
CBE—Life Sciences Education
Vol. 13, 469–477, Fall 2014

Article

Identifying Key Features of Effective Active Learning:
The Effects of Writing and Peer Discussion
Debra L. Linton,* Wiline M. Pangle,* Kevin H. Wyatt,† Karli N. Powell,‡
and Rachel E. Sherwood§

*Department of Biology, Central Michigan University, Mount Pleasant, MI 48859; †Department of Biology,
Ball State University, Muncie, IN 47306; ‡Mathematics Department, Linden High School, Linden, MI 48451;
§Science Department, Garden City High School, Garden City, KS 67846

Submitted December 20, 2013; Revised May 5, 2014; Accepted May 23, 2014
Monitoring Editor: Jennifer Momsen

We investigated some of the key features of effective active learning by comparing the outcomes of
three different methods of implementing active-learning exercises in a majors introductory biology
course. Students completed activities in one of three treatments: discussion, writing, and discussion +
writing. Treatments were rotated weekly between three sections taught by three different instructors
in a full factorial design. The data set was analyzed by generalized linear mixed-effect models
with three independent variables: student aptitude, treatment, and instructor, and three dependent
(assessment) variables: change in score on pre- and postactivity clicker questions, and coding scores
on in-class writing and exam essays. All independent variables had significant effects on student
performance for at least one of the dependent variables. Students with higher aptitude scored higher
on all assessments. Student scores were higher on exam essay questions when the activity was
implemented with a writing component compared with peer discussion only. There was a significant
effect of instructor, with instructors showing different degrees of effectiveness with active-learning
techniques. We suggest that individual writing should be implemented as part of active learning
whenever possible and that instructors may need training and practice to become effective with
active learning.

INTRODUCTION

Research in science education has identified several effective
student-centered pedagogical techniques that have become
the cornerstone of national efforts to reform science teaching
(see Vision and Change report, table 3.2 [American Association
for the Advancement of Science, 2011]). Cooperative group–
based active learning is one of the most commonly imple-
mented of these techniques (Ruiz-Primo et al., 2011). Cooper-
ative group–based active learning has been tested repeatedly
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and has been shown to result in significant learning gains in
many individual studies (e.g., Udovic et al., 2002, Knight and
Wood, 2005; Armstrong et al., 2007; Freeman et al., 2007). Sim-
ilarly, meta-analyses of active-learning research (e.g., Hake,
1998; Springer et al., 1999; Prince, 2004; Wood, 2009; Ruiz-
Primo et al., 2011) have consistently supported the conclusion
that these techniques can be effective in increasing student
learning. However, in a random sample of college biology
courses, Andrews et al. (2011) found that active-learning in-
struction did not correlate with student learning gains. They
pointed out that instructors of courses in which science edu-
cation research was being conducted were often science edu-
cation researchers with knowledge and pedagogical experi-
ences that facilitated implementation of activities. This leads
us to expect that instructors without this knowledge may not
have the same success implementing these strategies. Identi-
fying key features of effective active learning is an important
step in the dissemination of reformed teaching to these in-
structors through peer-reviewed literature and professional
development programs (e.g., Pfund et al., 2009; Ebert-May
et al., 2011; D’Avanzo, 2013).
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There is a wide range of different pedagogical techniques
that come under the umbrella term active learning. Prince
(2004) defined active learning as “the process of having stu-
dents engage in some activity that forces them to reflect upon
ideas and how they are using those ideas” (p. 160). The dif-
ferences come when we begin to look at what “some activ-
ity” means and how best to have students interact with it.
Some examples of the types of activities commonly being
implemented are problem-based learning, case studies, sim-
ulations, role-playing, conceptually oriented tasks, coopera-
tive learning, and inquiry-based projects (e.g., Prince, 2004;
Michael, 2006; Ruiz-Primo et al., 2011). We focused our re-
search on the technique identified by Ruiz-Primo et al. (2011)
as the most common technique present in the research litera-
ture, which they identified as “conceptually oriented tasks +
collaborative learning.” In this technique, students work in
groups on a task that requires some application of concepts
to a problem or question. Almost 50% of the studies included
in the Ruiz-Primo meta-analysis reported on the use of this
strategy. Their analysis showed an effect size of 0.46–0.54,
with an effect size of 0.5 (half an SD) typically considered
“moderate.” Yet we know that not all instructors who try this
technique are successful (Andrews et al., 2011).

