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The IMMEX (Interactive Multi-Media Exercises) Web-based problem set platform enables the
online delivery of complex, multimedia simulations, the rapid collection of student performance
data, and has already been used in several genetic simulations. The next step is the use of these
data to understand and improve student learning in a formative manner. This article describes the
development of probabilistic models of undergraduate student problem solving in molecular
genetics that detailed the spectrum of strategies students used when problem solving, and how
the strategic approaches evolved with experience. The actions of 776 university sophomore
biology majors from three molecular biology lecture courses were recorded and analyzed. Each of
six simulations were first grouped by artificial neural network clustering to provide individual
performance measures, and then sequences of these performances were probabilistically modeled
by hidden Markov modeling to provide measures of progress. The models showed that students
with different initial problem-solving abilities choose different strategies. Initial and final
strategies varied across different sections of the same course and were not strongly correlated
with other achievement measures. In contrast to previous studies, we observed no significant
gender differences. We suggest that instructor interventions based on early student performances
with these simulations may assist students to recognize effective and efficient problem-solving
strategies and enhance learning.

Keywords: scientific problem-solving strategies, hidden Markov models, learning trajectory, neural
networks

INTRODUCTION

Most core undergraduate science curricula contain associ-
ated laboratory or discussion sections. The main goal of these
sections is to extend the lecture material through activities
that integrate course content and promote the students’
critical thinking and problem-solving skills. These activities
take many forms, including hands-on wet-lab activities,
paper discussions, peer-directed and collaborative assign-
ments, computer-based assignments, and so forth.

A recurring challenge for instructors in these settings is
determining whether the students are indeed learning to
think critically as well as mastering the content. While a
variety of qualitative and qualitative tools/approaches are
available which provide summative measures of overall
student learning (Sundberg, 2002; Tanner and Allen, 2004),
few provide detailed insights into the dynamics of strategy
and skill formation as students gain problem-solving
experience (Alexander, 2003).
This suggests that if dynamic models of how students

approach and solve scientific problems could be created,
they could be important formative assessment tools. For
instance, such models could document and begin to explain
the diversity of learning approaches of individual students
and student groups (for instance, across gender). They could
also help guide more uniform learning experiences for
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students across discussion sections, by documenting the
qualitative and quantitative strategic differences employed
in different setting or with different instructors. Such
analyses could also provide real-time assessment of classes
in progress and help identify candidates for intervention.
Finally, if sufficiently detailed, such models could be
predictive of students’ future performances and used to
evaluate the effectiveness of various learning supports.
Learning trajectories describe the differences between

novices and experts in a problem-solving task. Novices
often have limited and fragmented knowledge that contrib-
utes to a lower ability to ‘‘frame the problem,’’ that is,
recognize the importance of problem elements and prioritize
solution strategies. Novice strategies are often ineffective
(they fail to reach the correct answer) and inefficient (they
require more steps, more time, more reference material).
Experts are more efficient in the use of resources and deri-
ving the correct answer. These can be viewed as defining
stages of understanding as experience is developed (Van-
Lehn, 1996). With practice, students’ knowledge becomes
more structured and deeper, and this is reflected by changes
in their strategic approaches. Eventually most students
adopt an approach with which they are comfortable that
they will use for similar types of problems in the future.
Although it is apparent that most students do not
continually improve on most tasks, there are few descrip-
tions as to how and why individuals differentially stabilize
their performance levels.
In this article, we build on these ideas and describe a

process for developing probabilistic models of problem
solving based on students’ performance on a series of online
microbial genetics simulations. In constructing frameworks
for these models, we felt they should 1) reflect what students
do, 2) be able to categorize rapidly each performance with
regard to the adequacy of the strategic approach, 3) provide
a measure and benchmarks for progress, and 4) be easy to
understand and relate to other performance measures. We
describe this modeling approach for molecular genetics, but
it is applicable to many domains in which scientific
competence is being developed.

TASK AND METHODS

Problem-Solving Task

The online software used for these studies, termed IMMEX
(Interactive Multi-Media Exercises), has been useful for
understanding how strategies are developed during scien-
tific problem solving (Stevens et al., 1999; Underdahl et al.,
2001). IMMEX problem sets, which follow the hypothetical-
deductive learning model of scientific inquiry (Lawson, 1995;
Olson and Loucks-Horsley, 2000) are created by teams of
educators, teachers, students, and university faculty and are
aligned with discipline learning goals and state and national
curriculum objectives (Stevens and Palacio-Cayetano, 2003).
In these online scenarios, students are expected to frame a
problem from a descriptive scenario, judge which informa-
tion is relevant, plan a search strategy, gather information,
and eventually reach a decision that demonstrates under-
standing. These exercises are closed-ended; that is, they work
from a specific starting point and work toward a single
correct answer.

