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We have designed, developed, and validated a 25-question Genetics Concept Assessment (GCA)
to test achievement of nine broad learning goals in majors and nonmajors undergraduate
genetics courses. Written in everyday language with minimal jargon, the GCA is intended for use
as a pre- and posttest to measure student learning gains. The assessment was reviewed by
genetics experts, validated by student interviews, and taken by >600 students at three institu-
tions. Normalized learning gains on the GCA were positively correlated with averaged exam
scores, suggesting that the GCA measures understanding of topics relevant to instructors.
Statistical analysis of our results shows that differences in the item difficulty and item discrim-
ination index values between different questions on pre- and posttests can be used to distinguish
between concepts that are well or poorly learned during a course.

INTRODUCTION

Physics instruction has been improved by the use of care-
fully developed multiple-choice tests (concept inventories)
that examine student conceptual understanding on a narrow
set of topics (Hestenes, 1992; Chabay and Sherwood, 1997;
Thornton and Sokoloff, 1998; Ding et al., 2006). Data col-
lected using these assessments in a variety of physics
courses clearly indicate that student learning of these con-
cepts is greater in interactive courses than in traditional
courses (Hake, 1998; Crouch and Mazur, 2001; Hake, 2002).
Biology educators also have begun to compare the effective-
ness of different instructional approaches in their courses.
Limited evidence suggests that, as in physics, replacement of
traditional lectures with more interactive approaches can
result in higher student learning gains (e.g., Udovic et al.,
2002; Knight and Wood, 2005; Freeman et al., 2007). Al-
though some assessment tools are available that could be
suitable for widespread comparison of different instruc-
tional approaches in biology (Anderson ef al., 2002;
Klymkowsky et al., 2003; Garvin-Doxas et al., 2007; Bowling
et al., 2008), more are needed to evaluate the effectiveness of
teaching reforms in different subdisciplines of the life sci-
ences, including genetics.
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For this purpose, we developed and validated the Genet-
ics Concept Assessment (GCA). The GCA consists of 25
multiple-choice questions, designed to be clear, concise, and
as free of jargon as possible. The questions assess under-
standing of a set of basic genetics concepts likely to be taught
in courses for both majors and nonmajors. The GCA is
designed to be administered at the start of a course as a
pretest and at the end of the course as a posttest, to measure
student learning gains (Hake, 1998).

In this article, we describe our validation of the GCA
through student interviews, pilot testing, and expert review.
Statistical analysis of test answers from >600 students at
three institutions demonstrates that the GCA has an accept-
able range of question difficulty and shows high reliability
when taken by two similar populations of students in sub-
sequent semesters. We also describe how the GCA can be
used to evaluate which concepts students have learned well
and which still cause them persistent difficulties after taking
a genetics course.

METHODS
Development of GCA

We are in the process of restructuring our majors and nonmajors
genetics courses as part of the Science Education Initiative (SEL;
www.colorado.edu/sei) at University of Colorado, Boulder (CU).
The SEI is a 5-yr project designed to “transform” the core majors
courses in five science departments by introducing proven teaching
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practices such as formulation of specific learning goals, increased
use of class time for interactive and group learning activities, in-
creased use of formative assessments including “clicker” questions,
and pre/post assessment to measure learning gains. We developed
the GCA to have a validated, reliable, multiple-choice assessment
instrument for evaluating how these changes would affect student
learning and conceptual understanding in genetics. Following sev-
eral examples of assessment development (Hestenes, 1992; Ander-
son et al., 2002; Hufnagel, 2002; Ding et al., 2006; Bowling et al., 2008),
we established a set of learning goals for undergraduate genetics
courses by interviewing course instructors and other genetics ex-
perts. We then created an assessment consisting of questions that
address these learning goals using student-provided distracters,
validated these questions through student interviews and expert
reviews, and further refined the assessment based on pilot study
results. When we began, at least four other assessments designed
to measure genetics knowledge were available or under devel-
opment. However, two of these were not validated by student
interviews or input from multiple faculty members (Zohar and
Nemet, 2002; Sadler and Zeidler, 2005); and the third, although
validated by experts and student focus groups, was designed
primarily for testing of nonscience majors (Bowling et al., 2008).
Furthermore, the statistical evaluation of the third instrument
was largely limited to data collected before genetics instruction
and was not used to measure learning gains. A fourth assessment
reported to be in development (Garvin-Doxas et al., 2007) was not
yet available for use.