A practical definition of effective active learning can best
be built through studies that target individual components
of active-learning design and implementation, instead of the
effect of active learning as a whole, to identify what makes
an effective active-learning exercise. There are many possible
variations in the way an activity can be implemented. For ex-
ample, students can discuss activities in groups or complete
them individually. Students may only discuss aspects of the
activity with others or they may be asked to write about
their understanding as part of the activity, either individu-
ally or with one person per team writing the group’s answer.
Clickers are sometimes used as part of the processing of an
active-learning exercise. Clicker questions may be answered
individually or discussed in a group, or group discussion can
follow after individual answers. The instructor may explain
the correct answer to the activity after the work is completed
or the instructor may have individual groups share their an-
swers with the class and ask other groups to critique their
answers. There are many such variations, and each leads to
a question that can be investigated to help us build a shared
and evidence-based definition of which of these options is
most effective.

Some investigators have begun to conduct this type of
research on the effectiveness of different modes of imple-
mentation of specific active-learning techniques. For exam-
ple, Smith et al. (2009) explored the effect of peer discus-
sion in the context of cooperative group–based instruction.
They showed that students learned from group discussion
of clicker questions and were able to apply their learning
to answer novel questions on the concepts discussed. In a
follow-up study, Smith et al. (2011) compared three different
modes of implementing peer discussion of clicker questions
and found that a combination of peer discussion followed by
instructor explanation provided greater learning gains than
either alone. If the science education community confirms
these results through continued study, then we could begin
to build a shared definition that includes the idea that effec-
tive active learning should include peer discussion followed
by instructor explanation.

Student writing is another common feature of active-
learning exercises. While a writing component is often in-
cluded with the purpose of providing formative assessment
data to the instructor, the concept of “writing to learn” sug-
gests that writing also helps increase students’ comprehen-
sion of complex concepts (Rivard, 1994). Writing about a con-
cept requires students to examine and organize their thinking
and thereby facilitates making connections between concepts
(Bangert-Drowns et al., 2004). Writing also provides an op-
portunity for self-assessment and metacognition (Armstrong
et al., 2008), as a learner is confronted with his or her own
ability or inability to clearly articulate the concepts needed
to answer a complex question. Meta-analyses of writing-to-
learn research conducted in science (Rivard, 1994; Reynolds
et al., 2012) and non-science (Bangert-Drowns et al., 2004)
classrooms conclude that writing can improve student learn-
ing when implemented effectively. However, some studies
(e.g., Armstrong et al., 2008; Fry and Villagomez, 2012) did
not find any effect of writing on student learning. These con-
tradictory results have led to recommendations that future re-
search should focus on determining the most effective imple-
mentation strategies for writing within specific instructional
contexts. Within the context of active learning, students are
often required to write about their understanding of a con-
cept, either individually or in teams. The time required to
grade and perhaps provide comments on written responses
from hundreds of students in a large class setting is daunt-
ing. In addition, the time spent on student writing during
class reduces time available for other activities and content
coverage. A better understanding of the effects of writing on
learner-centered outcomes would provide useful information
as to whether or not writing is an effective use of class time.

The goal of our research was to identify some key fea-
tures of effective active learning. In this study, we focused on
evaluating the effectiveness of two implementation options,
specifically peer discussion and writing, using a full factorial
experimental design.