We have used the IMMEX problem set The lac Operon,
which focuses on the expression and regulation of bacterial
genes, to develop learning trajectory models (Johnson et al.,
2004). This and other IMMEX problems can be explored at
the IMMEX home site: http://www.immex.ucla.edu. The
scenario begins with a student being given a strain of
Escherichia coli with a mutation in the lactose operon and the
task is to determine the location of this mutation. There are
menu items available for laboratory data such as indicator
plates, enzyme assays, protein or RNA expression blots, gene
maps, as well as glossary references to these techniques that
provide explanations (Figure 1).

By clicking on these menu items, students can get specific
test results, and when the item is selected, they are shown a
brief multimedia presentation of the test being performed
and directly observe the results. The IMMEX database
collects timestamps of these action items when the student
makes the selections.

To ensure that students gain adequate experience, this
problem set contains six cases that can be performed in class,
assigned as homework, or used for testing. These cases, 1–6,
represent the mutations 1–6 in Figure 1. Interestingly, case 2
was significantly (Pearson v2 = 122.4, p, .000) more difficult,
with a solved rate of 59% compared with the other five cases,
which have a solved rate of 80%.

Classroom Setting

The discussion sections where The lac Operon problem set has
been implemented were weekly, 1-h classes of ~25 students.
They were designed to review the lecture material of the
previous week and, as much as possible, help students
develop critical thinking skills in molecular biology. The
problem-solving software component consists of two IMMEX
problems, Which Plasmid Is It?, which provides experience in
DNA restriction mapping, and The lac Operon. The specific
assignment for the 2003 classes was to have the students do
all six lac Operon cases, and 360 students participated. In the
summer 2003 class, the IMMEX problems were optional, only
five lac Operon cases were required, and 160 students
participated. In the 2004 classes, the assignment was to
complete five cases, and 256 participated. Thus, a total 776
students completed 3,599 cases that were further subjected to
analysis. In all classes, the first two cases were not graded,
allowing the students use these attempts to acquaint
themselves with the problem space. The final three cases
were scored based on whether the student solved the case or
not (5 points for solving the problem on the first attempt, 4
points for solving it on the second attempt, and fewer points
for not getting a correct answer). Of the students who
participated in this exercise in 2004, the average score was
12.4 out of 15 possible, suggesting that the students took the
assignment seriously.

Sources of Performance Data

In constructing and validating our model of student learning,
we have relied on the following pieces of summative
evidence:

� Student summaries of their problem-solving approach
� Problem-solving data from six The lac Operon cases
� Discussion section grades
� Overall course grades
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The modeling approaches and tools we used included the
following:

� Categorization of common strategies by artificial neural
network clustering

� Models of learning progress derived from hidden Markov
modeling

For this article, we detail the performances of three
students that represent high (student 86588), medium
(student 86525), and low (student 86763) overall perform-
ance in the discussion sections. The performance and
modeling data for these students are shown in Appendices
A, B, and C.

Student Summaries

To stimulate meta-cognition and provide evidence of
strategic thinking, students could write, for 5 extra credit
points, a short (one paragraph) essay on ‘‘My Winning
IMMEX Strategy.’’ This assignment was optional in 2004, and

136 essays were received. The assignment was mandatory in
2003, and 305 essays were received.
The three essays of the highlighted students (86588,

discussion grade 9.5; 86525, discussion grade 7.5; 86763,
discussion grade 6.5) suggest that students adopt hypothesis-
testing approaches of different degrees of diversity and
structure. The first student developed a hierarchical if–then
approach; the second, a more limited approach focusing on
structural rather than regulatory aspects; the third, a strategy
focused on one test category. The first student appeared to
spend time early to understand mutations, the lactose
operon structure, and the different techniques available,
whereas the other two students did not mention this process.
By investing time to frame the problem, this student was
adopting a strategy more like experts, who proportionally
spend more time in framing a problem than do novices (Chi
et al., 1988). This problem-framing process helps keep the
complexity within manageable dimensions for the student
and would be expected to lead to improved future perform-
ance (King and Kitchener, 1994; Lynch, 2000).