We used a multistep process to develop the GCA (Table 1). To
identify question topics, we began by reviewing literature that
highlighted common misconceptions in genetics (Venville and Trea-
gust, 1998; Lewis et al., 2000a,b,c,d; Marbach-Ad and Stavy, 2000;
Wood-Robinson et al., 2000; Marbach-Ad, 2001; Tsui and Treagust,
2004; Chattopadhyay, 2005; Orcajo and Aznar, 2005). We also inter-
viewed faculty who teach genetics at CU, asking them to list major
concepts in their genetics courses and to provide examples of mul-
tiple-choice questions they thought were effective at addressing
common student misunderstandings. From this information, we
created a series of 25 new questions, each specifically designed to
address one or more of the nine major learning goals associated
with the CU genetics courses (Table 2). The questions were intended
to assess conceptual understanding of the learning goals rather than
simple factual recall. Supplemental Material 1 contains two exam-
ples of GCA questions. The full set of questions is available upon
request (see Discussion).

Table 1. Overview of the GCA development process

Multistep process used to develop the GCA

—_

. Review literature on common misconceptions in genetics

2. Interview faculty who teach genetics, and develop a set of
learning goals that most instructors would consider vital to
the understanding of genetics

3. Develop and administer a pilot assessment based on known
and perceived misconceptions

4. Reword jargon, replace distracters with student supplied
incorrect answers, and rewrite questions answered correctly
by >70% of students on the pretest

5. Validate and revise the GCA through 33 student interviews
and input from 10 genetics faculty experts at several
institutions

6. Give current version of the GCA to a total of 607 students in
both majors and nonmajors genetics courses at three different
institutions

7. Evaluate the GCA by measuring item difficulty, item

discrimination, and reliability
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Table 2. Course learning goals for the CU majors genetics
course and corresponding questions on the GCA

Course learning goal Question no.”

1. Analyze phenotypic data and deduce 1,11,13
patterns of inheritance from family
histories

2. Describe the molecular anatomy of 9,10, 15,24

genes and genomes

3. Describe the mechanisms by which
an organism’s genome is passed on
to the next generation

4. Describe the phenomenon of linkage
and how it affects assortment of
alleles during meiosis

5. Extract information about genes,
alleles, and gene functions by
analyzing the progeny from genetic
crosses

6. Describe the processes that can affect 3,12
the frequency of phenotypes in a
population over time

7. Compare different types of
mutations and describe how each can
affect genes and the corresponding
mRNAs and proteins

8. Apply the results of molecular 20
genetic studies in model organisms
to understanding aspects of human
genetics and genetic diseases

9. Interpret results from molecular 19
analyses to determine the inheritance
patterns and identities of human
genes that can mutate to cause
disease

7,8,16,17,25

21,23

4,14,18

2,5,6,22

? The learning goals associated with each question are those in-
tended by the authors. These associations are supported by expert
responses (see Table 3) but have not been further verified through
student interviews or other means.

We gave a pilot version of the GCA in spring 2007 to 358 students
in the CU Molecular, Cellular, and Developmental Biology (MCDB)
majors genetics course at the beginning and end of the semester. To
identify jargon that might be unfamiliar, we asked a group of these
students to circle any words they did not understand when taking
the GCA at the beginning of the course, and we substituted more
familiar words in subsequent versions. To make the GCA appropri-
ately difficult for measurement of learning gains, we rewrote ques-
tions answered correctly by >70% of students on the pretest, and we
reworded rarely chosen distracters (incorrect answers) to make
them more plausible.

Validation

During the 2007-2008 academic year, we validated the GCA
through 33 student interviews (described in detail below), as well as
input from 10 genetics faculty experts at several institutions. After
revision based on this feedback and the pilot testing described
above, we and several cooperating faculty at other institutions gave
the GCA to a total of 607 students in five majors and nonmajors
genetics courses in fall 2007 and spring 2008 semesters. Eight in-
structors were involved in these courses. One of us (J.K.K.) taught
the CU nonmajors genetics course; another (M.K.S.) helped to write
materials for both CU majors courses. Except for distributing the
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GCA, we had no influence on the design or teaching of the two
other courses. We describe the analysis of our results below.

Student Interviews

We interviewed 33 volunteers from three different courses at CU,
taking care to obtain a diverse group of students. Twenty-one
students had completed the majors genetics course within the past
year and had earned grades ranging from A to D (9 “A’s,” 8 “B’s,”
and 4 “C’s” or below). We also interviewed two students who had
taken the CU nonmajors genetics course (which addresses all of the
learning goals in Table 2 except goal 6 and goal 8) and 10 students
who had completed one introductory biology course in the Ecology
and Evolutionary Biology Department (this course includes a brief
section on Mendelian inheritance and population genetics, but it
does not explicitly cover any other concepts addressed in the GCA).
In total, we interviewed 11 males and 22 females.

We conducted one-on-one interviews with these students, asking
them to think aloud as they worked through the questions. In the
first five interviews, we gave questions without correct answers or
distracters and asked students to provide answers in their own
words. In the subsequent interviews, students selected a multiple-
choice answer to each question and then explained to the inter-
viewer why they thought their choice was correct and the other
answers incorrect. All the authors reviewed the interview tran-
scripts and together revised the GCA to include student-generated
correct and incorrect answers in simple language with minimal
jargon.

