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We tested the hypothesis that highly structured course designs, which implement reading quizzes
and/or extensive in-class active-learning activities and weekly practice exams, can lower failure
rates in an introductory biology course for majors, compared with low-structure course designs
that are based on lecturing and a few high-risk assessments. We controlled for 1) instructor effects
by analyzing data from quarters when the same instructor taught the course, 2) exam equivalence
with new assessments called the Weighted Bloom’s Index and Predicted Exam Score, and 3) student
equivalence using a regression-based Predicted Grade. We also tested the hypothesis that points from
reading quizzes, clicker questions, and other “practice” assessments in highly structured courses
inflate grades and confound comparisons with low-structure course designs. We found no evidence
that points from active-learning exercises inflate grades or reduce the impact of exams on final
grades. When we controlled for variation in student ability, failure rates were lower in a moderately
structured course design and were dramatically lower in a highly structured course design. This
result supports the hypothesis that active-learning exercises can make students more skilled learners

and help bridge the gap between poorly prepared students and their better-prepared peers.

INTRODUCTION

In 1920, <4% of the U.S. population went to college (Rat-
cliff, 2010). Now, >55% of the general population over the
age of 25 has at least some college experience (U.S. Census
Bureau, 2009). In the United States, the democratization of
higher education began with the founding of the land grant
(public) universities in the 1860s, continued with the found-
ing of community colleges in the early 1900s, accelerated with
the G.I Bill that passed in 1944, and culminated with the ex-
pansion of the women’s movement and a long-delayed end
to exclusion based on race in the 1960s and 1970s (Eckel and
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King, 2006). Indeed, increased access to higher education is
occurring internationally (e.g., Scott, 1995).

For faculty, the democratization of higher education means
thatan increasingly smaller percentage of students come from
privileged social and economic backgrounds. Although fac-
ulty should celebrate this fact, it is common to hear instructors
express concern about the downside of democratization: high
variation in student ability and preparedness. Data from the
ACT (2006), for example, suggest that 49% of high school stu-
dents who took the ACT college entrance exam in 2005 were
not ready for college-level reading.

How can we help underprepared but capable students suc-
ceed, while continuing to challenge better-prepared students?
The issue is particularly acute in gateway courses—the large,
introductory classes that undergraduates take in their first
or second year. Across the science, technology, engineering,
and mathematics (STEM) disciplines, failure rates in these
courses can be high—even in moderately and highly selec-
tive schools, where students are “prescreened” on the basis of
academic capability. Although we are not aware of a compre-
hensive review, it appears common for one-third of students
to fail in STEM gateway courses (Table 1).

Failure has grave consequences (Wischusen and Wis-
chusen, 2007). In addition to the emotional and financial toll
that failing students bear, they may take longer to graduate,
leave the STEM disciplines, or drop out of school entirely.
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Table 1. Failure rates in some gateway STEM courses

Field Course Failure rate

Failure criterion Reference

Biology Intro-majors 56%

Average proportion of Ds and Fs on
exams

Burrowes, 2003

Intro-majors >25% Course outcome: D, F, or drop Wischusen and Wischusen, 2007
Intro-nonmajors 27% Course outcome: D, E, or drop Marrs and Chism, 2005
Biochemistry 85% F on first exam Peters, 2005
Medical Microbiology 30% Course outcome: D or F Margulies and Ghent, 2005
Chemistry Intro-majors ~50% Course outcome: D, E, or drop Reardon ef al., 2010
Intro-nonmajors >30% Course outcome (“at most institutions”): Rowe, 1983
fail or drop
Computer science  Intro to programming 33% Course outcome (international survey): F Bennedsen and Casperson, 2007
or drop
Engineering Intro to chemical 32% Course outcome: D, E, or drop Felder et al., 1998
engineering
Mathematics First-year calculus 42% Course outcome (U.S. national average): Treisman, 1992
failure
Physics Intro-majors 33% Course outcome: D, E, or drop Marrs and Chism, 2005

Analysts have been particularly concerned that underrepre-
sented minorities (URMs) and other students who quit the
STEM disciplines take valuable perspectives and creativity
with them (Seymour and Hewitt, 1997). Students who repeat
gateway courses also add pressure on enrollments—in some
cases, denying places to students who want to take the course
for the first time.

How can we reduce failure rates in STEM courses, with-
out reducing rigor? Recent research suggests that changes
in course design—specifically, the introduction of active-
learning strategies—can help. For example, Beichner et al.
(2007) reported that changing to workshop (or studio) mod-
els of instruction, which emphasize collaborative group work
in class, cut failure rates by 40-60% in introductory physics
across a range of institutions. Similarly, Lasry et al. (2008)
found that the use of peer instruction with clickers (see Mazur,
1997) reduced the drop rate in introductory physics at a com-
munity college and at a research university by factors of two
to three.

We hypothesized that intensive active learning, combined
with frequent formative assessment, can lower failure rates
in an introductory biology course for majors. Previously we
reported an average increase of 3-4% on exam scores and
a 30% reduction in failure rate when we introduced active-
learning exercises that were graded (Freeman et al., 2007).
Subsequently we have introduced additional active learning
exercises in an attempt to increase exam performance and
reduce the failure rate even further. The result is what we term
a highly structured course design. Low-structure courses are
based on traditional lecturing and high-stakes assessments—
typically two or three midterms and a comprehensive final
exam. In contrast, highly structured courses assign daily and
weekly active-learning exercises with the goal of providing
constant practice with the analytical skills required to do well
on exams.