METHODS

Experimental Design and Implementation
We implemented this research during one semester in three
lecture sections of an introductory biology course for biology
majors. At the start of the semester, there were ∼140 stu-
dents in each section. The three sections were each taught by
a different instructor. Instructor 1 (D.L.) has 14 yr of previ-
ous experience teaching large introductory biology courses
and is a science education researcher who has been imple-
menting cooperative group–based active-learning exercises
for 10 yr. Instructor 2 (W.P.) has 4 yr of previous experience
of teaching experience in large introductory courses and has
been implementing active learning for 4 yr. Instructor 3 (K.W.)
was teaching a large introductory biology course for the first
time and had no previous experience implementing active-
learning techniques.

The instructors met weekly to plan instruction and stan-
dardize delivery as much as possible, and the same lecture
materials, in-class activities, and assessments were used in
all sections. Students were assigned to four-person coopera-
tive groups that were maintained throughout the semester.
This course met three times each week for 50 min. During
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Figure 1. Experimental design.

the first two class meetings, the lesson consisted of lecture in-
terspersed with multiple-choice questions that students an-
swered using personal response systems (i.e., clickers), in-
dividually or with group discussion. One day each week,
students completed an in-class activity that required appli-
cation, analysis, or synthesis of the major concepts covered
during two previous lectures. The experimental treatments
were implemented within these activities (Figure 1). Each ac-
tivity was preceded by one to three multiple-choice clicker
questions dealing with key concepts for the activity. In all
three treatments, students answered these questions with-
out group discussion. The activity was then implemented.
In one of the three sections, students completed the activ-
ity individually and wrote about their understanding of the
concepts (writing-only treatment, WO). In the second sec-
tion, students discussed the problem presented in the activity
with their team, but did not write about their understanding
(discussion-only treatment, DO). In the third section, students
discussed the problem in their teams and then wrote individ-
ually about their understanding of the concepts (discussion
and writing treatment, DW). The same clicker questions, fol-
lowed by a new multiple-choice question, were then asked
and answered by students without group discussion. After
students turned in their activity worksheets, the entire activ-
ity was reviewed in a full-class discussion facilitated by the
instructor. The three treatments were rotated by section each
week, so each instructor implemented each of the three treat-
ments a few times in his or her section. Students earned points
based on the number of clicker questions answered correctly
at the end of the activity and, in the WO and DW treatments,
on the quality of their writing, to encourage students to make
a good effort on all questions.

Most of the activities took ∼30 min to implement (including
the pre- and postclicker questions and full-class postprocess-
ing). The DW treatment typically took a few minutes more
than the DO and WO treatments. However, the three sections
remained on pace with one another throughout the semester.
The activities required students to perform one or more of
the following tasks: making predictions, analyzing data, in-
terpreting graphs, drawing models, explaining experimental
results, and using evidence to support explanations of phe-
nomena. We collected clicker performance data, activity writ-
ings, and exam writings for 10 different question sets based
on these weekly activities, for the following concepts: the na-
ture of matter, osmosis, transmission genetics, gene expres-
sion, natural selection, phylogenetics, community dynamics,
ecosystems, carbon cycle, and global change. The essay ques-
tions on the exam were designed to be analogous (cover the
same major concept and require the same skills) to the in-
class activities. For example, for community dynamics, the
in-class activity required students to make predictions, ana-
lyze data, and explain results based on Paine’s (1966) classic
Pisaster exclusion experiments from a rocky intertidal zone.
On the midterm exam, students were asked to do the same
with data from the Estes et al. (1998) sea otter study, and on

the final exam, students predicted changes to a forest com-
munity based on proposed changes in population sizes of
some species. A summary of each activity and the analogous
exam questions are provided in the Supplemental Material.
Many of these activities were based on published research
studies (Spencer et al., 1991; Ebert-May et al., 2003; Stedman
et al., 2004; Winder and Schindler, 2004; Konopka et al., 2009;
Nowick et al., 2009).