At least 10 students were interviewed on the final versions of all
25 GCA questions. For each question, at least five students chose the
right answer using correct reasoning. However, for 11 questions,
some students chose the right answer for incomplete or incorrect
reasons. For these 11 questions, additional students were inter-
viewed, resulting in an average total of 26 student interviews per
question. For each question on the final version of the GCA, at least
86% of these students who chose the right answer did so using
correct reasoning.

Of the 78 total distracters on the GCA, 43 were chosen by at least
15% of the students on the pretest. We obtained an average of five
student interview explanations for each of the 43 distracters, with
the exception of choice a on question 14 (see Supplemental Material 1,
example B), which no student chose. We used the multiple reasons for
incorrect choices to identify the commonly held misconceptions that
lead students to select particular distracters.

During this process, we discovered that interviewing students at
different achievement levels was essential for assessment develop-
ment. In general, students who earned “A’s” in a genetics course
were able to select the correct answers. More importantly, their
explanations of why answers were correct helped us determine
whether students were picking the correct answers for the right
reasons. Students who earned “B’s” and “C’s” sometimes revealed
persistent misconceptions, and their responses helped us write bet-
ter distracters for multiple-choice questions. Finally, students who
received “D’s” often based their answer choices on noncontent clues
to the correct answer. For example, one such student chose the
correct answer to a question by eliminating other choices that in-
cluded the words “only” or “never.” When students selected the
correct answer to a question for a nonscientific reason, we revised
the question so the answer could not easily be guessed using such
strategies.

Faculty Reviews

To determine whether other faculty who teach genetics would see
the GCA as valuable for assessing their students’ conceptual under-
standing of genetics, we presented question ideas and examples to
faculty groups at CU. We also asked 10 Ph.D. geneticists (experts) at
other institutions to take the GCA online, respond to three queries
about each question, and offer suggestions for improvement. A
summary of their responses is presented in Table 3. The expert
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Table 3. Summary of expert responses to three queries about the 25
GCA questions

Agreement of

experts
>90%, >80%, >70%
No. of
Subject of query questions
The question tests achievement of the 21 3 1
specified learning goal
The information given in this question is 25 0 0
scientifically accurate
The question is written clearly and precisely 22 3 0

suggestions were primarily to reword a few of the questions to
increase precision and eliminate possible ambiguities. Although
student interview data indicated no difficulties in interpreting the
questions that elicited expert comments, we will incorporate some
of these suggestions into future updated versions of the GCA to
maximize its perceived usefulness to faculty.

Large-scale Administration and Analysis

To validate our assessment for use in a variety of instructional
situations, increase our student sample size, and decrease any pos-
sible effect of having developers of the GCA involved in teaching
the assessed students, we arranged to have the GCA given to
students in five genetics courses at three different institutions dur-
ing the 2007-2008 academic year. In the MCDB Department at CU,
we administered the GCA in both nonmajors and majors genetics
courses. The fall semester nonmajors human genetics course (n = 61
students) has no prerequisites and is taken primarily by nonscience
majors. For the majors genetics course, which is taught by different
instructors in the fall (n = 107) and spring (n = 321) semesters, the
prerequisite is a one-semester course, Introduction to Molecular and
Cellular Biology, which has no overlapping learning goals with
Genetics except basic understanding of the Central Dogma (DNA —
RNA — protein). Genetics is required of all MCDB majors and is
also taken by majors in Integrative Physiology and Psychology, as
well as by premedical students in various other majors. The GCA
also was given in two majors genetics courses at other institutions:
a small liberal arts college (n = 30 students) and a large private
research university (n = 88 students) during the fall 2007 semester.
Students at these two institutions typically take genetics as sopho-
mores, and at both institutions, the prerequisite is a two-semester
introductory course that spans molecular to ecosystem biology.
Both these introductory courses include units on the Central Dogma
and basic Mendelian Genetics.

In all five courses, students took the GCA pretest as a 30-min
survey on paper during the first day of class. Course credit was
awarded for taking the pretest, but it was not graded. At the end of
the course, students were given the identically worded posttest,
imbedded as a small proportion of the final exam (the first 25
questions). These questions were graded along with the rest of the
exam; students were not aware in advance about inclusion of the
GCA questions.