Figure 1. The lac Operon. In The lac Operon problem set, students access a variety of assays used in a molecular biology laboratory to determine
the location of the structural and regulatory mutations within the lactose operon of Escherichia coli.
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Search Path Maps of Student Performances

We first wished to determine how these student statements
encapsulated what they actually did. For this, we used online
visualization technologies that trace the sequence of item
selections by students (Stevens, 1991). The lac Operon problem
space contains 41 data items (available as buttons) that
students view in any order they feel appropriate and that
contain the information needed to solve the case. We create
visual representations, or templates, of the problem space
where related conceptual items are grouped together and
color coded. We then use a series of lines to connect the
sequence of items selected. Some of the search path maps can
become complex as students transit the problem set (Figure 2).
A comparison of the search path maps with the student

essays indicated a close correspondence. For instance,
student 86525 verbalized the selection of enzyme assays
and protein blots as core parts of his or her strategy, and this
is also shown by the search path maps. From these maps, it is
also apparent that with practice the student strategies
changed, becoming more efficient (i.e., fewer tests), more
rapid, and, for the most part, more effective.
These maps are available for all students and their teachers

in real time on the Web following completion of a case.
Students may have used them to write their essays, which
were then used to stimulate class discussions of efficient and
inefficient strategies. Although informative, these maps can
be time consuming to group, given a class of 256 students. To
overcome this limitation, the next step in our modeling uses

artificial neural networks (ANN) to identify and categorize
the most common approaches.

Defining Strategies with Artificial Neural Networks

ANNs derive their name and properties from the connec-
tionist literature, share parallels with the theories of
predicted brain function (Rumelhart and McClelland, 1986)
and have properties that make them attractive candidates for
modeling learning trajectories (Stevens and Casillas, 2004;
Stevens and Najafi, 1993; Stevens et al., 1996).

Rather than being programmed per se, the neural net-
works build internal models of complex processes through
training routines in which thousands of examples of the
process being modeled are repeatedly presented to the
software. When appropriately trained, neural networks can
generalize the patterns learned to encompass new instances
and predict the properties of each exemplar. Relating this to
student performance of online simulations, if a new
performance (defined by sequential test item selection
patterns) does not exactly match the exemplars provided
during training, the neural networks will extrapolate the best
output according to the global data model generated during
training. For performance assessment purposes, this ability
to generalize is important for ‘‘filling in the gaps’’ given the
expected diversity between students with different levels of
experience.

The mathematics behind self-organizing neural networks
is such that groups of similar performances appear on an
output 6 3 6 grid of classifications as physically near each
other (Kohonen, 2001). ANNs yield a ‘‘topological map’’ of

Figure 2. Sample Search Path Map. The first performance of student 86588 has been overlaid on the The lac Operon template with lines
connecting the sequence of test selection. For this problem template the green items are in the Glossary, the yellow items are enzyme assays,
DNA and RNA blots are orange, the mutation and restriction maps are red, the protein blots are purple, and the conjugation/transformation
assays are pink. The lines go from the upper left-hand corner of the ‘‘from’’ test to the lower center of the ‘‘to’’ test. Items not selected are shown
in transparent gray. At the top of the figure are the overall statistics of the case performance. At the bottom of the figure is a time line on which
the colors of the squares link to the colors of the items selected, and the width of each rectangle is proportional to the time spent on that item.
These maps are immediately available to teachers and students at the completion of a problem.
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similar performances on which the geometric distance
between nodes is a metaphor for similar solving strategies.
The search path map for the first, second, and sixth
performances of student 86588 are quite different and clearly
separated by the ANN (refer to Appendices). Similarly, the
third performance of students 86588 and 86525 appear
similar to the eye and cluster together on the ANN nose map.
For these studies, we used a 36-node neural network that

was trained with 2,564 performances of The lac Operon
derived from university students, and most students
performed five or all six cases in the problem set. Choices
regarding the number of nodes and the different architec-
tures, neighborhoods, and training parameters have been
described previously (Stevens et al., 1996).
To understand the basis of this classification, the organ-

ization of strategies from the trained neural networks were
visually represented at each node of the neural network by
histograms showing the frequency of items selected by
students (Figure 3). For The lac Operon, there are 41 items that
relate to Glossary Information (items 2–27), Molecular Maps
(items 28–30), Enzyme Assays and Transformations (items
31–35), and RNA, DNA and protein blots (items 36–40). Item
41 was a worksheet that students could print out to take
notes. The resulting 36 classifications are variables that can
be used for immediate feedback to the student, serve as input
to a test-level scoring process, or serve as data for further
research by linking to other measures of student achieve-
ment as we show later in this article.
Most strategies defined in this way consist of items that are