The three instructors met each week to debrief that week’s
activity and to plan for the following week’s instruction.
Based on the debriefing discussions, three of the activities
were eliminated from the research data analysis; the phyloge-
netics and ecosystems activities were not implemented with
enough standardization between sections to ensure there
were no other factors influencing student learning, while the
genetics activity did not effectively make use of writing and
was more computational in nature. For the seven other ac-
tivities, we analyzed clicker performance, in-class (activity)
writings, and midterm and final exam data. The midterm and
final exams consisted of a mix of multiple-choice and writ-
ten assessments, with 40–50% of points on each exam coming
from student writing that included essay questions analogous
to those completed during the in-class activities. For natural
selection, community dynamics, carbon cycle, and osmosis,
we collected writing data from the activity, midterm exam,
and final exam. For global change, nature of matter, and gene
expression, we collected writing data from the activity and
one midterm exam.

Data Analysis
Three hundred and forty-six students signed the consent
forms to participate in the study and were included in the
analyses. Students who were not present on activity days
were removed from the analysis of exam questions, as they
had not received the treatment for that concept.

Clicker question scores on the repeated questions were
compared post- versus preactivity for each student and for
each activity. If the student improved on the clicker questions
from pre- to postactivity, his or her clicker performance was
coded as “1” for improvement. If the student did not improve
or performed worse on the postactivity questions, his or her
performance was coded as “0.” Sample sizes for clicker data,
split by treatment and instructor, are shown in Table 1.

We coded all student writings for correct concepts based
on coding rubrics developed for each assessment item by the
research team. These rubrics were designed to parse out each
individual correct concept that might be included in the stu-
dents’ writing. For example, the statement “Carbon dioxide
from the atmosphere entered the plant through stomata in
the leaves during photosynthesis” would be split into four
concepts: 1) source of CO2 is the atmosphere; 2) CO2 enters
the plant; 3) CO2 enters through stomata in leaf; and 4) the
process involved is photosynthesis. The “correct concepts”
in the rubrics included not only statements of fact, but also
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Table 1. Sample sizes for the clicker data and the exam writing data for all three instructors and across the three treatmentsa

Instructor 1 Instructor 2 Instructor 3

Treatment DO WO DW DO WO DW DO WO DW

Number of observations 185 178 275 268 178 171 198 303 178
Number of students 107 102 99 99 100 98 116 116 109

aDO, discussion only; WO, writing only; DW, discussion and writing.

explanations of concepts, identifications of causal mecha-
nisms, and statements of evidence used to support a conclu-
sion. Therefore, this coding scheme allowed us to distinguish
between different levels of completeness and complexity of
students’ answers on the essay questions.

A team of three raters coded the essays and disparities
were settled by discussion. We calculated a total number of
correct concepts for each student for each written assessment
item. For concepts that were tested on both a midterm and
final exam, the scores on the two essays were totaled to give a
composite score on that concept. A total of 4477 essays were
coded. Student writings were deidentified before analysis, so
the evaluators could not determine to which treatment each
writing belonged. Sample sizes for exam writings, split by
treatment and instructor, are shown in Table 1. Sample sizes
for in-class writings are shown in Table 2.

Because of differences in the complexity of the assessment
questions (some of which were multipart), the total number of
concepts in the coding rubric varied widely among questions,
ranging from seven (the nature of matter) to 26 (community
dynamics). To combine all essay data into a single data set
for analysis, we normalized the essay scores based on the
highest number of concepts included by any student on each
essay question. For example, if the highest number of con-
cepts included by any student on an essay question was 10,
students who included 10 concepts would be assigned a score
of 1, while students who included eight concepts would be
assigned a score of 0.8.

We used generalized linear mixed-effect models (GLMM)
with binomial distributions to analyze our data set. Gener-
alized linear models are an extension of ordinary linear re-
gressions. These models relate the responses of dependent
variables to linear combinations of “predictor” independent
variables. Whereas ordinary linear regressions assume a nor-
mal error distribution, the generalized linear models can take
on a variety of other distributions. In our study, we used a
binomial error distribution, which best fit the nature of our
data. Our analyses are also termed “mixed” because they in-
clude both random and fixed factors; here, our random factor
was the student unique identifier. We attempted to identify

and account for as many independent variables that could
potentially influence student performance in our study as
possible. The GLMM analysis identifies which variables had
a significant effect and also identifies any significant interac-
tions between the independent variables.

