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Mathematical manipulative models have had a long history of influence in biological research and in
secondary school education, but they are frequently neglected in undergraduate biology education.
By linking mathematical manipulative models in a four-step process—1) use of physical manipula-
tives, 2) interactive exploration of computer simulations, 3) derivation of mathematical relationships
from core principles, and 4) analysis of real data sets—we demonstrate a process that we have shared
in biological faculty development workshops led by staff from the BioQUEST Curriculum Consor-
tium over the past 24 yr. We built this approach based upon a broad survey of literature in
mathematical educational research that has convincingly demonstrated the utility of multiple models
that involve physical, kinesthetic learning to actual data and interactive simulations. Two projects
that use this approach are introduced: The Biological Excel Simulations and Tools in Exploratory,
Experiential Mathematics (ESTEEM) Project (http://bioquest.org/esteem) and Numerical Under-
graduate Mathematical Biology Education (NUMB3R5 COUNT; http://bioquest.org/numbers-
count). Examples here emphasize genetics, ecology, population biology, photosynthesis, cancer, and
epidemiology. Mathematical manipulative models help learners break through prior fears to develop
an appreciation for how mathematical reasoning informs problem solving, inference, and precise
communication in biology and enhance the diversity of quantitative biology education.

INTRODUCTION

Numerous national commissions have emphasized mathemat-
ical fluency as a crucial component of educational reform in
biology. Nonetheless, biology curricula at most institutions
remain resolutely free of meaningful quantitative reasoning
and analysis. To break this impasse, we propose a pedagogical
approach that approaches mathematics from four complemen-
tary perspectives: 1) physical manipulatives, 2) computer sim-
ulations, 3) derivation of mathematical relationships from core

principles, and 4) analysis of real data sets. We demonstrate
this approach with specific examples taken from the Bio-
QUEST Curriculum Consortium’s 24-yr experience of holding
faculty development workshops for biology and mathematics
educators. In these workshops, we have frequently found that
manipulatives help learners break through prior fears to develop
an appreciation for how mathematical reasoning informs problem
solving, inference, and precise communication in biology.

Unfortunately, two main concerns have hindered the adop-
tion of manipulatives in undergraduate science education.
Some faculty worry that college students are already skilled in
abstract thinking and will therefore view use of manipulatives
as condescending. Furthermore, students’ experience with so-
phisticated and interactive visualizations from computer gam-
ing may make physical manipulatives seem hopelessly out-
dated. What, then, do manipulatives have to offer?

First, many studies provide evidence that appropriate class-
room use of manipulatives both broadens and deepens stu-
dents’ learning of mathematical concepts. For example, group
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work with manipulatives transforms mathematical problem
solving into a social activity, decreasing student anxiety and
increasing engagement (Eyster and Tashiro, 1997; Sowey,
2001). Kinesthetic learners in particular benefit from the oppor-
tunity to apply abstract concepts to real-world examples. Sim-
ilarly, working with manipulatives helps students develop
problem-solving and critical-thinking skills (Eyster and
Tashiro, 1997); increases students’ sense of responsibility for
their own learning; and emphasizes intuitive, long-term under-
standing of course material (Shaughnessy, 1992; Sowey, 2001;
also see Jungck et al., 2000a,b). A meta-analysis of 60 research
studies concluded that consistent and knowledgeable use of
manipulatives improves both students’ mathematical achieve-
ment and their attitudes toward mathematics (Sowell, 1989).
Given this strong consensus, we focus here on the more con-
ceptual aspects of using manipulative models.

Second, mathematical manipulatives play key roles in
both the history and the contemporary practice of biology.
Some of the most famous examples include Watson and
Crick’s model of the DNA double helix, Hodgkin’s physical
model of insulin’s three-dimensional structure, Pauling’s
paper model of a protein �-helix, camera models of eyes,
and Caspar’s and Klug’s polyhedral models of viral capsids.
More recently, a 3.5-m-tall sculpture depicting the forces
exerted by lung cells during angiogenesis tied for first place
in Science magazine’s 2009 International Science & Engineer-
ing Visualization Challenge. Classroom use of manipula-
tives helps demonstrate the importance of structural models
in scientific discovery and communication.