always selected for performances at that node (i.e., those
with a frequency of 1) as well as items that are ordered more
variably. For instance, all Node 9 performances shown in
Figure 3 contain the items 1 (Prologue) and 2 (Glossary).
Items 22, 29–31, and 38 have a selection frequency of 60%–
80%, and thus any individual student performance would
most likely contain only some of these items. Finally, there
are items with a selection frequency of 10%–30%, and we
regard these more as background noise, rather than a
significant contributor to a strategy. Figure 4 is a composite
nodal map, which displays the strategic topology generated
during the self-organizing training process
Given that the neural network was trained with vectors

representing the items that students selected, it is not

surprising that a topology is developed based on the
quantity of items. For instance, the middle of the first row
of the map (node 4) represents strategies where a large
number of tests are being ordered, whereas the lower left
contains clusters of strategies where few tests are being
ordered. Differences reflecting the quality of information
being accessed are also easily seen. An example of a general
qualitative strategic difference is where students select a
large number of items, but no longer use the Glossary. These
strategies are represented on the right-hand side of Figure 4
(nodes 6, 12, 18, 24, 30, and 36) and are characterized by
extensive selection of items mainly on the right-hand side of
each histogram. Nodes 2, 8, and 14 illustrate another
qualitative difference in which there is predominantly a
usage of enzyme assays.
Once ANNs are trained and the strategies represented by

each node are defined, new performances can be tested on
the trained neural network, and the strategy (node) that best
matches the new input performance vector can be identified.
For instance, were a student to order many glossary items
and tests while solving a The lac Operon case, this perform-
ance would be classified with the nodes of the upper center
of Figure 4, at node 4, whereas a performance where the
mutation maps were reviewed followed by gene expression
assays would be more toward the center or the lower-left
corner. The strategies defined in this way can be aggregated
by class, grade level, school, or gender and related to other
achievement and demographic measures.
For instance, the ANN category of each of the perform-

ances of the three students described here is shown in Table 1.
Students 86588 and 86763 started with a similar strategy that
included the examination of most of the data; student 86525
showed a leaner strategy by not examining the nucleic acid
blots or the conjugation and transformation assays. By the
third case, student 86525 had adopted a strategy that
included mutations maps, enzyme assays, Western blots,
and Southern blot. Student 86763, although slowly stabiliz-
ing on an approach dominated by looking at all maps and
performing all Western blots, continued to vary his or her
strategic approach by continual reference to the glossary
material. Through such inspections, the student perform-
ances shown by the search path maps can begin to become
described in terms of nodal categories.

Figure 3. Sample nodal analysis. This nodal analysis diagram shows the frequency with which each item was selected during the
performances at the particular node (node 9). The associated labels identify general categories of these tests.
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Figure 4. Complete The lac Operon Neural Network Topology Map. Following training with 2,240 student performances, test usage
histograms were created for each node showing the frequency of action items selected at each of the 36 nodes. The proportion of the dataset
clustered at each node is shown above each figure.
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Defining Progress with Hidden Markov Models
ANN analyses provide point-in-time snapshots of students’
problem solving. More complete models of student learning
include changes in student strategies with practice. A novice
learner might choose to review all available data items. The
same strategy in a more experienced student would indicate
a lack of progress, because a more experienced learner
would be expected to choose only pertinent data items.
More complete models of student learning therefore have to
take into account the changes of student’s strategies with
practice.
In this research we have used hidden Markov modeling to

extend these preliminary results to more predicatively model
student learning pathways. Markov models are used to
model processes that move stochastically through a series of
predefined states (Rabiner, 1989). The states are not directly
observed but are associated with a probability distribution
function. For example, imagine a robot, whom we will call
Hal, that wanders through a hospital from room to room
performing various duties. Hal’s virtual map might include a
doctor’s office, a ward, and the coffee room. The arcs in a
Markov chain describe the probability of moving between
states, and the sum of the probabilities on the arcs leaving a
state must sum to one. So, in Figure 5, we see that if Hal is in
the doctor’s office, there is a 20% chance that he will move to
the ward, a 30% chance that he will wander to the coffee
room, and a 50% chance that he will just stay put. Markov
chains also specify that the probability of a sequence of states
is the product of the probabilities along the arcs. So, if Hal is
in the doctor’s office, then the probability that he will move
to the ward, and then the coffee room is (.2)(.3) = .06, or 6%.
Hidden Markov models generalize Markov chains in that