In our analyses, student identification was entered as the
random effect to avoid pseudoreplication (as one student
could be represented up to seven times if he or she com-
pleted all seven activities). Three dependent variables were
considered: 1) the improvement or lack of improvement on
the clicker questions; 2) the standardized score for the essay
writing during an in-class activity; and 3) the standardized
score for the exam essay questions. For each dependent vari-
able, we conducted a GLMM with three independent vari-
ables: 1) instructor (Instructor 1, Instructor 2, or Instructor 3);
2) treatment (DO, WO or DW); and 3) the average multiple-
choice score of students on all exams (three midterm exams
and one final exam) to account for aptitude and individual
effort of students. The concepts assessed on the multiple-
choice questions were not included as part of the activities,
so student learning of these concepts should not have been in-
fluenced directly by the effects of the writing and discussion
treatments. We prefer this measure of what we are calling
“aptitude” over ACT scores or incoming grade point aver-
age, because it includes not only students’ natural abilities
but also allows us to account for variation due to study time,
student motivation during the course, and other unmeasur-
able variables outside the classroom that might influence stu-
dent performance specifically during the period of the course.
Significance of the different independent variables was eval-
uated using the Wald χ 2 test.

Students’ average performance on clicker questions across
all activities was compared pre- versus postactivity (repeated
questions only) using a Wilcoxon signed-rank test, as the
data were not normally distributed. We also evaluated the
effect of student aptitude (the average score obtained in all
exams on the multiple-choice questions) on student clicker
scores (the average postclicker score that included the new
question added at the end of the activity) using a Spearman
correlation.

Table 2. Sample sizes for the in-class writing data for all three instructors and across the two writing treatmentsa

Instructor 1 Instructor 2 Instructor 3

Treatment WO DW WO DW WO DW

Number of observations 175 237 171 162 273 172
Number of students 102 98 100 97 113 107

aWO, writing only; DW, discussion and writing.
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All analyses were performed in the statistical software
package R, version 2.1.0 (R Development Core Team, 2005),
using two-tailed tests with α = 0.05. The GLMMs were carried
out using the R library MASS (glmmPQL function; Breslow
and Clayton, 1993; Wolfinger and O’Connell, 1993), while the
Wald tests used the aod R library (wald.test function). Unless
otherwise indicated, means ± SE are represented.

RESULTS

Clicker Question Performance
Students scored significantly higher on the postactivity
clicker questions than on the preactivity questions (V =
74,090, df = 1932, p < 0.0001) in all treatments. However, this
improvement was not significantly different between treat-
ments (Figure 2; χ 2 = 2.8, df = 2, p = 0.24). Students’ average
multiple-choice exam scores did not correlate significantly
with improvement in clicker scores from pre- to postactiv-
ity (χ 2 = 1.7, df = 1, p = 0.19). However, students’ average
multiple-choice exam grades were positively correlated with
postactivity clicker scores (r = 0.24, df = 1932, p < 0.0001).
Students under different instructors did not differ in their im-
provement on their clicker scores (χ2 = 3.8, df = 2, p = 0.15),
nor were there treatment × instructor interactions (Figure 2;
χ 2 = 4.1, df = 4, p = 0.39).

In-Class Writing Data
Students’ average multiple-choice exam scores were very
strongly correlated with how well students performed in the

Figure 2. Effects of treatments and instructors on student improve-
ment on clicker questions. Preactivity clicker scores were compared
with postactivity scores and coded as “0” if students obtained the
same or a lower clicker score after the activity or as “1” if students
improved their clicker scores after the activity. Student scores are av-
eraged by treatment received (WO, DO, or DW) and by instructors;
error bars represent SEs. There were no significant effects of treat-
ment (p = 0.24) or instructor (p = 0.15) on changes in clicker scores,
and there was no treatment × instructor interaction (p = 0.39; see
Results section for full GLMM results).