In total, 607 students took both the pre- and the posttest. The
actual number of students in each course was higher than reported
here, but only students who took both pre- and posttests were
included in our analysis. The mean pretest scores, posttest scores,
and normalized learning gains ([100 X (post — pre)/(100 — pre)];
Hake, 1998) were calculated for all five courses. In addition, we
evaluated how well pretest, posttest, and normalized learning gain
scores correlated with average exam scores in the spring 2008 CU
majors course, a large course (n = 321) that included several elements
not typically found in a traditional lecture course (e.g., an average of
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Table 4. Mean pretest, posttest, and learning gain scores for students, TAs/LAs, and genetics experts

n?® Mean pretest (* SE), % Mean posttest (+ SE), % Mean learning gain (*+ SE), %
Students 607 40.5 (= 0.6) 74.0 (£ 0.7) 56.7 (= 1.0)
TAs/LAs 18 769 (+ 3.7) 87.8 (+ 3.8) 40.0 (= 12.1)
Genetics experts 10 NAP 93.0 (£ 5.2) NA

* Number of people who took the GCA. Students were enrolled in either majors or nonmajors genetics courses at three different institutions.
TAs and LAs were graduate and undergraduate students, respectively, at CU. Genetics experts from several institutions (see text) who took

the GCA are included for comparison.
" NA, not applicable.

five clicker questions per class with peer discussion, weekly peer-led
study groups that encouraged student-student interaction, and a “help
room” staffed by course instructors and teaching assistants [TAs] for
>30 h/wk to facilitate problem solving). Because the five courses in
which the GCA was administered involved multiple uncontrolled
variables (e.g., different institutions, student populations, instructors,
and teaching approaches), we did not attempt to compare students’
overall course performances, and almost all our analyses are based on
pooled data.

Statistical Characterization of Assessment

Assessment instruments are commonly evaluated by statistical tests
for several attributes, including item difficulty, item discrimination,
and reliability (Adams et al., 2006; Ding et al., 2006). The item
difficulty index (P) for a question is calculated as the total number
of correct responses (N,) divided by the total number of responses
(N); thus, P is the fraction of correct answers. The item discrimina-
tion index (D) measures how well each question distinguishes be-
tween students whose total pre- or posttest scores identify them as
generally strong or weak. To calculate D for individual questions on
either the pre- or the posttest, we divided the 607 students into top,
middle, and bottom groups based on their total scores for that test
(Morrow et al., 2005) and used the following formula: D = (N —
N)/(N/3), where Ny is number of correct responses by the top 33%
of students, N is number of correct responses in the bottom 33%,
and N is total number of student responses (Doran, 1980).

To evaluate reliability, we compared pretest responses from the
CU fall 2007 (n = 107) and spring 2008 (n = 321) MCDB majors
courses. Assuming that there was little variation in these two large
student populations within the same school year, we chose to use
the test-retest method to calculate an r value called the coefficient of
stability (Crocker and Algina, 1986). We used the test-retest method
rather than an internal measure of reliability such as Cronbach’s «,
which does not measure the stability of test scores over time

(Crocker and Algina, 1986). To determine whether the spread of
incorrect and correct answer choices was similar in the two semes-
ters, we also compared the percentages of students who answered
each choice for every question using chi-square analysis.

Institutional Review Board (IRB) Protocols

We received approval for administration of pre- and posttests in CU
classes (exempt status, protocol 0108.9) and for student interviews
(expedited status, protocol 0603.08) from the CU IRB. Data obtained
from other institutions contained no student identifiers.

RESULTS

The mean pretest scores, posttest scores, and normalized
learning gains for the 607 students from five institutions are
listed in Table 4. Ninety-six percent of the students had
positive normalized learning gains. At CU, the pre- and
posttests also were taken by the graduate TAs and a group
of undergraduates who served in the course as learning
assistants (LAs), helping to staff the genetics “help room”
and leading study groups. On both the pre- and posttests the
TAs and LAs, all of whom had had previous genetics course
work, performed significantly better (analysis of variance
[ANOVA], Tukey’s post hoc test, p < 0.05) than students in
the courses. Genetics experts from a variety of institutions
(n = 10) had a mean score that was significantly higher than
student pre- and posttest mean scores and TA/LA pretest
mean scores (ANOVA, Tukey post hoc test, p < 0.05) but not
significantly higher than the TA/LA posttest mean score
(Table 4).
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Correlation of pretest score versus average exam score (A), posttest score versus average exam score (B), and learning gain versus

average exam score (C). The equation of the trend line and R? value are displayed on each graph.

Vol. 7, Winter 2008

425



M. K. Smith et al.

Next, we determined how well pretest, posttest, and
learning gain scores correlated with course exam scores for
the spring 2008 CU majors course. Because the posttest
questions were included on the final exam, we recalculated
the average exam score for each student so that it no longer
included their score on the 25 GCA questions. Correlations
with average exam scores were higher for posttest scores
and learning gains than for pretest scores (Figure 1).

Descriptive Statistics

As described above, the item difficulty index (P) for a ques-
tion is equal to the fraction of students who answered it
correctly; that is, P values are high for easy questions and
low for difficult questions. Figure 2 shows the pre- and
posttest P values for each question on the GCA.