If highly structured courses lower failure rates, faculty
might find their increasingly diverse student population a
source of reward and inspiration, rather than frustration. But
do highly structured courses work? Do they lead to greater
success and fewer failures? Testing the highly structured
course design hypothesis requires that instructor identity,
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exam difficulty, and student ability be controlled across the
classes being studied.

METHODS

Course Background

This research focused on students in Biology 180, the first
in a three-quarter introductory biology sequence designed
for undergraduates intending to major in biology or related
disciplines at the University of Washington (UW). The course
introduces evolution, Mendelian genetics, diversity of life,
and ecology. The course is offered every quarter; in the 2009—
2010 academic year, total enrollment approached 2100.
Although the course is usually team-taught, the data ana-
lyzed here come from six quarters when one of the authors
(S.F.) was the sole instructor of record. Throughout the study,
the course was offered for five credits and included four 50-
min class sessions and a 2- or 3-h laboratory each week. In
every quarter there were 400 exam points possible; all exam
questions were written—most were short-answer, but some
involved graphing, computation, or labeling diagrams.

Student Demographics

During the study period, most students had to complete a
chemistry prerequisite before registering for Biology 180; the
majority were in their sophomore year. In the most recent
quarter analyzed here, the course’s demographic makeup
was 61.1% female and 38.9% male; 46.7% Caucasian, 38.5%
Asian-American, and 7.4% URM (African-American, His-
panic, Native American, or Pacific Islander), with 7.4% of stu-
dents declining to declare their ethnicity. In addition, 16.4%
of the students were in the UW Educational Opportunity Pro-
gram, meaning that they were identified as economically or
educationally disadvantaged. These demographic data are
typical across the quarters and years of the study.

Course Design

During the six quarters analyzed in this study, the instructor
used various combinations of teaching strategies, detailed
here in order of implementation.
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® Socratic lecturing involved frequent use of questions
posed to the class, with answers solicited from students
who raised their hands. In addition to calling on “high
responders,” wider participation was encouraged by use
of think/pair/share (Lyman, 1981), asking for a response
from students in a particular section of the room, or asking
for a response from a student who had not contributed be-
fore. The intent of Socratic lecturing was to engage student
attention and provide feedback to the instructor.

® Ungraded active-learning exercises encouraged active
participation in class. The exercises used were minute pa-
pers (Mosteller, 1989; Angelo and Cross, 1993; Boyd, 2001),
case studies with question sets completed by informal
groups (Yadav ef al., 2007), writing answers to exam-style
questions followed by discussion, and in-class demon-
strations with student participation (Milner-Bolotin et al.,
2007). In most cases, each class session involved at least
three such exercises. The intent of the ungraded exercises
was to give students practice with the higher-order cogni-
tive skills required to do well on exams.

® Clicker questions were multiple-choice questions pre-
sented in class; students responded with a personal re-
sponse device or “clicker” (Caldwell, 2007). Clicker ques-
tions were implemented in a peer instruction format, where
individuals answered on their own and then reanswered
after discussion with one or more students seated next
to them (Mazur, 1997; Smith et al., 2009). The instructor
asked three to five clicker questions per class session; in
most cases, a maximum of three clicker points was possible
each class session, assigned for right/wrong responses (see
Freeman et al., 2007). Typically, clicker questions summed
to ~12% of the total course points. The intent of the clicker
questions was to develop student thinking at the applica-
tion and analysis level and encourage peer teaching.

® Practice exams were online, weekly, peer-graded exer-
cises where students submitted written responses to exam-
style questions. Students were given 35 min to respond
to five short-answer questions. After answers were sub-
mitted, software developed in our department randomly
and anonymously gave each student a set of answers to
grade, along with sample answers and grading rubrics
(Freeman et al., 2007; Freeman and Parks, 2010). At two
points per question, there were 10 points possible each
week—representing ~8% of the total course grade. The
intent of the exercises was to give students practice with
answering high-level, exam-style, written questions under
time pressure, but in a low-stakes environment.

® Class notes summaries were weekly assignments that re-
quired students to state the three most important concepts
introduced each day in lecture, along with a question based
on the idea that they understood least well in that class
session. The summaries were filled out online and were
due each Monday morning. Students were given a course
point per week for participation, with a five-point bonus
for completing the exercise every week of the course—
for a total of ~2% of total course points. The objectives
of class notes summaries were to help students 1) orga-
nize and synthesize their course material, and 2) increase
metacognition—specifically, the ability to identify which
information is most important and which concepts are un-
derstood most poorly (Bransford et al., 2000).
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® Reading quizzes opened every afternoon after class and
closed the morning of the next class (Novak et al., 1999;
Crouch and Mazur, 2001). They consisted of 5-10 multiple-
choice questions, delivered and corrected via an online
quizzing system, and tested understanding of basic vo-
cabulary and concepts. The exercises were open-book and
open-note; students were free to do them in groups or indi-
vidually. Typically, the two-point reading quizzes summed
to ~8% of total course points. The intent of the reading
quizzes was to make students responsible for learning ba-
sic course content on their own and prepare them to work
on higher-order cognitive skills in class.

