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NOTE FROM THE EDITOR

Points of View is a series designed to address issues faced by
many people within the life sciences educational realm. We
present differing points of view back to back on a given topic
to stimulate thought and dialogue.

The focus of all contributed features and research articles
in Issues in Neuroscience Education is the teaching and learn-
ing of neuroscience, from elementary school to graduate
school audiences. However, neuroscience is unique as a
branch of biology in that it includes the study of neuronal
and brain mechanisms that may underlie learning. To high-
light this unique position of neuroscience, we have chosen to
focus this issue’s Points of View on how research findings in
the field of neuroscience may or may not have implications
for the teaching and learning of science in general. We
invited authors to address the following questions:

• What are the current implications of neuroscience re-
search, if any, for how to improve K–25� science teaching
and learning in schools and universities?

• To what extent will neuroscience research into biological
mechanisms of learning, memory, attention, and other
brain functions inform educational practices and science
teaching in the future?

INTRODUCTION

What, if anything, do teachers need to know about how the
brain works to improve teaching and learning? After all,
your plumber needs to know how to stop leaks—not the
molecular structure of water. And we can learn how to use

a computer without knowing how a computer chip works.
Likewise, teachers need to know how to help students de-
velop intellectually and learn—not necessarily how their
brains work. Nevertheless, it is important for teachers to
understand that what is being discovered about how brains
work supports constructivist learning theory (Alexander
and Murphy, 1999), which in turn supports inquiry-based
teaching (American Association for the Advancement of
Science, 1989; National Research Council, 1996, 2001; Na-
tional Science Foundation, 1996). The goal of the present
article is to explicate why this is so. Let’s start with some
basics.

SOME BASICS OF BRAIN DEVELOPMENT

The neocortex, which is the most recently evolved part of the
brain, has a full complement of brain cells (neurons) at
birth—some 100 billion. Yet, the most rapid growth of the
neocortex takes place during the first 10 years of life. This
growth is primarily because of the proliferation of dendrites,
i.e., the branching projections that connect with and receive
input, via synapses, from nearby neurons. Importantly, the
number of dendrites varies depending on use or disuse. For
example, the neurons in the brain area that deals with word
understanding (Wernicke’s area) have more dendrites in
college-educated people than in people with only a high
school education (Diamond, 1996). A classic study of the
effect of disuse of neurons was conducted during the 1970s
by Torsten Wiesel and David Hubel. They covered one of
the eyes of newborn kittens at birth. When the covered eyes
were uncovered 2 weeks later, they were unable to see.
Presumably the lack of environmental input prevented the
deprived neurons from developing normally. As Diamond
(1996) put it, the phrase “use it or lose it” definitely applies
in the case of neurons. Diamond adds, “No matter what
form enrichment takes, it is the challenge to the nerve cells
that is important. Data indicate that passive observation is
not enough; one must interact with the environment.”

1 Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author and do not
necessarily reflect the views of the National Science Foundation.
DOI: 10.1187/cbe.06–03–0154
Address correspondence to: Anton E. Lawson (anton.lawson@
asu.edu).

CBE—Life Sciences Education
Vol. 5, 111–117, Summer 2006

© 2006 by The American Society for Cell Biology 111



How does environmental interaction lead to an increase in
the number of functional dendrites? According to neural
network theory (Grossberg, 1982, 2005; Jani and Levine,
2000), dendrites become functional when neurotransmitter
release rate increases at synaptic knobs. The increase in
release rate makes signal transmission from one neuron to
the next easier. Hence, learning is understood as an increase
in the number of “operative” synaptic connections among
neurons. That is, learning occurs when transmitter release
rate at synaptic knobs increases so that the signals can be
easily transmitted across synapses that were previously
there, but inoperative. How, then, does experience
strengthen connections?

HOW DOES EXPERIENCE STRENGTHEN
CONNECTIONS?