Figure 3. Effects of treatments and instructors on student writ-
ing scores during an in-class activity. Student writing samples were
scored by the number of correct concepts and standardized across
activities. Writing scores are corrected here for students’ aptitude.
Student scores are averaged by treatment received (WO or DW) and
by instructor; error bars represent SEs. There is no significant effect
of treatment (p = 0.87); however, there is an effect of instructor (p
< 0.001). There are no significant treatment × instructor interactions
(p > 0.25; see Results section for full GLMM results). In this fig-
ure, the negative average residuals indicate treatment × instructor
combinations that resulted in lower averages on the in-class writing
than predicted by the overall regression model that includes all data.
Positive residuals indicate treatment × instructor interactions that
resulted in higher averages than predicted by the model.

writing during an activity, regardless of the treatment they
received in lecture (χ 2 = 111.6, df = 1, p < 0.0001). However,
there were no differences between the WO and the DW treat-
ments (Figure 3; χ 2 = 0.29, df = 2, p = 0.87). There was a
strong effect of instructor on students’ performance during
the in-class writing (Figure 3; χ 2 = 13.3, df = 2, p < 0.001),
with some instructors achieving higher student scores than
other instructors regardless of the treatment and controlling
for student aptitude. There were no significant treatment ×
instructor interactions (Figure 3; all p values >0.25).

Exam Writing Data
Students’ average multiple-choice exam scores were a very
strong predictor of how well students performed in the writ-
ing during an exam, regardless of the treatment they received
in lectures (Figure 4; χ 2 = 367.3, df = 1, p < 0.0001). The
treatments received during the lecture activity did have a
significant effect on how well students performed on the
exam writing (Figure 5; χ 2 = 7.2, df = 2, p = 0.027). The
WO and DW treatments resulted in higher performance on
written exam components than DO. There was also a strong
effect of instructor (Figure 5; χ 2 = 19.3, df = 2, p < 0.0001)
and a significant treatment × instructor interaction (Figure 5;
χ 2 = 78.1, df = 4, p < 0.0001), with some instructors achieving
better student scores consistently within a certain treatment,
which was not the same for each instructor. As we would
expect, there was a very strong correlation between student
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Figure 4. Effect of students’ average exam score on the exam writ-
ing scores. Student writing samples during exams were scored by
the number of correct concepts and standardized across activities.
Writing scores are corrected here for treatment and instructor effects.
For an accurate representation of the large number of data points,
the plot area was divided in bins, which are then shaded based on
the number of data points contained (dark bins contain up to 15
data points; light bins contain 1–3 data points). There is a significant
positive correlation between multiple-choice exam scores and exam
writing scores (p < 0.0001).

Figure 5. Effects of treatments and instructors on students’ exam
writing scores. Student exam writing samples were scored by the
number of correct concepts and standardized across activities. Writ-
ing scores are corrected here for students’ aptitude. Student scores
are averaged by treatment received (DO, WO, or DW) and by instruc-
tors; error bars represent SEs. There are significant effects of treatment
(p = 0.027) and instructor (p < 0.0001), as well as a significant treat-
ment × instructor interaction (p < 0.0001; see Results section for full
GLMM results). In this figure, the negative average residuals indicate
treatment × instructor combinations that resulted in lower averages
on the exam writing than predicted by the overall regression model
that includes all data. Positive residuals indicate treatment × instruc-
tor interactions that resulted in higher averages than predicted by the
model.

performance on the in-class writing and on the exam writing
(p < 0.0001).

DISCUSSION

Student Effect
Students with higher aptitude performed better on all as-
sessments, including the clicker questions. Students’ average
multiple-choice exam scores were highly correlated to their
scores on the in-class and exam writing. This was expected,
because the multiple-choice scores were included in the anal-
ysis as a measure of student aptitude to allow us to partially
control for that variable in comparisons among experimen-
tal treatments. However, student multiple-choice scores did
not correlate with student improvement on the clicker ques-
tions. Although the stronger students scored higher on the
clicker questions, students at all levels improved equally (on
average) as a result of experiencing the activities. Similarly,
there were no treatment × student interactions found in any
of the analyses. Neither stronger nor weaker students were
advantaged or disadvantaged by any of the treatments when
compared with the other students.