¢ In-class group exercises involved informal groups of three
or four students sitting adjacent to one another. The exer-
cises consisted of one to three exam-style questions on the
topic currently being discussed in class (Farrell ef al., 1999;
Eberlein et al., 2008). As students discussed the questions,
graduate and peer teaching assistants (TAs) moved around
the lecture hall to monitor the conversations and answer
queries from students. Although no course points were
awarded during these activities, participation was encour-
aged because the instructor closed the small-group dis-
cussions and then called on students, from a randomized
class list, to solicit student responses in front of the entire
class. Typically, a single 50-min class session included five
or six group exercises, with 12-15 students called on each
day. These class sessions, then, consisted of a series of 3-
to 5-min mini-lectures that introduced or discussed either
a clicker question or a group exercise. These sessions dif-
fered dramatically from the ungraded active-learning exer-
cises introduced before, for two reasons: There were more
than double the number of activities per class session, and
participation—"enforced” by random-call versus calling
on volunteers—appeared much higher. The intent of the
group exercises was to help students develop higher-order
cognitive skills, with peer and TA feedback, in a low-stakes
environment.

Over the six quarters in the study—when the same in-
structor taught the course—the courses can be placed into
three categories: 1) relatively low structure in Spring 2002
and Spring 2003; 2) moderate structure, due to the addition
of clickers and practice exams, in Spring 2005 and Autumn
2005; and 3) high structure, due to the addition of reading
quizzes, along with the substitution of in-class group exer-
cises for Socratic lecturing, in Autumn 2007 and Autumn
2009 (Table 2).

Several other observations are noteworthy: 1) The Spring
and Autumn 2005 sections were involved in experiments on
the use of clickers versus cards and grading clicker ques-
tions for participation versus right/wrong (see Freeman
et al., 2007); 2) the Spring 2005 and Autumn 2007 sections
were involved in experiments on individual versus group
work on practice exams; 3) course enrollment varied widely,
from 173 students per section to 700; 4) the exam number
changed in Autumn 2007 due to increased enrollment—with
two 100-point exams, spaced several weeks apart, replacing a
comprehensive, 200-point final. The short-answer format for
exams remained the same, however.
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Computing Final Grades

Across the introductory biology series at UW, instructors
strive to implement the following system for computing final
grades: 1) total course points are summed for each student, 2)
students with the top 5% of total course points earn a 4.0, 3)
the instructor sets a level for passing the course (receiving a
0.7, and thus course credit toward graduation) that typically
represents ~50% of total course points and 40-45% of total
exam points, and 4) the range of course points between the
0.7 and 4.0 cutoffs is divided into equal bins and assigned 0.8,
0.9, 1.0, and so on, up to 3.9.

During the years included in this study, students had to
receive a course grade of at least 1.5 on a 4.0 scale to register
for the next course in the series. Thus, we define failure as
a final course grade of <1.5. Except when noted, the analy-
ses reported here include only those students who received
a grade—meaning that students who dropped the course be-
fore the final exam were not included. The data sets also
excluded a small number of students who had been caught
cheating.

Exam Equivalence across Quarters

In alongitudinal study that evaluates changes in failure rates,
it is critical to test the hypothesis that changes in failure rates
were due to changes in exam difficulty. In the Freeman et al.
(2007) study, this hypothesis was tested by comparing stu-
dent performance on an identical midterm in two quarters
that differed in course design. Because we wanted to avoid
giving an identical exam again, we created two methods for
evaluating exam equivalence across the six quarters.

Weighted Bloom’s Index. Bloom’s taxonomy of learning
(Bloom et al., 1956; Krathwohl, 2002) identifies six levels of
understanding on any topic. Bloom’s framework has been
applied in an array of contexts in undergraduate biology ed-
ucation (Crowe et al., 2008), including characterizing exams
(Zheng et al., 2008). We used the six levels to create a Weighted
Bloom’s Index, which summarizes the average Bloom’s level
of exam questions weighted by the points possible:

Weighted Bloom’s Index = ((Z p* B) / (T* 6)) *100,
1

where 1 is the number of questions, P is points/question, B =
Bloom’s rank (1-6) for that question, T is total points possi-
ble, and 6 is the maximum Bloom'’s score. To help interpret
the index, note that Level 1 and 2 questions test lower-order
cognitive skills, Level 3-6 questions assess higher-order cog-
nitive skills (Bloom et al., 1956; Krathwohl et al., 2002) and
specific Weighted Bloom’s Index values (Figure 1) conform
to each Bloom’s level, as follows:

Lower-order cognitive skills

0 16.7 33.3 50.0 67.7
All All All All
recall conceptual application analysis
(Level 1) (Level 2) (Level 3) (Level 4)
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16.7 is an exam with exclusively recall questions (Bloom’s
Level 1);

33.3 is an exam with exclusively conceptual understanding
questions (Bloom's Level 2);

50is an exam with exclusively application questions (Bloom's
Level 3);

66.7 is an exam with exclusively analysis questions (Bloom's
Level 4);

83.3 is an exam with exclusively synthesis questions (Bloom's
Level 5); and

100 is an exam with exclusively evaluation questions
(Bloom’'s Level 6).