The item D measures how well each question distin-
guishes “strong” (top 33% of the total scores on the GCA)
from “weak” (bottom 33%) students. The higher the D value,
the better the question discriminates between strong and
weak students (Doran, 1980). Figure 3 shows the D values
calculated for each question on both the pretest and the
posttest.

Reliability
We measured reliability of the GCA by comparing pretest
scores from the CU fall 2007 and spring 2008 majors genetics
courses. Students in both courses must take the same pre-
requisite one-semester introductory course, which is typi-
cally their only previous college biology experience. Using
the test-retest method as described above, we calculated the
mean coefficient of stability for the pretest in these two
semesters to be 0.93. The closer the coefficient of stability is
to 1, the greater the reliability of the assessment. Although
there is no minimum standard for coefficient of stability
measurements, values of 0.80-0.90 were reported for com-
mercially available tests (Crocker and Algina, 1986).

We also compared the range of all correct and incorrect
answer choices for the fall 2007 and spring 2008 pretests by

1- LG2

using chi-square analysis. This analysis helped us to deter-
mine how much students from these two semesters differed
in their preferences for particular distracters. Only four
questions: 8 (p = 0.029), 10 (p = 0.004), 22 (p = 0.039), and 24
(p = 0.001) showed a significantly (p < 0.05) different spread
of answers in the fall and spring pretests.

DISCUSSION

Summary of Results

We developed an assessment instrument in simple lan-
guage, named the GCA, for gauging student understanding
of basic concepts in genetics at the undergraduate level. We
validated the GCA through student interviews and expert
responses, and we showed that it is reliable when adminis-
tered in two different courses at the same level (coefficient of
stability 0.93). Chi-square analysis revealed that only four
questions exhibited a significantly different (p < 0.05) spread
of distracter choices on pretests in the fall 2007 and spring
2008 semesters for the CU majors genetics course, and inter-
views indicated that interpretation of these distracters was
consistent. The exam scores that students earned in the CU
spring 2008 majors genetics course were not well correlated
to GCA pretest scores, but were well correlated to both
posttest scores and normalized learning gains (Figure 1). We
saw similar trends in the other courses that administered the
GCA (data not shown). The stronger correlation of posttest
scores and normalized learning gains with exam scores sug-
gests that this instrument measures knowledge that is
gained during a genetics course and valued by course in-
structors.

Uses for the GCA

When administered as a pre- and posttest to measure nor-
malized learning gains (Hake, 1998), the GCA can judge
student learning in a variety of ways. Like the Force
Concept Inventory in physics (Hestenes, 1992) and other
similar assessments (see Introduction), the GCA can be
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% z.: 1 LG1 |-G4 LGG -~
-] -
E 0.7 I
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3 051
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Figure 2.

P values for each question on the GCA pretest and posttest. P values represent percentages of correct answers; therefore, lower

values indicate more difficult questions. Results are based on combined responses from 607 students in five different genetics courses.
Different colored bars show the increase in correct answer percentages between pretest and posttest for each question, indicating the extent
of student learning on the corresponding concepts. Questions are grouped according to learning goal (see Table 2).
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D values for questions on the GCA pretest and posttest. Results were calculated (see Methods) from the same data set as in

Figure 2. Questions that have higher D values more effectively discriminate between students whose overall test scores identify them
as strong or weak students (Doran, 1980). Questions that show high D values on the pretest (only strong students answered them
correctly) and low D values on the posttest (most students answered correctly) correspond to concepts on which most students gained
understanding during the course. Questions with high D values on both the pre- and posttests correspond to concepts that primarily
only the stronger students understood at the end of the course. Questions are grouped according to learning goal (see Table 2).

used to compare student learning outcomes achieved with
different modes of instruction (e.g., traditional lecture,
lecture with in-class questions and peer discussion, work-
shop classes built around group problem solving). The
mean normalized learning gain for all students provides
an overall measure of course effectiveness (e.g., Hake,
1998), whereas the distribution of learning gains achieved
by individual students gives a more nuanced picture of
instructional impact on the student population (e.g.,
Knight and Wood, 2005).

For finer-grained evaluation of instructional ap-
proaches within a course, the GCA can test the achieve-
ment of specific learning goals, assuming that particular
questions are assessing achievement of specific goals (Ta-
ble 2). For example, the gain in understanding of different
concepts is evident from the distribution of P values for
each question on the assessment (Figure 2), where a
higher P value corresponds to a higher percentage of
students answering that question correctly. Questions
with low P values on the pretest and high P values on the
posttest represent concepts for which student understand-
ing improved during the course.