Grossberg (1982, 2005) has proposed and tested equations
describing the basic interaction of the key neural variables
involved in learning. Of particular significance is his learn-
ing equation, which describes changes in transmitter release
rate (i.e., Zij). The learning equation identifies factors that
modify the synaptic strengths of knobs Nij. Zij represents the
initial synaptic strength. Bij is a constant of decay. Thus, Bij
Zij is a forgetting or decay term. S�ij[Xj]� is the learning term
as it drives increases in Zij. S�ij is the signal that has passed
from node Vi to knob Nij. The prime reflects that the initial
signal, Sij, may be slightly altered as it passes down eij. [Xj]�
represents the activity level of postsynaptic nodes, Vj, that
exceeds the firing threshold. Only activity above threshold
can cause changes in Zij. In short, the learning term indicates
that for information to be stored in long-term memory
(LTM), two events must occur simultaneously. First, signals
must be received at Nij. Second, nodes Vj must receive
inputs from other sources that cause the nodes to fire. When
these two events drive activity at Nij above a specified
constant of decay, the Zij values increase, and the network
learns. For a network with n nodes, the learning equation is
as follows:

Żij � �BijZij � S�ij[Xj]
�

where the overdot represents a time derivative and i, j, � 1,
2, . . . n.

For example, consider Pavlov’s classical conditioning ex-
periment in which a dog is stimulated to salivate by the
sound of a bell. When Pavlov first rang the bell, the dog, as
expected, did not salivate. However, upon repeated simul-
taneous presentation of food, which did initially cause sali-
vation, and bell ringing, the ringing alone eventually caused
salivation. Thus, the food is the unconditioned stimulus
(US). Salivation upon presentation of the food is the uncon-
ditioned response (UCR). And the bell is the conditioned
stimulus (CS). Pavlov’s experiment showed that when a CS
(e.g., a bell) is repeatedly paired with a US (e.g., food), the
CS alone will eventually evoke the UCR (e.g., salivation).
How can the US do this?

Figure 1 shows a simple neural network capable of ex-
plaining classical conditioning. Although the network is
depicted as just three cells (A, B, and C), each cell represents
many neurons of the type A, B, and C. Initial food presen-

tation causes cell C to fire. This creates a signal down its
axon that, because of prior learning (i.e., a relatively large
Zcb), causes the signal to be transmitted to cell B. Thus, cell
B fires, and the dog salivates. At the outset, bell-ringing
causes cell A to fire and send signals toward cell B. How-
ever, when the signal reaches knob NAB, its synaptic
strength ZAB is not large enough to cause B to fire. So the
dog does not salivate. However, when the bell and the food
are paired, cell A learns to fire cell B according to Gross-
berg’s learning equation. Cell A firing results in a large S�AB
and the appearance of food results in a large E[XB]�. Thus,
the product S�AB[XB]� is sufficiently large to drive an in-
crease in ZAB to the point at which it alone causes node VB
to fire and evoke salivation. Food is no longer needed. The
dog has learned to salivate at the ringing of a bell. The key
theoretical point is that learning is driven by simultaneous
activity of pre- and postsynaptic neurons, in this case activ-
ity of cells A and B.

ADAPTIVE RESONANCE: MATCHING INPUT
WITH EXPECTATIONS

Another key aspect of neural network theory explains how
the brain processes a continuous stream of sensory input by
matching sensory input with expectations derived from
prior experience. Grossberg’s mechanism for this, called
adaptive resonance, is shown in Figure 2

The process begins when sensory input X(t) is assimilated
by a slab of neurons designated as F(1). Because of prior
experience, a pattern of activity, X1 then plays at F(1) and
causes a firing of pattern X2 at another slab of neurons F(2).
X2 then excites a pattern X on F(1). The pattern X is compared
with the input following X1. Thus, X is the expectation. X
will be X1 in a static visual scene and the pattern to follow X1
in a temporal sequence. If the two patterns match, then you
see what you expect to see. This allows an uninterrupted
processing of input and a continued quenching of nonspe-
cific arousal. Importantly, one is only aware of patterns that
enter the matched/resonant state. Unless resonance occurs,
coding in LTM is not likely to take place. This is because only
in the resonant state is there both pre- and postsynaptic exci-
tation of the cells at F(1) (see Grossberg’s learning equation).

Now suppose the new input to F(1) does not match the
expected pattern X from F(2). Mismatch occurs and this
causes activity at F(1) to be turned off by lateral inhibition,
which in turn shuts off the inhibitory output to the nonspe-
cific arousal source. This turns on nonspecific arousal and
initiates an internal search for a new pattern at F(2) that will
match X1.