Beanbag Biology: History of a Phrase
In a famous passage in his book Animal Species and Evolution,
biologist Ernst Mayr (1963) criticized the mathematical basis of
modern population genetics as mere “beanbag genetics” that
ignored the complex patterns of interactions between genes.
J.B.S. Haldane, one of the founders of population genetics,
countered (1964) that mathematical analysis enables evolution-
ary biologists to make more precise and quantitative predic-
tions, avoiding much of the clutter and vagueness of purely
verbal arguments. This article was recently reprinted (Haldane,
2008), along with several articles that comment on Haldane’s
perspective. Although these papers deal with metaphorical
beanbags, they lay a propitious foundation for considering the
role of physical manipulatives—actual, physical beanbags—in
biological classroom activities. In this essay, we explore the
uses of true beanbag biology for student learning.

BEANBAG MATHEMATICAL BIOLOGY

Game 1: Outbreak in a Cup
Many mathematical models have been used to explore the
dynamics and control of infectious diseases. The basic frame-
work of these models is to divide the population into groups
according to their disease status: susceptible to the disease,
infected and infectious, recovered and immune, and so on. The
model then estimates the movement of individuals between
these disease groups. To demonstrate how to develop such a
model and explore the dynamics of a disease in a population,
we developed a simple hands-on exercise.

Game 1a. Students are divided into small groups of two to four
students. Each group is given one empty cup (the “experi-

ment” cup), a second cup containing approximately 50 brown
beans (kidney beans work well and an inexpensive 1-lb bag is
usually enough for a class of 24), and a third cup with approx-
imately 50 white beans (navy or northern beans provided they
are approximately the same shape as the kidney beans). Each
group then sets up the initial scenario by placing 20 brown
beans and one white bean into the experiment cup. The stu-
dents are then instructed to repeat the following set of steps:

1. Without looking in the cup, a student from the group
selects two beans from the cup.

2. If both beans are the same color, the student simply
returns the beans.

3. If one bean is brown and the other white, the student re-
moves the brown bean and returns two white beans to the cup.

4. At each time step, record the event that occurs: either no
change or a new infection.

5. Repeat this process until told to stop.

Note that the number of beans in the experiment cup should
remain constant.

This simple game demonstrates how a disease could move
through a population. It is important to discuss the assump-
tions that underlie this model. For example, no one recovers
from this disease. Discussions about these assumptions can
lead to any number of variations on this game. For example,
some variations could be as follows:

1. Reduction in spread rate. Provide the students with a coin
to flip when they get the one brown, one white draw.
Transmission (e.g., replacing the brown with a white)
only occurs if they flip heads.

2. Vaccination. Using a third color of beans (e.g., beige gar-
banzo beans or green peas, again making sure there is no
difference in size or shape), replace a certain number of
susceptible (brown) beans with vaccinated (beige) beans.
Track the differences in the number of new infections as
a function of percentage of the population vaccinated.

3. Recovery. Similarly to the vaccination, use red beans to
replace a random infected (white) bean after a given
number of draws or at announced times.

This simple game quickly demonstrates to students how to
build a mathematical model for the spread of an infectious
disease by understanding the basic epidemiology of the disease.

Game 1b. Another model of such a susceptible–infectious–
recovered (S-I-R) scenario that is more visual for some stu-
dents is Joan Aron’s Reed-Frost model (see Wahlström et al.,
1998; Figure 1). In this case, four colors of marbles are used
and are randomly distributed into a linear trough: the three
classes S, I, and R and a fourth color marble that adjusts the
probability of contact between elements in that group of
three. For example, if students decide that for a susceptible
individual to become infected it has to be adjacent to an
infectious individual, the probability of this happening will be
affected not only by the amounts of each of the three S-I-R
classes but also by this barrier population. We have found this
model particularly helpful because multiple groups playing at
one time usually make up their rules (and hence their intuitive
mathematical models) quite differently, and we can have ex-
cellent discussions about the plausibility of different assumptions
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based on whether the disease is like measles, smallpox, acquired
immunodeficiency syndrome, flu, common cold, or polio.