The D values (Figure 3) also can be used to evaluate
student learning for different concepts. For example, a
high positive D value for a question on the pretest indi-
cates that strong incoming students, as judged by their
total assessment score on the pretest, are more likely to
understand the corresponding concept than are weak stu-
dents. If a question still has a high positive D value on the
posttest, we can conclude that in spite of instruction, only
the stronger students understand the corresponding con-
cept. For example, questions 3 and 12, which we classified
under learning goal 6 (“Describe the processes that can
affect the frequency of phenotypes in a population over
time”), consistently showed high positive D values on
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both the pre- and posttests (Figure 3). These results sug-
gest that the mechanism by which new alleles arise in a
population remains a difficult concept for all but the
stronger students.

The extensive student interviews we conducted provided
us further insight into some commonly held student mis-
conceptions that are addressed in questions 3 and 12. For
question 3, a student who earned a grade of “B+" in majors
genetics said that the origin of mutations is not random
because “that is too easy, it is just like saying luck is the right
answer.” When asked about the appearance of a new allele
in an isolated population, another student who earned a
grade of “A—" in majors genetics said that the environment
rather than mutations is probably responsible because “It
seems more like an outside factor rather than an inside
factor would be important” and “it is so rare to have a
mutation, so that is not likely to do anything.” High posttest
D values for questions 3 and 12 on the GCA and comments
during student interviews suggest that many students retain
misconceptions about core evolution concepts even after
taking a genetics course. In future genetics courses at CU, we
will try to dispel these misconceptions through additional
instruction coupled with new formative assessments, such
as clicker and homework questions.

In contrast to the above-mentioned example, the GCA also
can identify concepts on which the majority of students
gained understanding. Questions addressing such concepts
showed P values that were low on the pretest and high on
the posttest. In addition, such questions had D values that
were high on the pretest but low on the posttest, indicating
that although primarily only the stronger students answered
these questions correctly on the pretest, both strong and
weak students answered them correctly at the end of the
course. Questions 8 and 17, which address learning goal 3
(“Describe the mechanisms by which an organism’s genome
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is passed on to the next generation”) show these character-
istics (Figures 2 and 3).

Interviews on these questions (8 and 17) revealed that
even students who did not perform well overall in their
genetics course (awarded a grade of “C” or below) were able
to provide correct answers and adequate explanations on
this topic. For example, a “C—" student who correctly an-
swered question 8, which asks about whether a somatic skin
cell mutation can be inherited (see Supplemental Material 1),
said “Since the mutation is in a single skin cell, it will not
occur in his gametes and he will not pass it on to the next
generation.” Question 17 asks students to consider a diploid
germ cell with two pairs of chromosomes whose members
carry different alleles (Pp on chromosome pair 1 and Qq on
chromosome pair 2) and predict all the possible allele com-
binations in sperm produced from this cell. A student who
received a grade of “D” in the course selected the correct
answer in the interview and stated that after normal meiosis
“you must have one copy of each chromosome.” High
pretest and low posttest item D values along with high
posttest P values, similar to those observed for questions
8 and 17, can inform instructors that their course was
successful in helping both strong and weak students learn
the corresponding concepts.

A comparison of P and D values also can suggest that
some ways of teaching a concept are more effective than
others. For example, for a question on mitochondrial in-
heritance (question 13), students from two courses (des-
ignated courses 1 and 2) had statistically equivalent mean
pretest P values (ANOVA, Tukey post hoc test, p > 0.05)
and similar mean pretest D values (Figure 4). Because D
values have no sampling distribution (Crocker and Al-
gina, 1986), it is not possible to determine whether their
differences between courses 1 and 2 are significant. How-
ever, on the posttest, course 1 had a significantly higher
mean P value (ANOVA, Tukey’s post hoc test p < 0.05)
and a lower mean D value than course 2, indicating that a
higher fraction of students in course 1 understood the
concept at the end of the course. When we compared how
this topic was taught and assessed in the two courses
(based on classroom observations), we found a clear dif-
ference. Instructor 1 discussed mitochondrial inheritance
in lecture, formatively assessed understanding in class
using a clicker question with peer instruction (Mazur,
1997), and asked about this concept on homework prob-
lems as well as on two different exams. Instructor 2 lec-
tured on mitochondrial inheritance but only asked stu-
dents about this concept on exams. These differences and
the resulting performance on this question indicate that
the GCA can be useful in evaluating instructional ap-
proaches and materials.