Figure 1. Classical conditioning in a simple neural network. Cells
A, B, and C represent layers of neurons.
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Such a series of events explains how information is pro-
cessed across time. The important point is that stimuli are
considered familiar if a memory record of them exists at F(2)

such that the pattern of excitation sent back to F(1) matches
the incoming pattern. If they do not match, the incoming
stimuli are unfamiliar and orienting arousal (OA) is turned
on to allow an unconscious search for another pattern. If no
such match is obtained, then no coding in LTM will take
place unless attention is directed more closely at the object in

question. Directing careful attention at the unfamiliar object
may boost presynaptic activity to a high enough level to
compensate for the relatively low postsynaptic activity and
eventually allow a recording of the sensory input into a set
of previously uncommitted cells.

HOW IS VISUAL INPUT PROCESSED IN
DIFFERENT PARTS OF THE BRAIN?

As reviewed by Kosslyn and Koenig (1995), the ability to
recognize objects visually requires participation of six major
brain areas. As shown in Figure 3, sensory input from the
eyes passes from the retina to the back of the brain and
produces a pattern of electrical activity in the visual buffer
(located in the occipital lobe). This activity produces a spa-
tially organized image within the visual buffer. Next, a
smaller region within the visual buffer (called the attention
window) performs additional processing. The processed
electrical activity is then simultaneously sent along two
pathways on each side of the brain: two pathways run down
(to the ventral subsystem in the lower temporal lobes), and
two run up (to the dorsal subsystem in the parietal lobes).
The ventral subsystem analyzes object properties, such as
shape, color, and texture. The dorsal subsystem analyzes
spatial properties, such as size and location. Patterns of
electrical activity within the ventral and dorsal sub-
systems are then sent and matched to visual patterns
stored in associative memory, which is located primarily
in the hippocampus, the limbic thalamus, and the basal

Figure 2. Adaptive resonance occurs when a match of activity
patterns occurs on successive slabs of neurons (after Grossberg,
1982; Carpenter and Grossberg, 2003).

Figure 3. Kosslyn and Koenig’s model of the visual system consists of six major subsystems that spontaneously and subconsciously generate
and test hypotheses about what is seen.
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forebrain. If a good match is found (i.e., an adaptive
resonance), the object is recognized and the observer
knows the object’s name, categories to which it belongs,
sounds it makes, and so on.

However, if a good match is not obtained, the object
remains unrecognized and additional sensory input must be
obtained. Importantly, the search for additional input is not
random. Rather, stored patterns are used to make a second
hypothesis about what is being observed, and this hypoth-
esis leads to new observations and to further encoding. In
the words of Kosslyn and Koenig, when additional input is
sought, “One actively seeks new information that will bear
on the hypothesis. The first step in this process is to look up
relevant information in associative memory” (p. 57). This
information search involves activity in the prefrontal lobes
in an area referred to as working memory. Activating work-
ing memory causes an attention shift of the eyes to a location
where an informative component should be located. Once
attention is shifted, the new visual input is processed in turn.
The new input is then matched to shape and spatial patterns
stored in the ventral and dorsal subsystems and kept active
in working memory. Again, in Kosslyn and Koenig’s words,
“The matching shape and spatial properties may in fact corre-
spond to the hypothesized part. If so, enough information may
have accumulated in associative memory to identify the object.
If not, this cycle is repeated until enough information has been
gathered to identify the object or to reject the first hypothesis,
formulate a new one, and test it” (p. 58).

For example, suppose while driving your car you observe
what seems to be a puddle of water in the road ahead.
Thanks to connections in associative memory, you know
that water is wet. So when you continue driving, you expect
that your tires will splash through the puddle and get wet.
But upon reaching the puddle, it disappears and your tires
stay dry. Therefore, your brain rejects the puddle hypothesis
and generates another hypothesis, perhaps a mirage hypoth-
esis. The pattern of information processing involved in this
example can be summarized as follows:

If . . . the object is a puddle of water,
and . . . you continue driving toward it,
then . . . your tires should splash through the puddle and

they should get wet.
But . . . upon reaching the puddle, it disappears and your

tires do not get wet.
Therefore . . . the hypothesis is not supported; the object

was probably not a puddle of water.