We calculated a Weighted Bloom’s Index for every exam
in the study by recruiting three experienced TAs to assign a
Bloom’s level to every exam question given in each quarter.
The raters were trained in “Blooming” exams by one of the
authors (M.P.W.) and assessed questions that were presented
in a common format and in random order. Although raters
knew that they were assessing Biology 180 exam questions,
they were blind to the quarter and year. They were also blind
to the study’s intent and to the hypothesis being tested by
the ratings. Point values for each question were omitted to
avoid any bias introduced by high- versus low-point-value
questions. Because multipart questions are common on these
exams, each rater gave a Bloom’s rating to each question part.
Each rater assessed 295 exam questions and assigned a total
of 724 Bloom’s levels. (Including the identical exam, there
were a total of 310 exam questions and 750 Bloom's rankings
in the study:.)

We used the decision rules published by Zheng et al. (2008)
to arrive at a single Bloom’s level for each question part.
Briefly, the three raters achieved consensus on 53 rankings
during “norming sessions,” where questions were discussed
as a group after being rated individually. None of the subse-
quent questions were discussed as a group to resolve conflicts
in ratings. Instead, we assigned the consensus rating when
all three raters agreed and the majority-rule rating when two
of three raters agreed. When ratings were sequential (e.g.,
2-3-4), we assigned the middle value. When ratings were
nonsequential (e.g., 1-2—4), we assigned the arithmetic aver-
age. To assess the degree of agreement among the multiple
raters, we calculated Krippendorff’s alpha—an appropriate
measure for ordinal coding data from multiple raters (Hayes
and Krippendorff, 2007)—and the intra-class r.

The Weighted Bloom’s Index should accurately summa-
rize the average Bloom's ranking of exams, facilitating com-
parisons across courses or even institutions. In addition, it
should contain information on exam difficulty because stu-
dents typically perform much better on lower-level versus
higher-level questions (e.g., Knecht, 2001; Freeman and Parks,

Figure 1. The Weighted Bloom’s Index
“Scale.” The Weighted Bloom’s Index can
be interpreted by comparing indices from
actual exams to the values shown here,

83.3 100 which are expected if all exam questions
were at a certain level in Bloom’s tax-

All All onomy of learning. Levels 1 and 2 in
synthesis evaluation Bloom’s taxonomy are considered lower-
(Level 5) (Level 6) order cognitive skills; Levels 3-6 are con-

sidered higher-order cognitive skills.
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2010). Thus, exams with higher Weighted Bloom’s Indices
should be harder.

Predicted Exam Score. As an alternative method for assess-
ing exam difficulty, we created a Predicted Exam Score (PES)
by recruiting three experienced TAs—different from the indi-
viduals who did the Bloom’s ratings—to predict the average
number of points that students would receive on each part
of each exam question in the study. These individuals were
experienced graders: In addition to running labs and attend-
ing every class, each TA in Biology 180 spends ~40 h grading
exams. Thus, the PES raters judged the difficulty of exam
questions based on 1) an understanding of what had been
presented in the textbook and introduced in class and 2) ex-
tensive grading experience that made them alert to wording,
context, level, and other issues that cause confusion or diffi-
culty. All three PES raters were peer TAs—senior undergrad-
uate biology majors. We hypothesized that peer TAs might
be more attuned to how undergraduates read and respond to
exam questions than faculty are.

The PES raters used the same randomized list of 295 iden-
tically formatted exam questions as did the Bloom’s raters,
except that point values for each of the 724 question parts
were indicated. Like the Bloom’s raters, the PES raters were
blind to the study’s intent and the hypothesis being tested
with the predicted-points data.

Work on the PES began with a norming session. This meet-
ing started with each of the three individuals assigning a
predicted-average-points value to 25 questions—a total of 58
question-parts—on his or her own. The three then met to
discuss their predictions for average points on each question-
part until they arrived at a consensus value. Subsequent ques-
tions were assessed individually but not discussed. To ar-
rive at a single predicted-average-points value for each of the
exam-question parts after the norming session, we computed
the arithmetic average of the three ratings submitted.

The goal of the PES was to test the hypothesis that changes
in failure rates were due to changes in the difficulty of exams,
independent of changes in course design. The metric should
be useful because it is reported in units of average expected
points on exams and because exam points predict most of the
variation in final grade (see Results).

Note that because the Weighted Bloom’s Index and the
PES were computed from data on all exam questions in the
study, there was no sampling involved. As a result, there is
no sample variance on the data reported here, and it was not
possible to use statistical approaches to assess “significance”
when comparing data from different exams. In cases like this,
significance is a judgment about the relevance of observed
differences to the hypothesis being tested.

Exam Impact on Final Course Grade

A proponent of low-structure course designs could argue that
failure rates decline in highly structured courses not because
of increased student learning, but because the “practice” exer-
cises (reading quizzes, clicker questions, etc.) are easier than
actual exam questions and thus inflate student performance.
In addition, even in the most highly structured course de-
signs, our intent was for exams to remain the primary deter-
minant of final course grade—because exams represent the
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most controlled type of assessment possible and because ex-
ams are the major type of assessment in subsequent courses.