Treatment Effect
There were no treatment effects on clicker performance or
in-class writing assignments but there were treatment effects
on the exam writing. Both writing treatments (WO and DW)
provided higher student performance than the DO treatment.
The lack of treatment effect on the clicker scores suggests
that improvement of clicker scores (from pre- to postactivity)
was a result of participation in the activity, regardless of the
method of implementation. The lack of significant difference
between the WO and DW treatments on the in-class activity
writing indicates that peer discussion did not improve stu-
dent learning over that achieved by students thinking and
writing individually. Instead, students were able to answer
the activity questions as well on their own as they were after
peer discussion.

Our results show that students who write about a concept
perform better on subsequent writing-based assessments of
that concept compared with students who only discuss the
concept with peers in cooperative groups. We do not assume
that this increased performance is a direct measure of in-
creased student understanding of the concepts targeted by
the activities. This increased performance could be due to in-
creased understanding, but it could also be due to increased
ability to communicate understanding in writing or increased
retention of knowledge. The DW treatment did require more
time than the DO or WO treatments; however, the fact that
there was no significant difference found between the WO
and DW treatments indicates that “time on task” was not a
major factor.

The lower performance of the DO treatment suggests that
writing is more important to student learning than peer dis-
cussion. With that said, we do not interpret our data as indi-
cating that discussion is not important. In fact, other studies
have reported gains in conceptual understanding following
peer discussion (e.g., Smith et al., 2009). We documented a
similar trend during clicker activities, with students in the
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DO treatment improving their scores on the clicker questions
as a result of peer discussion of the activity. However, the
DW and WO treatments led to similar improvements on the
clicker questions and higher performance on the exam writ-
ings than did the DO treatment.

Research on “learning by explaining” has shown that
explaining concepts can have a strong effect on learning
and helps students make generalizations when presented
with new applications of the same concepts (Williams et al.,
2010). Explaining has also been shown to facilitate conceptual
change by encouraging metacognition (Williams et al., 2010).
There is a distinction made in this literature between explain-
ing to self and explaining to others (Ploetzner et al., 1999). A
student writing individually is essentially explaining to self,
while during peer discussion, students are explaining to oth-
ers. Early research on learning by explaining hypothesized
that explaining to others would lead to greater learning by
the explainer than explaining to self, but subsequent studies
have not found this to be the case (Ploetzner et al., 1999). This
suggests that peer discussion should be as effective as writ-
ing. All three treatments in our study required that students
explain their understanding of the concepts. However, the
mode of explanation was different in the three treatments.
Students explained their understanding verbally, made writ-
ten explanations, and made both verbal and written expla-
nations. Based on the writing-to-learn literature (e.g., Rivard,
1994), we predicted that writing would require more careful
organization of student thinking and, by doing so, might lead
to greater understanding; our data support this prediction.

We have noted that, during a group discussion, it is rare
that each student explains his or her understanding. Typically,
one or two students attempt an explanation and the others
agree, sometimes disagree and explain why, but often one or
two team members do not speak during any given discussion
(personal observation). Enforcing individual writing requires
each student to explain his or her thinking. This could further
explain why writing was more effective than peer discussion
in this study.

Instructor Effect
The effect of instructor was strong for both the in-class and
exam writings; however, we do not have sufficient data to in-
fer what may have caused this difference. Previous research
that included an instructor effect identified that both years of
experience and training with active-learning techniques were
important variables (Andrews et al., 2011). There was a wide
disparity among the three instructors in both overall number
of years of teaching large introductory biology courses and
experience with active learning. The less-experienced instruc-
tors in our study did have reduced success implementing
some of the student-centered activities. However, we have
no way of separating the effect of overall teaching experience
and experience with active learning, as we did not have an
experienced instructor in our study who was new to active
learning. Therefore, our small sample size for this variable
does not allow us to make inferences about this effect.