In other words, as one seeks to identify objects, the brain
generates and tests stored patterns selected from memory.
Kosslyn and Koenig even speak of these stored patterns as
hypotheses, where the term hypothesis is used in its broad-
est sense. Thus, brain activity during visual processing uses
an If/then/Therefore hypothetico-deductive pattern. One
looks at part of an unknown object and the brain spontane-
ously and immediately generates an idea of what it is—a
hypothesis. Thanks to links in associative memory, the hy-
pothesis carries implied consequences (i.e., expectations/
predictions). Consequently, to test the hypothesis one can
carry out a simple behavior to see whether the prediction
does in fact follow. If it does, one has support for the

hypothesis. If it does not, then the hypothesis is not sup-
ported and the cycle repeats.

IS AUDITORY INPUT PROCESSED IN THE
SAME HYPOTHETICO-DEDUCTIVE WAY?

The visual system is only one of several of the brain’s
information processing systems. However, information
seems to be processed in a similar hypothetico-deductive
manner by other brain systems. For example, with respect to
learning the meaning of spoken words, Kosslyn and Koenig
(1995) state “Similar computational analyses can be per-
formed for visual object identification and spoken word
identification, which will lead us to infer analogous sets of
processing subsystems” (p. 213).

Details of this hypothesized word recognition subsystem
are not important. Rather, what is important is that word
recognition, like visual recognition, involves brain activity in
which hypotheses arise immediately, unconsciously, and
before any other activity. In other words, the brain does not
make several observations before it generates a hypothesis
of what it thinks is out there. Instead, from the slimmest
piece of input, the brain immediately generates an idea of
what it “thinks” is out there. The brain then acts on that
initial idea until subsequent behavior is contradicted. In
other words, the brain is not an inductivist organ. Rather, it
is an idea-generating and -testing organ that works in a
hypothetico-deductive way. There is good reason in terms of
human evolution why this would be so. If you were a
primitive person and you look into the brush and see
stripes, it would certainly be advantageous to get out of
there quickly as the consequences of being attacked by a
tiger are dire. And anyone programmed to look, look
again, and look still again in an “inductivist” way before
generating the tiger hypothesis would most likely not
survive long enough to pass on his plodding inductivist
genes to the next generation.

The important point is that learning does not happen the
way you might think. Your brain does not prompt you to
look, look again, and look still again until you somehow
internalize a successful behavior from the environment.
Rather, your brain directs you to look and, as a consequence
of that initial look, the brain generates an initial hypothesis
that then drives behavior, behavior that carries with it a
specific expectation. Hopefully, the behavior is successful in
the sense that the prediction is matched by the outcome of
the behavior. But sometimes it is not. So the contradicted
behavior then prompts the brain to generate another hy-
pothesis and so on until eventually the resulting behavior is
not contradicted. In short, we learn from our mistakes—
from what some would call trial and error.

CAN NEURAL NETWORKS EXPLAIN HIGHER
LEVELS OF REASONING AND LEARNING?

Research has shown that the previous neural network prin-
ciples can be successfully applied to explain more complex
learning. For example, Levine and Prueitt (1989) developed
and tested a neural network model to explain performance
of normal persons and those with frontal lobe damage on
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the Wisconsin Card Sorting Task. More recently, Jani and
Levine (2000) developed a neural network model that sim-
ulates the learning involved in proportional analogy mak-
ing. But what about more complex learning—learning in-
volved in scientific discovery? Lawson (2002) applied neural
network theory to do just that in the case of Galileo Galilei
during his discovery of Jupiter’s moons in 1610. Following
Lawson (2002), let’s turn to that report and analyze Galileo’s
reasoning in terms of If/then/Therefore reasoning and the
previously introduced neural network principles.

In 1610 in his Sidereal Messenger, Galileo reported obser-
vations made by a new telescope of his invention. In the
report Galileo claims to have discovered four “planets” cir-
cling Jupiter. As he put it: “I should disclose and publish to
the world the occasion of discovering and observing four
planets, never seen from the beginning of the world up to
our times” (Galilei, 1610, as translated and reprinted in
Shapley et al., 1954, p. 59).

Unlike most modern scientific papers, Galileo’s report is
striking in the way in which it chronologically reveals the
steps in his thinking. Thus, it provides an extraordinary
opportunity to gain insight into the thinking involved in an
important scientific discovery. What follows is a brief reca-
pitulation of part of that report followed by an attempt to fill
in gaps in Galileo’s reasoning as he interpreted his observa-
tions. Galileo’s reasoning will then be modeled in terms of
Kosslyn and Koenig’s neural network principles. Let’s start
with Galileo’s initial observations on January 7.