Statistical Criteria for Utility

Some of the statistical criteria used by psychometricians
to gauge the usefulness of standardized tests must be
viewed differently for assessments such as the GCA and
other concept inventories. For standardized assessments
such as the Scholastic Aptitude Test (SAT), it is consid-
ered desirable for D values to be =0.3 for all questions
(Doran, 1980). Another commonly calculated statistical

parameter, the point biserial coefficient (rpbs), also indi-
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Figure 4. Item difficulty (A) and item discrimination (B) index
values for question 13 in two majors genetics courses taught by
different instructors. Students in courses 1 and 2 showed similar P
and D index values on the pretest, but on the posttest, students in
course 1 had a significantly (p < 0.05) higher P value and a lower D
value compared with students in course 2. These results suggest
that the instruction in course 1 was more effective in promoting
student learning gains for the concept addressed in this question
(see legends to Figures 2 and 3).

cates how well performance on each question correlates
with performance on the test as a whole, and values =0.2
for all questions are considered desirable (Kline, 1986).
However, these guidelines are useful only for design of
assessments such as the SAT, where all questions are
testing essentially the same set of skills at one point in
time. In contrast, the questions on the GCA are specifi-
cally intended to assess understanding of many different
concepts, both before and after instruction, so that instruc-
tors can evaluate success in achieving a variety of differ-
ent learning goals. For example, GCA questions 8 and 17
mentioned above had D values above the cut-off value of
0.3 for the pretest but below this value for the posttest,
which would disqualify them from inclusion on the as-
sessment if we were to apply accepted psychometric stan-
dards. However, as demonstrated above, it is precisely
this difference between D values on the pre- and posttests
that can provide useful information about student learn-
ing of the corresponding concepts as well as identifying
areas where improved instruction may be needed. Be-
cause the standard interpretation of point biserial coeffi-
cient cut-offs is similarly inapplicable to assessments such
as the GCA, we have not reported r_,, values for our
questions.

pbs

Conclusion, Future Directions, and Accessibility of
Materials

The GCA is a validated, reliable conceptual assessment in-
strument that can be used by genetics instructors to measure
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students’ learning gains as well as to identify strengths and
weaknesses in teaching approaches for specific concepts.
Due to the concern that circulation of the GCA among
students might decrease its value to instructors, we have not
published the full set of questions in this article. However,
we hope that appropriate use of the GCA will become
widespread, and we will supply the complete set of ques-
tions, with answers, on request. Interested instructors
should contact M.K.S.

We welcome comments and suggestions from GCA users,
and we will continue to revise the GCA as we obtain feed-
back. We will review all suggestions and validate any sig-
nificant revisions by student interviews before they are in-
corporated into a new version of the GCA. At least eight
institutions have agreed to test updated versions of the GCA
during the 20082009 academic year. Analysis of the com-
bined data from these and additional future tests will be
posted online at www.colorado.edu/sei/departments/mcdb_
assessment.htm.

ACKNOWLEDGMENTS

We thank Carl Wieman, Kathy Perkins, and Wendy Adams of the
SEI for intellectual support throughout this project, guidance in
statistical analysis of our results, and helpful comments on the
manuscript. Sylvia Fromherz and Mark Winey provided ideas for
the original questions on the pilot version of the assessment. Special
thanks to Christy Fillman, Sylvia Fromherz, Ken Krauter, Robyn
Puffenbarger, Ronda Rolfes, Tin Tin Su, and Mark Winey for ad-
ministering the assessment in courses and sharing data. We also
thank our GCA expert reviewers for valuable comments on the
assessment questions. Finally, we are grateful to the Science Edu-
cation Initiative of CU for full support of M.K.S. and partial support
of J.LK.K. during this project.

REFERENCES

Adams, W. K,, Perkins, K. K., Podolefsky, N. S., Dubson, M., Finkel-
stein, N. D., and Wieman, C. E. (2006). New instrument for mea-
suring student beliefs about physics and learning physics: the Col-
orado learning attitudes about science survey. Phys. Rev.-PER 2,
010101.

Anderson, D. L., Fisher, K. M., and Norman, G. J. (2002). Develop-
ment and evaluation of the conceptual inventory of natural selec-
tion. J. Res. Sci. Teach. 39, 952-978.

Bowling, B. V., Acra, E. E., Wang, L., Myers, M. F., Dean, G. E,,
Markle, G. C., Moskalik, C. L., and Huether, C. A. (2008). Develop-
ment and evaluation of a genetics literacy assessment instrument for
undergraduates. Genetics 178, 15-22.

Chabay, R., and Sherwood, B. (1997). Qualitative understanding and
retention. AAPT Announcer 27, S12.

Chattopadhyay, A. (2005). Understanding of genetic information in
higher secondary students in northeast India and the implications
for genetics education. Cell Biol. Educ. 4, 97-104.

Crocker, L., and Algina, J. (1986). Introduction to Classical and
Modern Test Theory, New York: Holt, Rinehart, and Winston.

Crouch, C. H., and Mazur, E. (2001). Peer Instruction: ten years of
experience and results. Am. J. Phys. 69, 970-977.

Ding, L., Chabay, R., Sherwood, B., and Beichner, R. (2006). Evalu-
ating an electricity and magnetism assessment tool: brief electricity
and magnetism assessment. Phys. Rev.-PER 2, 010105.

Vol. 7, Winter 2008

Genetics Concept Assessment

Doran, R. (1980). Basic Measurement and Evaluation of Science
Instruction, Washington, DC: National Science Teachers Association.

