for concrete evidence of progress. In addition, it
is important to leave sufficient time for students to synthesize
their research findings into a final paper and presentation at
the end. When these changes have been implemented they
have resulted in clearly improved quality of the students’ fi-
nal submitted work. Some of these reports were of sufficient
quality that they could be edited and submitted for publica-
tion in one of an increasing number of undergraduate research
journals.

Do Not Give Them Too Much Help. It is both reasonable and
necessary to come to the aid of students when they are bogged
down in a problem associated with carrying out these exer-
cises. However, it is also imperative that students learn how
to solve some of these problems for themselves. An instruc-
tor occasionally finds himself or herself in a situation where
students are requesting lots of help for every single comput-
ing task they find difficult. It is important to encourage the
students to first read the supporting documentation for soft-
ware programs in order to find the answers for themselves.
It is vital to resist the temptation to “rescue” the floundering
student too soon.

Get a Good Sense of Group Dynamics. It is important to check
that work on group projects is equitably distributed among
the members of the group. Nothing makes for ill will in a
student group more quickly than the perception that some
of the students are not doing their fair share of the work. It
is also important for the instructor to look out for potential
personality conflicts. Some students who decide to work to-
gether at the beginning of the semester soon find themselves
at odds with each other. Personality conflicts all too often re-
duce the effectiveness of the learning opportunities available
to students through collaborative research projects.

Enlist the Help of Computer Science and Mathematics Fac-
ulty. If an instructor wants to include a programming project
in a course, it makes sense to enlist the help of the local com-
puter science faculty—they have the pedagogical experience
in this area. Similarly, a mathematics faculty member could be
very helpful in getting students to understand and appreciate
the aspects of probability and statistics relevant to bioinfor-
matics. Many of these faculty members are very interested in
finding ways to apply their extensive experience to the prob-
lems posed by other scientists, including biologists. There is
abundant evidence that these sorts of collaborations can be
very productive for everyone involved.

SOME FUTURE GOALS

In addition to implementing the improvements mentioned
above, there remain many exciting opportunities to develop
new exercises that reflect the growth and development of

bioinformatics as a discipline and the ways in which it can
contribute to biology and medicine. It has been suggested
that the students could use on-line tools to analyze the gene
makeup of a relatively small genome, such as those of bacteria
or viruses.

It seems reasonable now that a programming project could
be a regular aspect of the bioinformatics course. The publica-
tion of several recent books that introduce the programming
aspects of bioinformatics will facilitate these efforts. In the fu-
ture it would also be useful to have students not only develop
new programs, but also improve and extend the capabilities
of programs created by previous classes.

One of the things that this author wants to do in the future
in these courses is to spend more time talking about what has
been discovered. Just a discussion of the discoveries noted
in the papers describing the first draft of the human genome
could easily fill a semester. Clearly we are still at the very
beginning of an exciting era of biology, and bioinformatics
will contribute heavily to the expansion of our understanding
of the molecular basis of life in the years ahead. We must envy
the students that are just starting their careers in biology!

ACKNOWLEDGMENTS

I would like to thank the many students of the cell biology, structural
biology, and computational biology courses for their help in devel-
oping and refining the exercises described herein. I express gratitude
to Srdan (Serg) Kobsa for his contribution to this paper. I thank the
reviewers for their constructive critiques of the manuscript. I would
also like to thank A. Malcolm Campbell and Donald Stratton for their
help in thinking about student assessment.

REFERENCES

Baxvanis, A.D., and Ouellette, B.F.F., eds. (2001). Bioinformatics. A
Practical Guide to the Analysis of Genes and Proteins, 2nd ed., New
York: Wiley–Interscience.

Bourne, P.E., and Weissig, H., eds. (2003). Structural Bioinformatics,.
New York: Wiley.

Burley, S.K., Almo, S.C., Bonanno, J.B., Capel, M., Chance, M.R.,
Gaasterland, T., Lin, D., Sali A., Studier, F.W., and Swaminathan, S.
(1999). Structural genomics: Beyond the human genome project. Nat.
Genet. 23, 151–157.

Campbell, A.M., and Heyer, L.J. (2002). Discovering Genomics, Pro-
teomics, and Bioinformatics, New York: Benjamin Cummings.

Gibas, C., and Jambeck, P. (2001). Developing Bioinformatics Com-
puter Skills, Sebastopol, CA: O’Reilly & Associates.

Joza, N., Susin, S.A., Daugas, E., Stanford, W.L., Cho, S.K., Li, C.Y.,
Sasaki, T., Elia, A.J., Cheng, H.Y., Ravagnan, L., Ferri, K.F., Zamzami,
N., Wakeham, A., Hakem, R., Yoshida, H., Kong, Y.Y., Mak, T.W.,
Zuniga-Pflucker, J.C., Kroemer, G., and Penninger, J.M. (2001). Es-
sential role of the mitochondrial apoptosis-inducing factor in pro-
grammed cell death. Nature 410, 549–554.