To test the point-inflation hypothesis, we performed simple
linear regressions with each student’s total exam points in
each quarter as the predictor variable and his or her final
grade as the response variable. In addition, we computed
the 1.5 (failing) cutoff predicted by the regressions. These 1.5
cutoffs represented the average total exam points required to
progress in the major, each quarter.

If exams are the major determinant of final grades irrespec-
tive of degree of course structure—even when many nonexam
points are possible—then R? values for the regressions should
be uniformly high, the slopes and intercepts of the regression
lines should be indistinguishable, and the 1.5 cutoffs should
be similar across quarters. It was not possible to use analysis
of covariance (ANCOVA) to test for heterogeneity of regres-
sion slopes and intercepts across quarters because final grades
were not normally distributed (Shapiro-Wilks normality test
W = 0.9361, p « 0.001). Rather, the best-fit distribution fol-
lowed a binomial error distribution. Consequently, we used
analysis of deviance to formally test the hypothesis that the
slopes and intercepts of the regressions did not vary across
quarters, using a Generalized Linear Model (GLM) frame-
work (Crawley, 2007, p. 516). More specifically, we compared
the fitamong three linear models 1) incorporating only the co-
variate exam points, 2) additionally incorporating quarter as
a fixed effect, and 3) the full model with an interaction term. If
the additional explanatory variable and the interaction term
failed to improve the fit of the GLM, it provides assurance
that slopes and intercepts are homogeneous across quarters
(are not significantly different, using a likelihood ratio test
[LRT]).

Student Equivalence across Quarters

In a longitudinal study of student performance in courses, it
is critical to test the hypothesis that changes in failure rates
are due to changes in the academic ability and preparedness
of the student population at the time of entering each course.
To test this hypothesis, we used the Predicted Grade model
introduced by Freeman et al. (2007). Briefly, we predicted a
final course grade for each student in each quarter by using
a regression model based on UW grade point average (GPA)
and SAT-verbal scores (Predicted grade = (0.00291 x SATver-
bal) + (1.134 x UWGPA) - 2.663). Students who lacked an
SAT-verbal score were assigned the average SAT-verbal score
from that quarter; on average, 10% of students had a miss-
ing SAT-verbal score each quarter. Because the percentage of
missing values was low and the loading of SAT-verbal in the
regression model is small, the missing values should have a
minimal impact on the analysis. In addition, analysis of vari-
ance (ANOVA) showed no heterogeneity among quarters in
the UW GPAs of students with missing SAT-verbal scores (F =
0.46, df = 5, 228, p = 0.81). Thus, the substitution for missing
values should not bias tests for differences in predicted grade
across quarters. Because UW GPA has a large impact in the
regression model, grades of students who lacked a UW GPA
at the start of the course were dropped from the predicted
grade analysis.

We performed linear regressions to compare the Predicted
Grade with Actual Course Grade in each quarter of the study,
and then used analysis of deviance to assess the robustness
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Table 3. Exam equivalence analyses

Independent ratings
Discussed- All three Two of three Sequential Nonsequential
consensus agree agree ratings ratings
a. Percentage agreement among Bloom’s taxonomy raters.
Percentage of total ratings 7.3 26.4 51.1 9.9 5.2

“Discussed-consensus” means that questions were rated independently and then discussed to reach a consensus; “Independent ratings” were
not discussed among raters. “Sequential ratings” were questions that received three ratings that differed by one Bloom’s level (e.g., a 2, 3, and
4); “Nonsequential ratings” were questions that received three ratings that differed by more than one Bloom’s level (e.g., a 2, 3, and 5).

b. Weighted Bloom Indices

Spring 2002 Spring 2003 Spring 2005 Autumn 2005 Autumn 2007 Autumn 2009
Midterm 1 50.8 48.5 45.3 58.9 54.4 53.7
Midterm 2 36.1 51.6 51.6 46.8 50.8 54.7
Midterm 3 50.2
Final (or Midterm 4) 48.1 543 454 51.6 51.6 55.3
Course average® 45.8 52.1 46.9 52.2 52.1 53.5
c. PES values (predicted percent correct)
Spring 2002 Spring 2003 Spring 2005 Autumn 2005 Autumn 2007 Autumn 2009
Midterm 1 70.8 73.0 719 67.8 64.9 66.0
Midterm 2 73.0 68.0% 68.0°7 721 67.7 67.0
Midterm 3 68.5
Final (or Midterm 4) 69.4 70.0 71.8 71.0 69.6 68.6
Course average® 70.6 70.2 70.9 70.5 68.0 67.5

a]dentical exams.

PCourse averages were computed from data on all exam questions from that quarter. (They are not the averages of the indices from each exam.)

of the Predicted Grade model across quarters. Specifically,
the analysis used a x? test to evaluate differences between
GLMs that incorporated the additional explanatory variable
quarter, also incorporated an interaction term with quarter,
or included no interaction term. Again, an LRT is used to
compare the fit among models; failure to improve the fit of the
simplest model provides assurance that slopes and intercepts
are homogeneous. To test the hypothesis that students were
of equivalent ability and preparedness, we used ANOVA to
compare average student Predicted Grade across quarters.