Treatment × Instructor Interaction
There was a significant treatment × instructor interaction for
the exam writing data. Different instructors may have been

more effective with different treatments. However, this appar-
ent interaction may have been an artifact of the differences
in the difficulty of different concepts or the difficulty of the
exam questions on those concepts. In our data set, the exam
writing scores for the gene expression activity were consid-
erably lower than the scores for all other activities across all
three treatments. The treatment × instructor interaction may
have been influenced by this trend. Instructor 1 used the WO
treatment for the gene expression activity, Instructor 2 used
the DW treatment, and Instructor 3 used the DO treatment.
These treatments were identified by the GLMM analyses to
be the ones that were least successful for these instructors
(Figure 5). While it is still possible that different instructors
could be inherently more effective with some pedagogical
techniques than with other techniques, our data do not pro-
vide rigorous evidence to support this idea.

CONCLUSIONS

Our results provide evidence that individual writing should
be included as part of cooperative group–based active-
learning exercises whenever possible. Although writing uses
class time, this appears to be time well spent. Individual stu-
dent writing not only provides formative assessment data
but also promotes metacognition, as students are confronted
with trying to organize the understanding of concepts, mak-
ing connections, and justifying their thinking. A major as-
sumption implicit in this type of research is the assumption
that “effectiveness” is validly measured by student perfor-
mance on course assessments. We consider the effectiveness
of a technique to be determined by how well it facilitates stu-
dent learning. A technique or activity is effective if it helps
students understand the concepts being presented, and it is
“more effective” if students understand better after experi-
encing this technique or activity than another with which it
is being compared. We used performance on our assessments
as a proxy measurement for students’ understanding. Our
results show that the writing treatments led to significantly
higher student performance on our assessments than the dis-
cussion treatment.

Although our results indicate that peer discussion is not
as effective as writing in facilitating student learning, we
do not recommend that it be removed from active-learning
exercises. In addition to the previous research cited earlier
supporting the inclusion of peer discussion, there are other
learning objectives that can be met using this technique. Col-
laboration and verbal communication skills are often objec-
tives for introductory biology courses, and these objectives
will not be met by student writing alone. Further research is
needed to determine the most effective mix of discussion and
writing.

The effect of instructor is a variable that should not be
overlooked in national reform efforts. Although our data are
limited in their ability to inform this question, the significant
effect we found lends support to the idea that this may be a
key variable to be addressed. There is a growing realization
that effective dissemination of active-learning techniques is
a bottleneck to the transformations called for in Vision and
Change (Ebert-May et al. 2011; D’Avanzo, 2013). As a commu-
nity, we can find ways to make these techniques accessible

Vol. 13, Fall 2014 475



D. L. Linton et al.

(note that we do not say “easily accessible”) to any instructor
willing to make the effort.

One limitation to our experimental design was that it did
not allow us to analyze the effect (or effectiveness) of the
different activities. While the activities we designed varied
somewhat in their complexity, all activities required students
to make an explanation of a biological phenomenon based
on evidence, either experimental results or models that stu-
dents developed to support their thinking. However, the
much lower assessment scores on one of the concepts in-
dicates that the activity associated with that concept did not
meet the learning objectives, regardless of the implementa-
tion method. We suggest that more focus should be given to
testing the effectiveness of specific activities that instructors
design for different concepts and that the results be pub-
lished for the community to share. In the same way that
we would share a new technique in molecular biology, we
should be able to publish procedures that our colleagues can
follow (and practice and improve on) to achieve the desired
results.

In conclusion, at the implementation level, we recommend
the increased use of individual student writing during active-
learning exercises. At the theoretical research level, we en-
courage more research into 1) the effect of “instructor” on the
effectiveness of active learning and how to mitigate this effect
and 2) the implementation strategies and types of activities
that lead to the greatest student learning. At the practitioner
research level, we call for increased rigorous testing and pub-
lication of specific active-learning exercises with detailed de-
scriptions of the activities, evidence-based recommendations
for implementation, and data on effectiveness. As we con-
tinue to study what makes an activity effective and to iden-
tify effective activities, we aim to make active learning more
accessible to all instructors who are passionate about student
learning.
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