Kong, L.B., Siva, A.C., Rome, L.H., and Stewart, P.L. (1999). Structure
of the vault, a ubiquitous cellular component. Structure Fold Des. 7,
371–379.

Kong, L.B., Siva, A.C., Kickhoefer, V.A., Rome, L.H., and Stewart, P.L.
(2000). RNA location and modeling of a WD40 repeat domain within
the vault. RNA 6, 890–900.

Lander, E.S., et al. (2001). Initial sequencing and analysis of the human
genome. Nature 409, 860–921.

244 Cell Biology Education

7242F/CBE (Cell Biology Education) 03-06-0026 03-06-0026.xml November 1, 2003 2:22

Bioinformatics for Undergraduates

Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D.,
and Darnell, J. (2000). Molecular Cell Biology, 4th ed., New York: WH
Freeman.

Lupas, A., Van Dyke, M., and Stock, J. (1991). Predicting coiled coils
from protein sequences. Science 252, 1162–1164.

Miramar, M.D., Costantini, P., Ravagnan, L., Saraiva, L.M.,
Haouzi, D., Brothers, G., Penninger, J.M., Peleato, M.L., Kroemer,
G., and Susin, S.A. (2001). NADH-oxidase activity of
mitochondrialapoptosis-inducing factor (AIF). J. Biol. Chem.
276, 16391–16398.

Noble, D. (2002). The rise of computational biology. Nature Rev. Mol.
Cell. Biol. 3, 459–463.

Tabin, C.J., Bradley, S.M., Bargmann, C.I., Weinberg, R.A.,

Papageorge, A.G., Scolnick, E.M., Dhar, R., Lowy, D.R., and Chang,
E.H. (1982). Mechanism of activation of a human oncogene. Nature
300, 143–149.

Takeshima, H., Nishimura, S., Matsumoto, T., et al. (1989). Primary
structure and expression from complementary DNA of skeletal mus-
cle ryanodine receptor. Nature 339, 439–445.

Tisdall, J.D. (2001). Beginning Perl for Bioinformatics, Sebastopol,
CA: O’Reilly & Associates.

Venter, J.C., Adams, M.D. et al. (2001). The sequence of the human
genome. Science 291(5507), 1304–1351.

Vukmirovic, O.G., and Tilghman, S.M. (2000). Exploring genome
space. Nature 405, 820–822.

Vol. 2, Winter 2003 245

7242F/CBE (Cell Biology Education) 03-06-0026 03-06-0026.xml November 1, 2003 2:22

J.E. Honts

Appendix
A STUDENT’S PERSPECTIVE ON PROGRAMMING A SIMPLE BIOINFORMATICS

APPLICATION IN PERL
By Srdan Kobsa

Much like any computer application, developing an amino
acid composition calculator presented several challenges. The
primary goal of any well-designed computer application is its
ability to solve a particular type of problem. Furthermore, the
best measure of the program’s success in achieving this goal
is the user’s evaluation. To be successful, a 3D-design applica-
tion must be useful to an architect. A program that calculates
the percentage composition of amino acids in a protein se-
quence should be designed for a molecular biologist. Regard-
less of how elegant the computer algorithm is to a computer
scientist, if the final product makes no sense to a biologist, it
has failed. A good program does not assume or require the
end user to understand the underlying computer logic and
language.

This, however, brings up a crucial requirement: It makes
it necessary for the person creating the program to under-
stand how the final user will use the information. This is not
always trivial, considering that, for example, a biologist’s un-
derstanding of a particular problem might be very different
from the approach that the programmer will have to adopt in
order to make the computer carry out a particular task. The
development of our program required the point of view of
individuals with background in both biology and computer
science. Since members of our group possessed two perspec-
tives, we were in a good position to tackle this problem.

The programming project was divided into distinct phases.
Each phase represents a step from the biological problem to-
ward the computer logistics of the solution. Naturally, the
first step was planning. The students collaborated to develop
a clear idea of the goals of the project and the specific ap-
proaches and functions the program was to have. A simple
and widely used sequence format, FASTA, was chosen as the
default input (www.ncbi.nlm.nih.gov/BLAST/fasta.html).
The user was to enter the name of the protein followed by
its amino acid or the in-frame nucleotide (DNA or RNA)
sequence in FASTA format. If needed, the program would
translate the nucleotide code into the amino acid code and
then calculate the percentage of each amino acid in the de-
duced sequence. The user would then be presented with the
results. This report would include the name of the protein
being analyzed, its total length, and both the number and the
relative percentage of each of the 20 amino acids. This repre-
sented the most challenging aspect of the program that was
to be coded. The results would be represented graphically
by horizontal bar graphs corresponding to the percentage of
each amino acid used. However, since the percentages of the
20 amino acids can be quite low (a single amino acid rarely
composes more than 50% of any single protein), an option to
view the graph on a smaller scale was added. In other words,
instead of using the 0%–100% scale, a user would be given an
option to be presented with a graph on a scale from the zero
percentage up to the maximum occurring percentage of any
amino acid in that specific protein (e.g., if a protein contains
the most alanine—37.8% then the graph would be scaled from
0 to 45% instead of 0 to 100%, making the bars more distinct in

length). This option was added purely for visual benefit to the
user.