After the students have built a physical model, we next have
them analyze computational models of the same system. This
activity can use either specialized epidemiological software such
as SIR BuildIt (Weisstein and Gaff, unpublished data; Figure 2),
Epidemiology (Udovic and Goodwin, 1998), and EcoBeaker (Sim-
Biotic Software, 2010) or more general modeling software such as
NetLogo (Wilensky, 1999), Mathematica, and Berkeley–Madonna.
By adjusting individual model parameters, students can first de-
velop and then test their intuitive understanding of the forces that
determine an epidemic’s progress through a population.

By now, students have played with a physical game, modi-
fied parameters in a computer model, and interpreted graphs
showing the progress of specific diseases that differ in mode
and ease of transmission, incubation period, and susceptibility
to treatment. For a fourth and final perspective, students link
their experience to the formal equations governing an SIR
model (Jungck, 1997; Cohen, 2004). By relating these equations
to the manipulatives and simulations they have already used,
students can quickly grasp the equations’ meaning, even if they
have not had exposure to calculus per se (Figure 3).

Once students have experience with the manipulatives, com-
puter simulations, and equations, educators can use case stud-
ies to connect the course material to current and recent events.
Many case studies exist on infectious diseases such as human
immunodeficiency virus (HIV), West Nile virus, and H1N1
influenza (e.g., Waterman and Stanley, 2005).

Game 2: How Big Is this Population?
Mark–Recapture Sampling Estimates
One of the biggest challenges in studying wild populations is
to gauge the size of the population. A fairly simple technique that
has been used for many years is a mark–recapture methodology.
A sample of the population is trapped, and these individuals are
marked in some noninvasive manner and released. A later sam-
ple then tracks how many individuals of the new sample were
caught and marked in the previous sample. To improve students’
intuitive understanding of this method and its limitations, we
have developed another hands-on bead experiment.

Once again, we divide students into groups of two to four,
and we provide them with two cups containing beans or
beads of contrasting colors and an empty cup to hold the
extra beads. The cups should be large enough such that the
students can get a hand into the cup but not so large that
they can select more than a small number of the beads. The
students are instructed to repeat the following experiment:

1. Select a handful of beads from the cup of blue beads.
2. Count the blue beads and put them in the empty cup.

Record this number.
3. Add one white bead for each blue bead taken in the sample.

So if the handful removed eight blue beads, you should add
eight white beads to the remaining cup of blue beads.

4. Mix well and without peeking, select another handful of beads.
5. Record the number of blue beads and white beads in the

handful.
6. Return the white beads to the cup and replace the blue

beads in that handful with white beads.
7. Repeat steps 4–6 at least twice more.

After completing the experiment, students can use their data to
estimate the total population size using the Lincoln–Peterson
method (population � total marked � no. in recaptured sam-
ple/no. marked in recaptured sample). This exercise can gen-
erate discussions of the statistical challenges that arise during

Figure 1. Reed–Frost epidemic SIR model. Mechanical model elab-
orated by Paul Fine with computer model by Dallas E. Wrege and
Joan L. Aron, Johns Hopkins University (private communication).
See Aron (2000).

Figure 3. These three differential equations show the rate of
change in the populations of susceptible individuals (dS/dt), infec-
tious individuals (dI/dt), and recovered individuals (dR/dt). The
parameter � measures the probability of disease transmission from
an infectious to a susceptible individual, and � is the recovery rate
(see Gaff and Schaefer, 2009).

Figure 2. A spreadsheet SIR model of an epidemic (Weisstein and
Gaff, unpublished data).
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sampling, such as how to treat a sample that had no recaptures.
Ecological challenges also can be discussed, such as how an
open versus a closed population, migration patterns, and life

span would affect the estimation process. Many other calcula-
tion methods also can be used in place of Lincoln–Peterson;
some such methods are shown in Figure 4.