January 7
Galileo made a new observation on January 7 that he
deemed worthy of mention. In his words, “I noticed a cir-
cumstance which I had never been able to notice before,
owing to want of power in my other telescope, namely that
three little stars, small but very bright, were near the planet
(i.e., Jupiter).”

This statement suggests that Galileo’s observation was
immediately assimilated by a fixed star category. In other
words, he knew from past experiences that some of the
objects in the night sky were fixed stars (i.e., stars that were
part of the unchanging celestial sphere). But Galileo’s con-
tinued thinking led to some initial doubt as this following
remark reveals: “. . . and although I believed them to belong
to the number of the fixed stars, yet they made me some-
what wonder, because they seemed to be arranged exactly in
a straight line, parallel to the ecliptic, and to be brighter than
the rest of the stars, equal to them in magnitude.”

Why would this observation lead Galileo to somewhat
wonder? Perhaps he was reasoning along these lines:

If . . . the three objects are fixed stars,
and . . . their sizes, brightness, and positions are compared

with each other and to other nearby stars,
then . . . variations in size, brightness, and position should

be random, as is the case for other fixed stars.
But . . . “they seem to be arranged exactly in a straight line,

parallel to the ecliptic, and to be brighter than the rest of the
stars.”

Therefore . . . the fixed-star hypothesis is not supported.
Or as Galileo put it, “yet they made me wonder somewhat.”

January 8
The next night Galileo made another observation. Again, in
his words: “. . . when on January 8, I found a very different
state of things, for there were three little stars all west of
Jupiter, and nearer together than on the previous night, and
they were separated from one another by equal intervals, as
the accompanying figure shows.”

(East) E * * * (West)
The new observation puzzled Galileo and raised another

question. Again, in Galileo’s words: “At this point, although
I had not turned my thoughts at all upon the approximation
of the stars to one another, yet my surprise began to be
excited, how Jupiter could one day be found to the east of all
the aforementioned stars when the day before it had been
west of two of them.” Presumably this observation was
puzzling because it was not the expected one based on his
fixed-star hypothesis.

Galileo continues, “. . . forthwith I became afraid lest the
planet might have moved differently from the calculation of
astronomers, and so had passed those stars by its own
proper motion.” This statement suggests that Galileo has not
yet rejected the fixed-star hypothesis. Instead, he has gener-
ated an ad hoc hypothesis that the astronomers made a
mistake, i.e., perhaps their records were wrong about how
Jupiter moves relative to the fixed stars in the area. This
hypothesis could subsequently be tested as follows:

If . . . the astronomers made a mistake,
and . . . I observe the next night,
then . . . Jupiter should continue to move east relative to

the stars, and the objects should look like this:
(East) E * * * (West)

Of course, we cannot know whether this is what Galileo
was thinking, but if he were thinking along these lines, he
would have had a very clear prediction to compare with the
observations he hoped to make the next night.

January 9 and 10
Galileo continues: “I therefore waited for the next night with
the most intense longing, but I was disappointed of my
hope, for the sky was covered with clouds in every direction.
But on January 10th the stars appeared in the following
position with regard to Jupiter, the third, as I thought, being
hidden by the planet.”

(East) * * E (West)
What conclusion can be drawn from this observation in

terms of the astronomers-made-a-mistake hypothesis? Con-
sider the following reasoning:

If . . . the astronomers made a mistake,
and . . . I observe the next night,
then . . . Jupiter should continue to move east relative to

the “stars,” and the objects should look like this:
(East) E * * * (West) (expected result)

But . . . the objects did not look like this, instead they looked
like this:

(East) * * E (West) (observed result)
Therefore . . . the astronomers-made-a-mistake hypothesis is
not supported.
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Interestingly, Galileo states:

When I had seen these phenomena, as I knew that
corresponding changes of position could not by any
means belong to Jupiter, and as, moreover, I
perceived that the stars which I saw had always
been the same, for there were no others either in
front or behind, within the great distance, along the
Zodiac—at length, changing from doubt into
surprise, I discovered that the interchange of
position which I saw belonged not to Jupiter, but to
the stars to which my attention had been drawn.

(p. 60)

So, Galileo concluded that the astronomers had not made a
mistake, i.e., the changes of position were not the result of
Jupiter’s motion. Instead, they were due to motions of the
“stars.”