the outcome associated with passing through a given state is
stochastically determined from a specified set of possible
outcomes and associated probabilities. Consequently, it is not
possible to determine the state the model is in simply by
observing the output (i.e., the state is ‘‘hidden’’). For
example, we might estimate Hal’s location (state) by an

account of the messages displayed on his chest (outcomes). A
given sequence of observations may be associated with more
than one possible path through the hidden Markov model.
The observation symbol probability distribution describes
the probabilities of each of the observation symbols, for each
of the states, at each time.
Hidden Markov modeling methods have been used

successfully in previous research efforts to characterize
sequences of collaborative problem-solving interaction,
leading us to believe that they might show promise for also
understanding individual problem solving (Soller, in press;
Soller and Lesgold, 2003). Interested investigators might
visit: http://www.ai.mit.edu/~murphyk/Software/HMM.
In applying this process to model student performance, a

number of unknown states are postulated to exist in the data
set that represent strategic transitions that student may pass
through as they perform a series of IMMEX cases. For most
IMMEX problem sets, a postulated number of states between
3 and 5 have produced informative models. Then, similar to
ANN analysis, exemplars of sequences of strategies (ANN
node classifications) are repeatedly presented to the hidden
Markov modeling software to develop progress models.
These models are defined by a transition matrix that shows
the probability of transiting from one state to another, an
emission matrix that relates each state back to the ANN
nodes that best represent that state, and a prior matrix that
postulates the most likely starting states of the students.
The transition matrix for The lac Operon hidden Markov

model is shown in Table 2. By looking along the diagonal
(bold), States 2, 4, and 5 appear stable, suggesting that once a
student adopts a strategy represented by these states, her or
she is likely to remain there. In contrast, students adopting
State 1 and3 strategies are less likely topersistwith those states
but are more likely to adopt other strategies (gray boxes).
The emission matrix resulting from the trained hidden

Markov model also provides the probability of any
particular node (emission) occurring in any particular state.

Table 1. Artificial neural network category of performance of the three students

Example Strategy Sequence Description

86588 6 34 20 18 32 20 Many tests initially, with decreased use of blotting techniques with experience
86525 23 12 20 29 29 29 Progressive refinement and stabilization of a strategy consisting of restriction maps and

blotting techniques
86763 6 9 16 22 9 23 Many test selections

Figure 5. A Markov chain showing the probability that Hal (the
robot) will enter various rooms.

Table 2. The transition matrix for the The lac Operon hidden
Markov modela

To State

From State 1 2 3 4 5

1 0.685 0.042 0.017 0.005 0.249
2 0.000 0.999 0.000 0.000 0.000
3 0.315 0.163 0.183 0.225 0.111
4 0.000 0.002 0.000 0.965 0.032
5 0.000 0.055 0.000 0.000 0.944

aSee text for explanation of boldface text and gray boxes.
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In addition to providing the test selection composition of
each node, Figure 4 also has been color-coded to show the
most likely state that each node is associated with. Here State
3 consists of nodes 4 and 6 in the upper right corner, and
State 5 contains nodes predominantly in the lower-left
portion of the ANN grid. Table 3 summarizes the properties
of each of the states with respect to the items selected and the
solve rate.
Finally, Table 4 shows the prior probabilities derived from

the hidden Markov model. This indicates that the most likely
state for students to begin in on their first The lac Operon
performance is State 3, followed by states 2 and 4.

RESULTS

The modeling approach described here results in a model in
which 1) each new performance can be categorized into one
of 36 groups and 2) a series of performances can be grouped
into one of five sequences with probabilities of transiting
from each state to another.
In this section we begin to explore the validity, usefulness,

and limitations of this modeling process by asking questions
such as the following:

� What is the diversity of student strategies?
� How do strategies change with practice?
� Are there multiple learning trajectories?
� Do different classrooms share similar learning trajectories?
� Are there gender differences in how students approach
and solve problems?

� How does IMMEX problem-solving performance compare
with summative assessments?

Case Specificity of ANN Nodal Categories

We first examined the case specificity of each of the
categories defined by the ANN analysis; that is, cases were
analyzed individually rather than as a group of all six.

Certain nodes were significantly enriched for performances
of different cases. For instance, cases 1 and 3 where the
mutations were in the repressor and operator genes showed
an enrichment of performances at nodes 31 and 32. Here, in
addition to the mutations map and enzyme assays, all
students at this node also selected an antirepressor protein
Western blot. Similarly, the performances for case six, the
permease mutation, were enriched at nodes 21 and 27, and
included the Western blot for permease enzyme.