In this and other statistical analyses, we checked the as-
sumptions of the statistical tests used. Analyses were done in
Excel and the R statistical environment (R Development Core
Team, 2008).

RESULTS

Exam Equivalence

The TAs who ranked questions on Bloom’s taxonomy showed
a high level of agreement. At least two of the three raters
agreed on the identical Bloom’s level for 85% of the ques-
tions rated. Using the original values assigned for the norm-
ing session questions—not the consensus values—the Kip-
pendorf’s alpha among raters was 0.48 for the entire data
set; the intra-class r was 0.481 (F = 4.07, df = 668, p <
0.0001).
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There was also a high level of agreement among the
three TAs who evaluated exam questions for the PES val-
ues. Using the original values assigned for the norming ses-
sion questions—not the consensus values—the intra-class r
for the entire data set was 0.84 (F = 24.3, df = 725, p <
0.0001).

There is a strong association between the Weighted Bloom's
Indices (Table 3b) and the PES values (Table 3c): The r for the
18 exams in the study (excluding one iteration of the repeated
exam) is —0.72, and a regression analysis shows that variation
in the Weighted Bloom’s Index explains 51% of the variation
in the PES (Figure 2; F = 16.7, df = 1,16, p < 0.001).

Exam Impact on Course Grade

R? values indicate that, even in the most highly structured
versions of the course, when exam points represented as lit-
tle as 55% of the total course points, total exam points still
explained 89% of the total variation in final grade (Table 4a).
Across quarters in the study, the regressions of total exam
points on final grade were similar, and the average number of
exam points required to get a 1.5 varied little—the range was
only nine points (Table 4b). In addition, analysis of deviance
(Table 4b) indicated no statistically significant variation
among quarters in how well total exam points predicted final
grade.
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Table 4. Regression analyses: Total exam points as a predictor of final course grade. Data from the two sections in Spring 2005 were analyzed
separately because the clickers and card sections in that quarter (see Materials and Methods and Table 2) had different total course points and

thus a different scale for computing final grade.

a. Regression statistics

Low structure Moderate structure High structure
Spring Spring 2005 Spring 2005 Autumn Autumn Autumn

Spring 2002 2003 (no clickers) (clickers) 2005 2007 2009
Adjusted R? 0.96 0.95 0.97 0.88 0.96 0.89 0.89
y-intercept —2.292 —2.35% -2.12 —2.302 -2.57 —2.322 -2.71
B 0.0184P 0.0186° 0.0172 0.0180° 0.0189° 0.0187° 0.0198
1.5 cutoff predicted by regression 206.4 206.6 210.1 211.1 215.8 204.0 213.0
n 323 335 174 156 333 336 653

b. ANCOVA fit by GLMs incorporating the effect of exam points, quarter, and the interaction term exam points by quarter; the response
variable is actual grade (GLM with binomial error distribution). Analysis of deviance shows that slope and intercept do not significantly vary

across quarter.

Residual xX*p
Model Residual df Deviance daf Deviance value
Exam points only 2303 82.840
Exam points + quarter 2298 79.366 5 3.473 0.6274
Exam points x quarter 2293 78.475 5 0.892 0.9708

2Values have 95% confidence intervals that overlap.
bValues have 95% confidence intervals that overlap.

Student Equivalence across Quarters

Across all six quarters of the study, there was a strong relation-
ship between the Predicted Grade and actual grade for each
student. In regression analyses, Predicted Grade explained
between 51 and 64% of the variation in final grade; slopes
ranged from 0.88 to 1.13 (complete data not shown). Fur-
thermore, analysis of deviance indicates no significant dif-
ferences among the regressions of Predicted Grade on actual
grade across quarters (Table 5). These data support the earlier
claim by Freeman et al. (2007) that the Predicted Grade model
is a robust index of student ability and preparedness across
quarters and years.
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Figure 2. Weighted Bloom'’s Indices and PES values are negatively
correlated. The Weighted Bloom’s Index summarizes the average
Bloom'’s level per point on an exam; the PES summarizes expert-
grader predictions for average points that a class will receive on an
exam. Regression statistics are reported in the text.
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An ANOVA indicates significant heterogeneity in Pre-
dicted Grades across quarters (Table 6; F = 13.2, df = 5,
2351, p « 0.001). Post-hoc Tukey’s Honestly Significant Differ-
ence tests demonstrate that this heterogeneity was distributed
across quarters in the study: Of the 15 pairwise tests, only six
were not significantly different, and these crossed levels of
course structure (data not shown).

Evaluating the Drop Rate

Among five quarters from Spring 2002 through Autumn 2007,
drop rates varied from 1.8 to 3.6%. A x? analysis indicates no
heterogeneity in drop rate as course design changed from
low to medium to high structure (x> = 3.9, df = 4; p = 0.42).
Significant heterogeneity occurs when the drop rate of 6.1%
in Autumn 2009 is added to the analysis, however (x* =
21.5, df = 5; p < 0.001). This increase is probably due to 1)
a change in enrollment from 350 to 700, and 2) a change in
departmental policy that loosened restrictions on repeating
the course.