January 11 and Later
Galileo is now left with the task of formulating and testing
another hypothesis. The following observation and remarks
make it clear that he did not take long to do so:

Accordingly, on January 11 I saw an arrangement of
the following kind:

(East) * * E (West)

namely, only two stars to the east of Jupiter, the
nearer of which was distant from Jupiter three times
as far as from the star to the east; and the star
furthest to the east was nearly twice as large as the
other one; whereas on the previous night they had
appeared nearly of equal magnitude. I, therefore,
concluded, and decided unhesitatingly, that there
are three stars in the heavens moving about Jupiter,
as Venus and Mercury round the sun.

(p. 60)

Galileo’s remarks make it is clear that he has “conceptu-
alized” a situation in which these objects are traveling
around Jupiter in a way analogous to the way our moon
travels around the Earth. Thus, he has rejected the fixed star
hypothesis and accepted an alternative hypothesis in which
the objects are traveling around Jupiter—they are moons of
Jupiter. How could Galileo have arrived at such a conclu-
sion? Consider the following reasoning:

If . . . the objects are orbiting Jupiter,
and . . . I observe the objects over several nights,
then . . . some nights they should appear to the east of

Jupiter and some nights they should appear to the west.
Further, they should always appear along a straight line on
either side of Jupiter.

And . . . this is precisely how they appeared.
Therefore . . . the moons-of-Jupiter hypothesis is sup-

ported.

Galileo’s previous statement continues as follows:

. . . which at length was established as clear as
daylight by numerous other subsequent observations.
These observations also established that there are
not only three, but four, erratic sidereal bodies
performing their revolutions round Jupiter . . . These
are my observations upon the four Medicean
planets, recently discovered for the first time by me.

(pp. 60–61)

MODELING GALILEO’S REASONING

Kosslyn and Koenig’s description of brain subsystem func-
tioning is about recognizing objects present in the visual
field during a very brief time period—not distant spots of
light seen through a telescope. Nevertheless, the hypo-

Figure 4. What might have been in Galileo’s working memory when he tested the moons hypothesis?
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thetico-deductive nature of this system functioning is clear.
And all one need do to apply the same principles to Galileo’s
case is to extend the time frame over which observations are
made—observations that either match or mismatch expec-
tations. For example, Figure 4 shows how the brain sub-
systems may have been involved in Galileo’s reasoning as he
tests his moons hypothesis.

The figure highlights the contents of Galileo’s working
memory, which is seated in the lateral prefrontal cortex, in
terms of one cycle of If/then/Therefore reasoning. As
shown, to use If/then/Therefore reasoning to generate and
test his moon hypothesis, Galileo must not only allocate
attention to it and its predicted consequences, he must also
inhibit his previously generated fixed-stars and astrono-
mers-made-a-mistake hypotheses. Thus, working memory
can be thought of as a temporary network to sustain infor-
mation while it is processed. During reasoning, one must
pay attention to task-relevant information and inhibit task-
irrelevant information. Consequently, working memory in-
volves more than simply allocating attention and temporarily
keeping track of it. Rather, during the reasoning process, work-
ing memory actively selects information relevant to one’s goals
and actively inhibits irrelevant information.

INSTRUCTIONAL IMPLICATIONS

How then do people learn? The answer seems to be through
encountering puzzling observations and trying to explain
them through cycles of If/then/Therefore hypothetico-de-
ductive reasoning. Presumably, this is because this is the
way that the brain spontaneously processes information.
The more skilled people are at reasoning in this manner,
the better they are at learning, at constructing new knowl-
edge (Lawson et al., 2000). The key point in terms of instruc-
tion is that for meaningful and lasting learning to occur,
students must personally and repeatedly engage in the gen-
eration and test of their own self-generated ideas. This
means that laboratory and field-based activities become the
main instructional vehicles. But such activities cannot be
“cookbook” in nature. Instead, they should allow students
the freedom to openly inquire and raise puzzling observa-
tions. The puzzling observations should then prompt stu-
dents to generate and test their own alternative explanations
with the following sorts of questions becoming the central
focus of instruction:

• What did you observe?
• What is puzzling about what you observed?
• What questions are raised?
• What are some possible answers/explanations?
• How could these possibilities (alternative hypotheses) be

tested?
• What does each hypothesis and planned test lead you to

expect to find?

• What are your results?
• How do your results compare with your predictions?
• What conclusions, if any, can be drawn?
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