Case 2, the promoter mutation and the most difficult case
in the problem set, showed a different form of case specificity
with higher than expected numbers of performances at
nodes 11, 12, 17, and 18. These nodes represent strategies for
which almost all of the data available are being accessed,
suggesting, perhaps, that students were solving this case by a
process of elimination rather than confirmation. Student
feedback suggests that unexpected data was confusing.
Specifically, students expected the mutation to ablate
promoter activity completely, whereas in Case 2, some
residual activity remained.

Interestingly, the case specificity only applied when the
solved performances were examined, indicating that for The
lac Operon there are relatively few ways to solve each
problem, but many ways to miss them.

Gender

The male and female students in the discussion section
performed the same number of cases and solved the same
proportion of cases (Pearson v2 = 3.8, p . .05). A two-way
contingency table analysis was conducted to evaluate
whether male and female students were differentially using
strategies represented by the ANN nodes or the hidden
Markov model states. Unlike other problem sets we have
examined (Stevens et al., in press), there were no differences
in strategies employed by the two groups.

Solution Frequencies and Learning Trajectories

The overall solution frequency for The lac Operon testing data
set (N = 3,599 performances) was 76%, and there were
significant solved rate differences between the states (Pear-
son v2 = 79.2, p , .000). State 3, which is characterized by
exhaustive use of data and descriptive items, had a lower
than average solve rate, and State 5, which is characterized
by limited and efficient use of data items, had a higher than
average solve rate (Table 3). The solve rates at each state
provided an interesting view of progress. For instance, if we
compare the differences in solve rates shown in Table 3 with
the most likely state transitions from the matrix shown in
Table 2, we see that most of the students who start at State 3,
and have the lowest problem solving rate (62%), will transit
either to States 1 or 4. Those students who transit from State
3 to either State 1 or State 4 will show, on average, a 15%
performance increase. The students at State 4, however, are
most likely to maintain their strategies (using most of the
enzyme assays and blots), whereas those in State 1 have a
high probability of transiting to State 5, which is the most
efficient problem solving state.

Dynamics of State Changes

Over the course of 6 The lac Operon performances, the solved
rate increased from 67% (case 1) to 80% by case 3 (Pearson v2

= 46.8, p , .000), and this was accompanied by correspond-

Table 3. Properties of each state with respect to items selected and
solve rate

State
Solve rate

(%) Transitions Items represented

1 75 In transit Maps, enzymes, and limited blots
2 76 Stable Enzyme assays and very limited

other tests
3 62 In transit Mostly test items and descriptions
4 75 Stable All maps, all enzymes, and all blots
5 85 Stable Effective testing—limited use of

enzymes and blots

Table 4. Prior probabilities derived from the hidden Markov model

State Prior probability

1 .01
2 .03
3 .69
4 .15
5 .12
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ing state changes (Figure 6). These changes over time were
characterized by a decrease in the proportions of States 1 and
3 performances and increases in States 2, 4, and 5 perform-
ances.

Problem-Solving Ability and State Transitions

Learning trajectories were then developed according to
students’ overall problem-solving ability as determined by
item response theory analysis (Linarce, 2001). This analysis is
similar to the overall solve rate for a student, but it also
factors in the performance of each student on each case, thus
accounting for the difficulty of the cases. The data is usually
expressed in terms of a person measure, which ranges from 0
(lowest) to 100 (highest). For these studies, students were
grouped into high (person measure = 72–99), medium
(person measure 50–72), and low (person measure 20–50)
categories. There were significant state differences between
the different groups (Pearson v2 = 68.3, p , .000) with the
highest group (group 3) showing a larger than expected use
of State 5, the intermediate group (group 2) showing higher
than expected use of State 4, and the lowest group (group 1)
showing a higher than expected use of States 2 and 4. These
data indicated that students with different problem-solving
abilities were employing different strategic approaches as
they problem solved across the six lac Operon cases. As
shown in Figure 7, the state distributions of the students in
the different groups changed little after the fourth case,
suggesting that additional practice alone would not turn
low-performing students into higher-performing students.