Changes in Failure Rate in Biology 180

A x? analysis of the number of students who took the final and
received a grade, and were above and below the 1.5 threshold,
confirms significant differences across quarters (Table 7; x* =
44.7,df = 5; p <« 0.001).

This result is confounded, however, by changes in stu-
dent academic ability across quarters, reported earlier in the
text. To control for student academic characteristics, we con-
structed a generalized linear mixed-model (GLMM) to test
the hypothesis that level of course structure plays a signifi-
cant role in explaining the proportion of students failing each
quarter. Specifically, we analyzed the decline in proportion
of students failing as a function of those predicted to fail in
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Table 5. Robustness of the Predicted Grade model ANCOVA fit by GLMs incorporating the effect of predicted grade, quarter, and the
interaction term predicted grade by quarter; the response variable is actual grade (GLM with binomial error distribution). Analysis of deviance
shows that slope and intercept do not significantly vary across quarter

Model Residual df Residual deviance df Deviance x2 p value
Predicted grade only 2276 306.616

Predicted grade + quarter 2271 298.432 5 8.184 0.1464
Predicted grade x quarter 2266 297.386 5 1.047 0.9587

Table 6. Average predicted grades across quarters

Spring 2002 Spring 2003 Spring 2005 Autumn 2005 Autumn 2007 Autumn 2009
Mean + SD 246 +0.72 2.57 +£0.73 2.64 +0.70 2.67 £+ 0.60 2.85 + 0.66 2.70 +0.61
n 327 338 334 328 339 691

each quarter at each level of structure. As before, failure was DISCUSSION
defined as a grade insufficient to continue in the introductory
series (<1.5).

Using multi-model inference (MMI), the model with the
most explanatory power contained proportion failing as the
response variable, with predicted failure proportion and level
of course structure treated as fixed effects and quarter treated
as arandom effect. The criteria for model selection were 1) the

The negative association between the Weighted Bloom'’s In-
dices and the PES values supports the claim that questions
that are higher on Bloom’s taxonomy of learning are harder,
and both methods of assessing exam equivalence suggest
that exam difficulty increased in highly structured versions
of the course (Table 3, b and c). The 2-3% drop in PES in

lowest Akaike information criterion (AIC) with a difference the highly structl.lred courses, relative to the PES values in
in AIC (AAIC) greater than two, along with 2) a significant the low- .and medium-structure courses, represents 8—12’ tptal
LRT (Table 8). The LRT indicates that the decline in propor- ~ €*@MP oints over the quartef—enough to drop students’ final
tion of students failing, as a function of increasing structure, grgdes. ?'1_0'2’ on average, m .the hlghly structured courses.
was significantly greater than the decline predicted by the Th1s difference, and the uptick mn the Welg}}tgd Bloorp s Index
distribution of predicted grades (p = 0.027). in Autumn 2009, supports the 1nstruct0r§ 1mpr(.e5510n.—that

Moderate levels of course structure had a marginal effect on he wrote harder exams because the reading quizzes imple-
failure rate (Figure 3; p = 0.06), whereas high levels of course mented in those quarters had already presented lower-level

structure had a statistically significant impact on reducing questions.

. . . Lo Itis important to note that the exams analyzed here appear
fail tesindependent of ch tudent characterist P Y pp
(;;gu;reer;epsilogf())%razl)e. ot changesin student chatacteristies rigorous. Although the Weighted Bloom's Index and PES will

become more informative if and when values are reported for

Table 7. Failure rates across quarters

Low structure Moderate structure High structure
Spring 2002 Spring 2003 Spring 2005 Autumn 2005 Autumn 2007 Autumn 2009
Percentage of students < 1.5 18.2 15.8 10.9 11.7 74 6.3
n 324 333 330 333 336 653

Table 8. MMI: Models and comparison criteria. Best-fit models are recognized by 1) the conservative LRT p value of the lowest AIC model
or 2) a AAIC > 2. Note that the LRTs are hierarchical: The p value reported on each row is from a test comparing the model in that row with
the model in the row below it.

Model df AIC AAIC 3 logLikelihood LRT (p value)
Structure + predicted 5 1610.27 — 0.47 —800.14 0.027
Predicted 3 1613.5 3.22 0.09 —803.75 0.098
Structure x predicted 7 1613.68 34 0.43 —799.84 2.2e-16
Structure 4 1903.27 293 0 —947.64 0.0015
Null 2 1912.3 302.02 0.01 —954.15
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Figure 3. Failure rates controlled for Predicted Grade, as a function
of course structure. In this study, low-, medium-, and high-structure
courses rely primarily on Socratic lecturing, some active learning and
formative assessment, and extensive active learning (no lecturing)
and formative assessment, respectively. The difference between the
proportion of students predicted to fail and the actual proportion
failing decreases with increasing structure (GLMM, binomial error
n = 2267, *p = 0.06, **p = 0.0004).

other courses, instructors, and institutions, the data indicate
that an average Biology 180 exam question in this study is at
the application level of Bloom’s taxonomy (Table 3b).

Finally, the data reported in Table 4 support the hypothesis
that the large number of “practice points” available in highly
structured versions of the course did not inflate grades, and
thus did not affect changes in the failure rate.