Figure 4. Histogram display (left) of estimates of population size and the equations (right) that underlie these estimates, from the
spreadsheet program Mark–Recapture (Panks and Jungck, 2008).
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A field activity on the mark–recapture method by Whiteley
et al. (2007) was published in The American Biology Teacher. A
free online module featuring five different mark–recapture
models and a published data set on salamander populations
(Panks and Jungck, 2008) is illustrated in Figure 4, A and B.

Game 3: Do You Get My Drift? (Population Genetics)

Because beanbag models of population genetics made this
approach famous, there are many already available from di-
verse sources. The Froehlich and London (1996) exercise pro-
vides students with nine jars containing red and white beans in
different proportions (10% red, 20% red, and so on). In each
simulated generation, students draw five beans from the jar

whose proportions matched their previous sample, until the
population reaches fixation. In Barton’s exercise (Barton, 2000),
students pick tribeads out of boxes filled with plain beads of
different colors to simulate not only genetic drift but also
natural selection and some aspects of migration (gene flow).
Both of these exercises are well structured and provide clear
instructions for both learners and instructors. Access Excel-
lence’s Beans and Birds: A Natural Selection Simulation exer-
cise (Access Excellence, 1995) simulates natural selection on a
population of pinto beans in four different-colored backgrounds;
however, this activity includes no explicit mathematics.

Some of our own computer simulations supplement these
manipulatives. For example, Deme (Weisstein and Barnes,

Figure 5. Left, genetic drift modeled with Deme (Weisstein and Barnes, 2007). Right, genetic drift modeled with software available
under a Creative Commons license (Wikimedia, 2010). The simulations show genetic drift in populations of size N � 20, 200, and 2000,
respectively. All populations start with allele frequencies of p � q � 0.5.

Mathematical Manipulative Models

Vol. 9, Fall 2010 205



2007) models the evolution of three local populations in
response to natural selection, genetic drift, migration, and
mutation (Figure 5). This general model can be modified to
test specific evolutionary hypotheses from the primary lit-
erature. For example, researchers studying the CCR5�32
mutation, which substantially protects against HIV infec-
tion, proposed that this mutation might have conferred sim-
ilar protection against bubonic plague (the Black Death) in
fourteenth-century Europe. Using Deme, students can test
this hypothesis by determining the fitness advantage re-
quired for the allele to reach its current frequency in a time
frame consistent with published estimates of the allele’s age.

Our EVOLVE model (Soderberg and Price, 2003; Price et
al., 2005) also simulates selection (parsed into reproduction
and survival components), migration, and genetic drift. By
gathering data on allele frequencies and population fitness,
students can empirically test Fisher’s fundamental theorem
of natural selection (see Jungck, 1997). A similar model
(Comar, 2005) focuses on mathematical methods, beginning
with a model that uses only high school algebra and culmi-
nating in models that use ordinary differential equations.

Adding a third allele at the same locus yields an unex-
pected result: natural selection moves the population to its
local fitness peak in the complex adaptive landscape but not
necessarily to its global peak. Computer simulations such as
deFinetti (Weisstein et al., 2005b) thus directly challenge the
simplistic idea that selection produces “survival of the fit-
test” (Figure 6). Although the underlying mathematics relies
on concepts from matrix algebra and partial derivatives,
students with an understanding of high school algebra can
easily follow the extension of the simple Hardy–Weinberg
equilibrium equation to the one locus–three allele case.

Game 4: Peas, Photons, and the Poisson
Distribution
An exercise described by Buonaccorsi and Skibiel (2005) uses
dried peas as manipulatives to introduce and test ecological
hypotheses about the spatial distribution of individuals within
a population. As they describe, “A Poisson distribution of split
peas per sampling quadrat was generated as a student
dropped a handful of split peas onto a grid that was projected
on an overhead projector. Data analysis consisted of (1) tallying
the observed frequencies of peas per quadrat, (2) calculating
the mean number of peas per quadrat, (3) calculating the
Poisson estimated probabilities for each outcome, (4) calculat-
ing the Poisson expected frequencies, (5) calculating and compar-
ing the mean and variance of the distribution, (6) calculating the
coefficient of dispersion (CD) and (7) evaluating the fit of observed
and expected frequencies using a chi-square goodness-of-fit test.
… From a biological viewpoint, schooling organisms (for example
skipjack tuna) may exhibit clustered distributions whereas terri-
torial competitive organisms may exhibit uniform or repulsed
distributions (for example sea anemones).”

