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Measuring students’ conceptual understandings has become increasingly important to biology fac-
ulty members involved in evaluating and improving departmental programs. We developed the 
Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental con-
cepts in molecular and cell biology and the ability to apply these concepts in novel scenarios. Tar-
geted at graduating students, the MBCA consists of 18 multiple-true/false (T/F) questions. Each 
question consists of a narrative stem followed by four T/F statements, which allows a more detailed 
assessment of student understanding than the traditional multiple-choice format. Questions were 
iteratively developed with extensive faculty and student feedback, including validation through 
faculty reviews and response validation through student interviews. The final assessment was taken 
online by 504 students in upper-division courses at seven institutions. Data from this administration 
indicate that the MBCA has acceptable levels of internal reliability (α = 0.80) and test–retest stability 
(r = 0.93). Students achieved a wide range of scores with a 67% overall average. Performance results 
suggest that students have an incomplete understanding of many molecular biology concepts and 
continue to hold incorrect conceptions previously documented among introductory-level students. 
By pinpointing areas of conceptual difficulty, the MBCA can provide faculty members with guid-
ance for improving undergraduate biology programs.

Article

of college instruction. Among the instruments available, 
concept assessments have gained particular prominence 
within undergraduate science education communities over 
the past two decades (Libarkin, 2008). Concept assessments 
(also called concept inventories) have been developed for 
several science disciplines and are characterized by an ex-
plicit focus on conceptual understanding rather than factual 
recall. Intended to measure higher-order cognitive processes, 
these instruments are typically designed for easy administra-
tion to large numbers of students by using a multiple-choice 
(MC) question format that can be machine graded. Concept 
assessments have been used for many purposes, including 
informal monitoring of semester-to-semester student perfor-
mance, formal measurement of the impacts of instructional 
interventions, and detection of particular incorrect concep-
tions among students (e.g., Hake, 1998; Marbach-Ad et al., 
2010; Smith and Knight, 2012).

A number of concept assessments have been developed 
for use in biology education (reviewed in D’Avanzo, 2008; 
Knight, 2010). Some of these instruments cover specific top-
ics, such as diffusion/osmosis, natural selection, plant de-
velopment, phylogenetic analyses, and host–pathogen in-
teractions (Odom and Barrow, 1995; Anderson et al., 2002; 
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INTRODUCTION

Recent national reports have recommended that faculty and 
departments adopt data-driven approaches to transforming 
the curricula and instructional methods used in their un-
dergraduate programs (Handelsman et al., 2007; American 
Association for the Advancement of Science [AAAS], 2011). 
To accomplish this objective, science educators need instru-
ments that measure achievement of the intended outcomes 
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Lin, 2004; Baum et al., 2005; Marbach-Ad et al., 2009). Other 
instruments align with the content of traditional biology 
courses, including several for introductory molecular/cell 
biology and genetics (Garvin-Doxas and Klymkowsky, 2008; 
Howitt et al., 2008; Smith et al., 2008; Shi et al., 2010; Tsui and 
Treagust, 2010). Nearly all the existing biology concept as-
sessments were designed for lower-division undergraduate 
students. As a consequence, departments currently have 
limited options for assessing the progress of their students 
beyond the required introductory core series. The lack of re-
sources may, in part, be due to challenges associated with 
constructing instruments that account for the specialized 
course work of upper-division students. While commer-
cial tools are available (e.g., the Educational Testing Service 
[ETS] Biology Major Field Test and the Graduate Record Ex-
amination Biology Subject Test), these tests are costly and 
provide limited feedback to faculty members on specific ar-
eas of student difficulty.