Although student academic ability and preparedness var-
ied among quarters, it did not vary systematically with
changes in course structure. The results of the GLMM, which
controlled for heterogeneity in student preparedness and ca-
pability, support the conclusion reported earlier for moder-
ately structured courses (Freeman ef al., 2007), and identify
an even stronger drop in failure rate as course structure in-
creased.

Thus, the data presented here support the hypothesis that
increasing course structure can help reduce failure rates in
an introductory biology course—from 18.2 to 6.3% (Table 7).
They are consistent with data from other STEM disciplines
suggesting that intensive use of active-learning exercises can
help capable but underprepared students succeed in gateway
courses (e.g., Beichner ef al., 2007).

It is unlikely that this pattern is due to the changes in en-
rollment or exam format that occurred over the course of
the study. The general expectation is that student achieve-
ment is higher in smaller classes, but the lowest failure rate in
this study occurred in a quarter with 700 students enrolled—
more than double the next largest enrollment. We would also
argue that the change in exam format that occurred that quar-
ter, with 2-h-long exams replacing a 2-h comprehensive final,
is not responsible for the dramatic drop in failure rate. The
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Weighted Bloom’s Indices and PES values, for example, in-
dicate that the exams in the altered format were the highest-
level and the hardest in the study.

It is important to note that the failure rates reported in this
course—even before implementing highly structured course
designs—were much lower than failure rates for gateway
courses at many other institutions and other STEM disci-
plines (Table 1). We propose that this pattern is due to enroll-
ments in Biology 180 consisting primarily of sophomores who
had already completed a three-quarter, introductory chem-
istry sequence for majors. On our campus, the initial course
in the chemistry series enrolls ~2500 students annually—
approximately half of a typical freshman class. Only ~1500
students per year take the last course in the introductory
chemistry series, however. Thus, it is likely that many under-
prepared students who might have taken Biology 180 were
ineligible, due to a failure to complete the chemistry prereq-
uisite.

Would highly structured course designs reduce failure
rates more or less if most students were freshmen—before
they had been “screened” by a chemistry prerequisite? The
experiment to answer this question is underway. Our depart-
ment has now removed the chemistry prerequisite for Biology
180—a change that became effective in Winter 2010—and re-
cent quarters have enrolled up to 50% first-year students. It
will be interesting to test whether highly structured course
designs analyzed here have an impact on this increasingly
younger student population.

The Role of Reading Quizzes

If the benefit of highly structured courses is to help stu-
dents gain higher-order cognitive skills, what role do read-
ing quizzes play? By design, these exercises focus on Levels
1 and 2 of Bloom’s taxonomy—where active learning may
not help. We concur with the originators of reading quizzes
(Crouch and Mazur, 2001): Their purpose is to free time in
class for active learning exercises that challenge students to
apply concepts, analyze data, propose experimental designs,
or evaluate conflicting pieces of evidence.

As aresult, reading quizzes solve one of the standard objec-
tions to active learning—that content coverage has to be dras-
tically reduced. Reading quizzes shift the burden of learning
the “easy stuff”—the vocabulary and basic ideas—to the stu-
dent. The premise is that this information can be acquired by
reading and quizzing as well as it is by listening to a lecture.

Without reading quizzes or other structured exercises that
focus on acquiring information, it is not likely that informal-
group, in-class activities or peer instruction with clickers will
be maximally effective. This is because Bloom’s taxonomy
is hierarchical (Bloom et al., 1956). It is not possible to work
at the application or analysis level without knowing the ba-
sic vocabulary and concepts. We see reading quizzes as an
essential component of successful, highly structured course
designs.

New Tools for Assessing Exam Equivalence

This study introduces two new methods for assessing
the equivalence of exams across quarters or courses: the
Weighted Bloom’s Index based on Bloom’s taxonomy of
learning and the PES based on predictions of average
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performance made by experienced graders. These ap-
proaches add to the existing array of techniques for con-
trolling for exam difficulty in STEM education research, in-
cluding use of identical exams (Mazur, 1997; Freeman et al.,
2007); concept inventories or other standardized, third-party
tests (e.g., Hestenes ef al., 1992); and isomorphic or “formally
equivalent” questions (e.g., Smith et al., 2009).

The Weighted Bloom’s Index also has the potential to
quantify the degree to which various courses test students
on higher-order cognitive skills. In addition to assessing
Weighted Bloom’s Indices for similar courses across institu-
tions, it would be interesting to compare Weighted Bloom's
Indices at different course levels at the same institution—
to test the hypothesis that upper-division courses primar-
ily assess the higher-order thinking skills required for
success in graduate school, professional school, or the
workplace.

The analyses reported here were designed to control for
the effects of variation in the instructors, students, and as-
sessments. More remains to be done to develop techniques
for evaluating exam equivalence and student equivalence.
With adequate controls in place, however, discipline-based
research in STEM education has the potential to identify
course designs that benefit an increasingly diverse under-
graduate population. In the case reported here, failure rates
were reduced by a factor of three. If further research con-
firms the efficacy of highly structured course designs in re-
ducing failure rates in gateway courses, the promise of ed-
ucational democracy may come a few steps closer to being
fulfilled.
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