Berges (personal communication) converted this exercise
into an analysis of photon absorption during photosynthesis.
He reasons with students that most photons in sunlight will
not be absorbed, due to reflection and scattering; as a result,
absorption is a relatively rare and random event that can be
modeled as a Poisson process (see Figure 7). His students have
successfully modeled four species: tea, oak, maple, and aspen.
In each case, as students increase the average number of lentils

per square (a), the proportion 1 � P(0) of squares receiving at
least one bean reaches an upper limit. This behavior mimics the
saturation of photosynthetic output as a function of radiance.
By fitting a rectangular hyperbolic curve to the resulting graph
(Berges et al., 1994), students can estimate the density of grid-
lines on the sample surface, corresponding to the density of
chlorophyll in individual species’ chloroplasts. (Please consult
Professor Berges for further specifics on this exercise.)

Berges’s exercise uses the zero term of the Poisson distribu-
tion, P(0), to predict the proportion of chlorophyll molecules

Figure 6. DeFinetti model of evolutionary fitness (top) landscape for
one locus with three alleles and allele frequency trajectories (bottom)
over 15 generations of selection (Weisstein et al., 2005b). These data are
for modeling sickle-cell anemia with hemoglobin alleles A, C, and S. In
the bottom image, populations near the AS polymorphism (top right)
climb to their local peak rather than to the global peak (bottom left).
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that do not receive any photons. This same term plays a key
role in the Luria–Delbrück fluctuation experiment (Luria and
Delbrück, 1943), one of the most famous experiments in twen-
tieth-century biology. This experiment uses the number of
plates with zero bacterial colonies to estimate the mutation rate
(for an excellent historical analysis, see Zheng, 1999), and mod-
ified versions of the experiment also form the basis for many
cancer models (e.g., Tlsty et al., 1989). The Luria–Delbrück
experiment has been written up as both a wet lab exercise for
undergraduates (Green and Bozzone, 2001) and a computer
simulation that uses mean–variance tests for goodness of fit to
the Poisson distribution (Weisstein et al., 2005a; Figure 8).

The same mathematical concepts can thus be used to
study population ecology, photosynthesis, cancer, and bac-
terial mutation. Such examples help students understand
the transferability of models across biological scales.

Game 5: Competition in a Cup
A central topic in mathematical biology education is the dis-
tinction between stochastic and deterministic models. The
game FOXRAB (Moxley and Denk, undated) and its associated
mathematical model allow students to explore these two dif-
ferent model types in the context of a predator–prey interac-
tion. Although the formal Lotka–Volterra differential equations
are beyond most beginning biology students, this simplified
version captures most of the underlying dynamics while re-
quiring only algebra at the high school level.

Each group of students is given one game board (Figure
9), 20 colored beans (rabbits), and 20 beans of a second color

(foxes). Students mix this population thoroughly and then
randomly distribute their beans on the board. The rules of
FOXRAB are as follows:

1. When a rabbit lands on a black square, add another rabbit
on that square (births).

2. When a fox lands on a white square, remove it (deaths).
3. When a fox lands in a patch of four squares that includes

at least one rabbit, remove one of those rabbits (preda-
tion) and add a fox (birth).

After completing these steps, students record the new num-
ber of foxes and rabbits on the game board and then gather
and mix these beans before randomly distributing them on
the board again. We generally repeat this procedure for six
to 10 generations. We then have students produce a variety
of graphs that illustrate different aspects of the system’s
behavior. For example, a joint plot of fox and rabbit abun-
dances versus time shows the coupled oscillations in the two
populations, whereas a phase portrait of fox abundance
versus rabbit abundance reveals any stable limit cycles (Fig-
ure 10, top), and return graphs of abundance at consecutive
time steps may reveal chaotic behavior.