Learning Trajectory Differences across Classrooms

Learning trajectories were then examined across different
classrooms. Although there we no significant differences in
the solved rates across classrooms (Pearson v2 = 21.3, p =
.049), there were large differences across classrooms in the
nodal categories (Pearson v2 = 1877, p , .000) and hidden
Markov model states (Pearson v2 = 465, p , .000). Four
representative classrooms are shown in Figure 7 that
exhibited different starting state distributions, final state
distributions, or both. Some classrooms rapidly adopted
effective problem-solving strategies (i.e., States 4 and 5 for
class 2202), whereas other classes were slower in developing
an effective learning trajectory (i.e., class 2203).

Correlation with Other Measures

A final set of studies related the students’ overall problem-
solving ability with other course assessments including the
overall course grade and the discussion section grade. This
was conducted for the year 2004 students for whom the
summative grades were available. The overall course grade
consisted of a midterm examination, a discussion section
grade, and a final examination. The discussion sections and
lectures are run independently, so material unique to the
discussion section will not be explicitly covered on the
examinations, which consisted of standard short answers
and essays. As shown in Table 5, the correlations between
overall problem-solving ability, the final examination, and
discussion section grades were moderate.
A more detailed study was then performed across

discussion sections using the discussion section grade along.
The discussion section grade represented 10% of the total
course grade and was determined from three quizzes, each
worth 25 points, and the homework, which also accounted
for 25 points of the final grade. As shown in Table 6, the
correlation between these measures was variable across these
classes ranging from very high correlations (classes 2202,
2203, and 2207) to no correlation (classes 2205, 2208, 2210,
and 2200). Interestingly, these could not be explained by
overall problem-solving or discussion grades across the
classes, which were not significantly different.

DISCUSSION

There were several goals of this study. The first was to
develop models of how students gain competence in
domain-specific problem solving. We were particularly
interested in learning whether the combination of ANN
analysis for describing a performance and hidden Markov
modeling for describing progress across a sequence of
performances resulted in useful models of the learning
trajectories being explored. Next, we wished to understand
the factors influencing student’s position and progress along
the framing, transitions, and stabilization stages of the
learning trajectory for The lac Operon.
In relating our models to a learning trajectory framework,

the early framing stage where strategies are being formu-
lated was best represented by State 3. From the prior

Figure 6. Changes in HMM State Distributions with Experience. This bar chart tracks the changes in all student strategy states across six The
lac Operon performances. Mini-frames of the strategies in each state are shown for reference.
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probabilities matrix from hidden Markov modeling training,
these are the strategies that students are most likely to adopt
on their first lac Operon case (probability = .69) and is also
represented by students extensively exploring the problem
space and selecting most of the experimental data as well as

multiple glossary items. As expected, the solved rate for this
state was the lowest, suggesting that State 3 strategies
represent the more surface-level strategies, or those built
from situational (and perhaps inaccurate) experiences. From
the transition matrix, State 3 is not an absorbing state and

Figure 7. Learning Trajectories For Students With Different Abilities. The individual student population was separated into different ability
levels as described in the Methods section and the strategy state usage was determined for each of the six The lac Operon performances.
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most students move from this strategy type on subsequent
performances. It is likely that State 3 contains subsets of
students containing those that 1) will explore extensively on
the first case and then rapidly leave it and 2) those who tend
to persist longer with this approach.

With experience, the student’s knowledge base becomes
qualitatively more structured and quantitatively deeper.
This should be reflected in the way competent students or
experts approach and solve difficult domain-related prob-
lems. In our model, State 4 would best represent the
beginning of this stage of understanding. State 4 is a general

Table 5. Grade correlations between overall problem-solving
ability, the final examination, and discussion section grades

Problem solving Discussion Final

Problem solving
Pearson correlation 1 .494** .286**
p (two-tailed) .000 .000

Discussion
Pearson correlation .494** 1 .608**
p (2-tailed) .000 .000

Final
Pearson correlation .286** .608** 1
p (2-tailed) .000 .000

**Correlation is significant at the .01 level (two-tailed).

Table 6. Correlation between measures across classes

Class ID Problem solving Discussion N r p values

2202 68 72 76 .874 0
2203 70 68 98 .714 0
2205 71 73 95 �.040 .711
2206 72 73 157 .513 0
2207 67 67 110 .761 0
2208 66 61 115 �.020 .840
2209 72 69 124 .321 0
2210 57 64 146 .276 .001
2211 68 77 121 .564 0
2200 65 64 127 .133 .135