By far the most practical and accessible way to implement
these functions is the World Wide Web. In fact, a myriad of
computational biology tools already exists on the Web, rang-
ing from simple ones such as this amino acid composition cal-
culator to complicated structure prediction algorithms. The
program would be accessible to anyone in a very simple and
universal format. In addition to the HTML used to compose
the Web elements needed for the user interface, the actual
computational operations were carried out in Perl, which is,
traditionally, one of the most commonly used programming
languages on the Internet.

The project was now ready for the second phase—the de-
velopment of the details of the programming algorithm in the
form of a flowchart (Figure 1). This represented the transition
between the practical reasoning of biology and the computer
logic. The information flow in the amino acid composition
calculator starts with the user entering the name and the se-
quence of the protein. The user also specifies whether the
entered data are an amino acid, a DNA, or an RNA sequence
and selects a particular type of graph. Those inputs are then
sent by the computer over the Web to the server hosting the
Perl program to be processed. First, the sequence is checked.
If an empty input or nonallowed characters are encountered,
an error is reported. Next, the identifier line included in the
FASTA format is removed, if one is present. Any additional
characters, such as spaces, tabs, line feeds, and returns, are
also checked for and removed if present. Finally, the remain-
ing letter sequence is made uppercase (for uniformity). If the
entered sequence is DNA or RNA, it is translated into the
20 single-letter amino acid code using the standard genetic
code. The number of letters in this final character string is then
counted. It represents the total length of the protein in amino
acid residues. Next, each of the 20 individual amino acids is
counted by summing up the number of times the particular
amino acid code letter appears in the sequence. The ratio of
the two values gives the relative percentage of the specific
amino acid in the sequence. If the user has selected the option
to scale the graph according to the maximum percentage that
appears in a particular query, the largest percentage is also
recorded. Finally, a separate Web page containing the results
is generated.

The final stage of the project consisted of actually writing
the computer code (see excerpt in Figure 2). Students that
had more extensive experience in computer programming
and Web page design were especially involved in this stage.
A Web page containing a submittable form was constructed,
as this would be the way by which the user would enter the
information and select desired options (Figure 3). This Web
page was linked to a Perl executable script in a way that took
the information entered by the user and assigned it to com-
puter variables. The text variable containing the actual se-
quence was key. A Perl function (length) was used to evaluate
the length of the string. If it was found to be zero, indicating

246 Cell Biology Education

7242F/CBE (Cell Biology Education) 03-06-0026 03-06-0026.xml November 1, 2003 2:22

Bioinformatics for Undergraduates

an empty sequence, an error was reported. A function that re-
places characters in a string (s///) was used to remove spaces,
tabs, line feeds, and returns. Each of these was simply re-
placed with an empty character (not a space). Finally, the uc
function was used to make the whole string uppercase. If
needed, an array was defined containing the amino acid dic-
tionary, then used to translate nucleic acid codons into amino
acids. To count the particular letters in the string, a function
that looks for a specified string and then returns the number
of occurrences was used (tr). A temporary variable was also
assigned to contain the maximum number of occurrences of
any amino acid. Each time an amino acid was counted, the
number was compared to the current maximum in the tem-
porary variable. If the new count was larger than the current
value of the temporary variable, the maximum was replaced
with the new number. This made it possible to evaluate the
maximum scale value on the bar graph.

In order to use HTML with Perl, a special module
(HTML::Template) was downloaded form the ActiveState
Perl Web site (www.activestate.com). This module made it
possible to include Perl-generated variables into ordinary
HTML. The bar graphs were developed using a very com-
mon “trick.” Having a solid color image of a fixed height

makes it possible to simply stretch it in HTML (<img width =
”X”> variable) to a desired width. The widths were calculated
by simply multiplying the percentage of a particular amino
acid with the set width of the bar graph. For example if the
percentage of leucine was found to be 8.7% and the width of
the full bar graph (100%) was set at 500 pixels, the width of the
leucine bar would be 500 × 0.087, or 43.5 pixels. Since the im-
age width in HTML has to be an integer, a Perl function (int)
was used to round the numbers. In the case that the user had
selected the maximum occurring percentage as the scale for
the graph, that percentage (increased 10 percentage points)
would be given a value of 500 pixels, and all the other math
would be adjusted accordingly (e.g., if the full length of 500
pixels represented 45%, then 8.7% for leucine would equal 97
pixels). Once generated, the resulting Web page was sent to
the user’s Web browser as a response to the query (Figure 4).

This project not only involved extensive teamwork, but re-
quired drawing upon distinctively different areas of expertise
of students in the group. It revealed both the issues and the
connections between computational biologists and software
engineers. While small in functional scope, this project served
as a very good model, which remains open to additional
development.

Vol. 2, Winter 2003 247