Once students have gained experience working with the
physical game, we have them develop a simple set of recur-
sion equations that combines births and deaths for each
species (see Figure 10, bottom). These equations can easily
be implemented on a hand-held calculator. At this stage, we
contrast the stochastic behavior of the physical model,

Figure 7. Results from one student simula-
tion. As the average number of lentils per
square (a) increases, the proportion of squares
receiving at least one photon reaches an as-
ymptotic maximum.

Figure 8. A screenshot from a computer sim-
ulation of the Luria–Delbrück experiment
(Weisstein et al., 2005c). The histogram shows
the distribution of plates with different num-
bers of bacterial colonies under two different
procedures: replicate plates from a single
growth culture (yellow bars) and individual
plates from separate growth cultures (red
bars). Because mutations may randomly arise
at different times in different cultures, the
latter procedure usually yields substantially
greater variance in the number of colonies (blue),
even when the mean number of colonies is
roughly equal between treatments.
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where each group gets different results due to random mix-
ing and distribution of beans, with the deterministic behav-
ior of the mathematical model. In particular, in what ways
do the two models show similar behavior, and in what ways
do they differ? We also ask students to devise modifications
of the mathematical model so as to incorporate the stochas-
ticity of real-world biological systems.

Both FOXRAB and the calculator-based model become te-
dious to run for �10 generations. Once students have used
these tools to build their intuitive understanding of how the
system works, we introduce them to a software package such
as Two-Species Model (Weisstein et al., 2005c), which can
quickly produce larger data sets. We then shift students’ atten-
tion from the model mechanics to more fundamental questions
about population dynamics. For example, although most stu-
dents can correctly interpret simple X-Y scatterplots of rabbits
and foxes versus time, they struggle to understand phase por-
traits of foxes versus rabbits (Figure 11), in which time becomes
an embedded variable. Students also become interested in the
short-term oscillations that can arise within each species in a
discrete model of logistic growth and in the chaotic behavior
produced by rapid population growth.

Game 6: One Good Urn: How a Game Changes Our
Expectations
In 1976, Joel Cohen (Cohen, 1976) coined the phrase “one good
urn” to describe the following beanbag experiment (Figure 12):

“Suppose a very large box … contains one green ball and
one blue ball. Choose one ball at random, look at its color,
replace the ball in the box, and add to the box another ball of
the same color as the one chosen. At each successive point in
time, say once every second, choose one ball at random and
then repeat exactly the above …

“What will happen to the proportion of green balls as time
increases? … The experiment just described is a special case
of what is known as “Pólya’s urn scheme.” Eggenberger and
Pólya (1923) introduced the scheme to model the spread of
infection in a population.… [T]he limiting distribution of
proportions of each color is uniform.”

Lou Gross, the head of the National Institute for Mathemat-
ical Biology Synthesis Center (NIMBioS), regularly demon-
strates this game at conferences. Initially, most participants
predict that the frequencies of each color will fluctuate ran-
domly over time. During the experiment, most participants’
cups begin to drift toward a preponderance of one color or the
other, and participants often revise their prediction accord-
ingly. Once the experiment is complete, however, combining data
across all participants reveals a uniform distribution: all physically
possible proportions of green vs. blue beads are equally likely.
Comparing participants’ initial predictions to their results rein-
forces a final feature of manipulative models: the ability to sur-
prise. A seemingly simple game can yield insight into counterin-
tuitive results that students would otherwise reject as implausible.
Much like the magician showing how a trick is done, manipula-
tives help explain the unexplainable.

Figure 9. The FOXRAB game board is constructed from a checker-
or chessboard, although it also can be constructed from a plain
cardboard box. The 64 squares are divided into 16 patches of four
cells each; we use colored tape to demarcate these boundaries.