Figure 8. Learning Trajectories Across Classrooms. The proportion of HMM state usage for students from four molecular biology discussion
sections are plotted for the six cases performed.
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all-purpose strategy by which most of the maps and
laboratory data are ordered. It provides opportunities for
both proving and eliminating hypotheses, and although not
the most efficient approach, it has a reasonable success rate
(78% for cases 1 and 3–6). On the most difficult case of the
problem set, case 2, the solution frequency was only 55%,
suggesting it is not a robust strategy for the more difficult
problems.
Once experience was developed, students employed more

effective and efficient strategies. This was most clearly shown
by State 5 for which the solved rate was high and nodal
analysis suggested selective test selections; State 2 would
seem to be an even leaner strategy subset, and again, one not
as robust as State 5 with the more difficult case 2 (68% solve
rate vs. 77% solve rate). Not surprisingly, higher-achieving
students had a higher proportion of performances in these
states. What was interesting, and consistent with our
previous observations, was that students appeared to
stabilize their strategies by the fourth case performance,
even though their solution frequency also stabilized at only
79%. Thus, one-fifth of the students may be comfortable with
an approach that is neither efficient nor effective, and
without an external intervention they could be at risk of
failing to improve. Preliminary studies from a chemistry
problem set under analysis suggests that learning in a
collaborative group may be effective for jogging these
students out of this state (Stevens et al., in press).
These studies also suggest that there were significant

strategic differences across classrooms as evidenced by
significant differences in the state learning trajectories across
classroom settings. These were observed in the framing,
transition, as well as the stabilization stages. These differ-
ences were not easily explained by differences in student
abilities in the different sections. Because the sections were
conducted on Monday, Tuesday, Wednesday, and Friday, one
explanation was that students later in the week benefited
from the experiences of the earlier students. A closer
examination of the data suggested this may not be occurring,
and in fact, going first may be an asset for strategic
development. First, the overall solution frequency across
the M, T, W, F sections was not significantly different
(Pearson v2 = 4.5, p = .209). Second, although the state distri-
butions across the daily sections were significantly different
(Pearson v2 = 77.0, p , .000), the Monday periods actually
had the highest proportions of State 5 performances, whereas
the other sections had higher proportions of States 1 and 4
performances. In fact, detailed learning trajectory analysis
showed that many of the students in the Monday sections
followed the State 3 . State 1 . State 5 transition sequence,
whereas the other sections more rapidly stabilized on State 4
strategies.
What specific suggestions can be extrapolated from these

studies and models regarding the use of The lac Operon
problem set in undergraduate classes? The first would be
directed toward problem set development. The solution
frequency for Case 2, one mutation dealing with regulation,
was the lowest, suggesting that this was a topic in which the
students could use more experience. From a data analysis
perspective, having additional problem sets that vary in
difficulty would also improve the modeling of student
abilities by item response theory, as well as test the efficacy
of our interventions. The dynamics of the learning trajectory
models would also suggest that when the state information

was reported back to faculty in an easy-to-understand form,
then by the third or fourth performance, instructors in the
discussion sections could begin to engage in interventions to
improve the development of student strategies. These
interventions could be targeted either to individual students
in classrooms where most students are making good
progress, or performed in group sessions in which an entire
section is struggling with the concepts. One of the benefits of
this form of modeling, however, is that it may be able to
determine rapidly the effectiveness of the interventions.

From previous studies, when given enough data about a
student’s previous performances, hidden Markov model
models have performed at more than 90% accuracy when
tasked to predict the most likely problem solving strategy the
student will apply next. This, in part, results from the
stabilization of strategic approaches by students. Knowing
whether a student is likely to continue to use an inefficient
problem-solving strategy allows us to help the student in a
timely way. Perhaps more interesting is the possibility that
knowing the distribution of students’ problem-solving strat-
egies and their most likely future behaviors may allow us to
construct strategic collaborative learning groups that optimize
interstudent learning and minimize teacher interventions.

One of the greatest benefits of predicting future perform-
ances, however, will be the ability to form experimental
groups and to test potential educational interventions by
observing which interventions cause which students to
deviate from inefficient learning trajectories.
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APPENDICES A–C

Appendices A, B, and C summarize the data flow for three
students. At the top of each figure is a written summary of the

student of howhe or she approached the problem set. The first
column summarizes the performance data of the student on
each of the cases (thatwere randomly delivered).Next, there is
a search path map visualizing the steps performed on each of

Appendix A.
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the cases; refer to Figure 2 for an expanded template map. The
fourth column shows the neural network nodal classification
of the performance indicating the node number and the

number of total performances (of 3,599) that were clustered at
that node. Finally, the last column relates the performance to
the state derived from the hidden Markov modeling.

Appendix B.
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Appendix C.
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