Freeman, S., O’Connor, E., Parks, ]. W., Cunningham, M., Hurley,
D., Haak, D., Dirks, C., and Wenderoth, M. P. (2007). Prescribed
active learning increases performance in introductory biology. CBE
Life Sci. Educ. 6, 132-139.

Garvin-Doxas, K., Klymkowsky, M., and Elrod, S. (2007). Building,
using, and maximizing the impact of concept inventories in the
biological sciences: report on a National Science Foundation spon-
sored conference on the construction of concept inventories in the
biological sciences. CBE Life Sci. Educ. 6, 277-282.

Hake, R. R. (1998). Interactive-engagement versus traditional meth-
ods: a six-thousand-student survey of mechanics test data for intro-
ductory physics courses. Am. J. Phys. 66, 64-74.

Hake, R. R. (2002). Lessons from the physics education reform effort.
Conserv. Ecol. 5, 28

Hestenes, D. (1992). Force concept inventory. Phys. Teach. 30,
141-158.

Hufnagel, B. (2002). Development of the astronomy diagnostic test.
Astron. Educ. Rev. 1, 47-51.

Kline, P. (1986). A Handbook of Test Construction: Introduction to
Psychometric Design, London, United Kingdom: Methuen.

Klymkowsky, M. W., Garvin-Doxas, K., and Zeilik, M. (2003). Bio-
literacy and teaching efficacy: what biologists can learn from phys-
icists. Cell Biol. Educ. 2, 155-161.

Knight, J. K., and Wood, W. B. (2005). Teaching more by lecturing
less. Cell Biol. Educ. 4, 298-310.

Lewis, J., Leach, J., and Wood-Robinson, C. (2000a). All in the genes?
Young people’s understanding of the nature of genes. J. Biol. Educ.
34, 74-79.

Lewis, J., Leach, J., and Wood-Robinson, C. (2000b). Chromosomes:
the missing link—young people’s understanding of mitosis, meio-
sis, and fertilisation. J. Biol. Educ. 34, 189-199.

Lewis, J., Leach, J., and Wood-Robinson, C. (2000c). Genes, chromo-
somes, cell division and inheritance—do students see any relation-
ship? Int. J. Sci. Educ. 22, 177-195.

Lewis, J., Leach, J., and Wood-Robinson, C. (2000d). What's in a cell?
Young people’s understanding of the genetic relationship between
cells within an individual. J. Biol. Educ. 34, 129-132.

Marbach-Ad, G. (2001). Attempting to break the code in student
comprehension of genetic concepts. J. Biol. Educ. 35, 183-189.

Marbach-Ad, G., and Stavy, R. (2000). Students’ cellular and molec-
ular explanations of genetic phenomena. J. Biol. Educ. 34, 200-205.

Mazur, E. (1997). Peer Instruction: A User’s Manual, Upper Saddle
River, NJ: Prentice Hall.

Morrow, J., Jackson, A., Disch, J., and Mood, D. (2005). Measure-
ment and Evaluation in Human Performance, Champaign, IL:
Human Kinetics.

Orcajo, T. I, and Aznar, M. M. (2005). Solving problems in genetics
II: conceptual restructuring. Int. J. Sci. Educ. 27, 1495-1519.

Sadler, T. D., and Zeidler, D. L. (2005). The significance of content
knowledge for informal reasoning regarding socioscientific issues:
applying genetics knowledge to genetic engineering issues. Sci.
Educ. 89, 71-93.

Thornton, R. K., and Sokoloff, D. R. (1998). Assessing student learn-
ing of Newton'’s laws: the force and motion conceptual evaluation
and the evaluation of active learning laboratory and lecture curric-
ula. Am. ]J. Phys. 66, 338-352.

Tsui, C. Y., and Treagust, D. (2004). Conceptual change in learn-
ing genetics: an ontological perspective. Res. Sci. Tech. Educ. 22,
185-202.

429



M. K. Smith et al.

Udovic, D., Morris, D., Dickman, A., Postlethwait, J., and Wetherwax,
P. (2002). Workshop biology: demonstrating the effectiveness of active
learning in an introductory biology course. BioScience 52, 272-281.

Venville, G. J., and Treagust, D. F. (1998). Exploring conceptual
change in genetics using a multidimensional interpretive frame-
work. J. Res. Sci. Teach. 35, 1031-1055.

430

Wood-Robinson, C., Lewis, J., and Leach, J. (2000). Young people’s
understanding of the nature of genetic information in the cells of an
organism. J. Biol. Educ. 35, 29-36.

Zohar, A., and Nemet, F. (2002). Fostering students’” knowledge and
argumentation skills through dilemmas in human genetics. J. Res.
Sci. Teach. 39, 35-62.

CBE—Life Sciences Education