Figure 10. Top, phase portrait of foxes versus rabbits to examine
for stable limit cycles (Hanna, 2010). Bottom, calculator tape for a
pair of finite difference equations that fit the data from the board
game quite well.
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CONCLUSIONS

The reprinting of Haldane’s paper defending the use of
beanbag models in population genetics has led to further
discussion of both the utility and the limitations of such
models. For example, Kraft and Raychaudhuri (2009) note
the following:

“Haldane conceded this point of principle (beanbag ge-
netics do not explain the physiological interaction of genes
and the interaction of genotype and environment) but went
on to argue that despite its simplifications, the marginal
approach had proven itself in practice and led to important
insights. The arrival of massive amounts of data from ge-
nome-wide association studies (GWAS) has turned up the

Figure 11. Screenshot from the Two-Species
Model software tool (Weisstein et al., 2005c),
showing competitive exclusion of one species
(blue) by another (green). Both populations’
high growth rate leads them to repeatedly
overshoot their carrying capacity and then die
back, producing oscillations of period 2. Graph
A4 (purple, bottom right) is a phase portrait
plotting the population size of species 2 (y-
axis) versus the population size of species 1
(x-axis).

Figure 12. Screenshot of a computer applet
(Siegrist, 2009) that demonstrates the Pólya urn
experiment. After each trial, the applet dis-
plays the number and proportion of red balls,
as well as the corresponding probability den-
sity function. A similar interactive tool is avail-
able through the Wolfram Demonstrations
Project (Hennings, 2010).
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heat on a similar debate in the field of genetic epidemiology.
On the one hand, the admittedly simple approach of aver-
aging over genetic and environmental backgrounds and
testing each marker in a GWAS for association with the
studied trait marginally has proven quite successful, despite
early concerns that by ignoring the underlying complexity
this naïve approach would fail. On the other hand, the loci
discovered to date do not come close to explaining the
observed heritability for most studied traits. Pathway anal-
yses acknowledge complexity by considering multiple loci
simultaneously and relating them to known functional an-
notations.”

Kraft and Raychaudhuri (2009) note that data mining
approaches can be used to untangle the complex interactions
that Mayr had originally emphasized. Thus, in some sense,
current work in genetic epidemiology is coming full circle
by integrating Haldane’s beanbag approaches with Mayr’s
views on the complexity of real genetic systems.

To illustrate the breadth of these issues, in the 2009 issue
of Judgment and Decision Making, neurobiologist Benjamin
Hayden and evolutionary anthropologist Michael Platt use
the example of the St. Petersburg paradox (Hayden and Platt
[2009]; Figure 13) to underscore the fundamental differences
between the mean and the median. In the St. Petersburg
game, the player tosses a fair coin repeatedly until a tail first
appears. The player then wins 2n dollars, where n is the
number of consecutive heads tossed by the player. Although
this game has an infinite expected payoff (mean), the me-
dian payoff is only one dollar. Hayden and Platt (2009)
suggest that decision makers dealing with high-risk situa-
tions intuitively use medians instead of means, due to the
latter’s lability and susceptibility to outliers. As a result, they
may not plan sufficiently for low-probability, large-magni-
tude events (e.g., the current oil spill in the Gulf of Mexico).
Simple beanbag models and games thus not only provide
learning tools for students but also inform decisions by
contemporary scientists and policy makers in diverse fields.

Thus, as Borges (2008) concludes, “Despite all these as-
saults, the beanbag endures, with the formulation of better
and more sophisticated theoretical population genetics mod-
els that include multiple interacting loci, thus making the
transition from the classical models of Fisher, Wright and
Haldane to more modern ones. Surely as long as evolution-
ary biologists need to explore the realms of the possible
versus the actual, the beanbag will live on.”
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appreciated as well as the opportunity to learn from her Numerical
Undergraduate Mathematical Biology Education … [NUMB3R5
COUNT]) project. Similarly, the financial and personal support
provided by Dr. Lou Gross, Director of NIMBioS, has been invalu-
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University of Wisconsin Milwaukee, generously shared lentil pho-
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