Generating questions that adequately reveal the richness 
and complexity of student thinking is a major challenge in 
concept assessment development (Smith and Tanner, 2010). 
Most concept assessments utilize an MC format in which 
incorrect options (distractors) represent commonly held 
incorrect student ideas (Treagust, 1988). While this format 
captures a preference for a certain response option, it pro-
vides little additional information on a student’s thinking 
regarding the remaining answer choices. Previous studies 
have shown that biology students hold a variety of mixed 
models in which they have both correct and incorrect ideas 
regarding a particular concept. For example, students may 
have correct understanding of the process of natural selec-
tion, while misunderstanding underlying mechanisms by 
which new alleles arise within a population (Nehm and 
Reilly, 2007; Nehm and Schonfeld, 2008; Henson et al., 2012). 
This situation can lead to an overly optimistic assessment 
of student abilities when using MC tests, because students 
who are rewarded for selecting the correct answer may si-
multaneously hold other incorrect conceptions (Frisbie and 
Sweeney, 1982).

This problem can be addressed through the use of an al-
ternative question format called multiple-true/false (T/F). 
In this format, students are presented with a question stem, 
as in the MC format, but are then asked to answer “true” 
or “false” to a series of subsequent statements. Multiple-T/F 
questions are functionally similar to MC questions in which 
students select all answers that apply. Thus, the multi-
ple-T/F format allows the detection of the mixed models de-
scribed above, while also better approximating the difficulty 
of a free-response format (Kubinger and Gottschall, 2007). 
On a practical level, the multiple-T/F format can be machine 
graded and provides greater design flexibility, because ques-
tions can be written with different combinations of true and 
false statements.

In this article, we describe the development of the Mo-
lecular Biology Capstone Assessment (MBCA), including 
evidence of its validity from interviews with biology fac-
ulty and students and demonstration of its reliability from 
administration to more than 500 upper-division students at 
multiple institutions. We report student performance results, 
which reveal both mixed models and persistent incorrect 
conceptions, and discuss ways of using the MBCA to gather 
information about student understanding.

METHODS

Question Development
Students majoring in biology typically take a series of re-
quired lower-division courses, followed by a selection of up-
per-division electives covering advanced topics most relevant 
to their interests. Because of this typical progression, while all 
graduating seniors have met certain core course requirements, 
they likely have diverse levels of understanding of concepts 
that experts in the field consider important. Our main purpose 
in constructing the MBCA was to develop an instrument to 
gauge upper-division student understanding of fundamen-
tal biological concepts valued by faculty in the discipline. We 
envisioned such a tool as being particularly useful for assess-
ing graduating seniors, and so our design process explicitly 
focused on upper-division students. We followed an iterative 
question-development process, incorporating multiple cycles 
of feedback from faculty and students (Table 1). This general 
approach has been previously described (Adams and Wie-
man, 2011) and used by others to guide the development of 
several concept assessments (e.g., Smith et al., 2008; Shi et al., 
2010; Kalas et al., 2013; Price et al., 2014).

To establish the scope and general content of the assess-
ment, we began by soliciting ideas from faculty members in 
our department (Molecular, Cellular, and Developmental Bi-
ology). We conducted individual interviews with 21 faculty 
members in which we asked them to list important concepts 
that molecular biology majors should have mastered by the 
time they graduate, regardless of each student’s specific up-
per-division course work. We then held three discussions 
with groups of faculty members to refine this initial pool and 
prioritize concepts of central importance. We also informally 
surveyed the biology misconceptions literature and other 
concept assessments to identify topic areas that appeared 
particularly challenging for students. From this process, we 
compiled a list of 26 concepts and accompanying learning 
objectives. This list was ultimately pruned to the 18 concepts 
and 18 specific learning objectives that underlie the final 
assessment questions (Table 2). Concepts were retained 
based on whether they were fundamental to a molecular 
biology core curriculum and eliminated if they were too 
specific to a particular subdiscipline or taught only in select 

Table 1.  Overview of the MBCA development process 

1. Identify a set of fundamental concepts and learning objectives 
through individual faculty interviews, faculty roundtable  
discussions, and literature review.

2. Conduct open-ended interviews to probe student understanding 
of these concepts.

3. Draft a series of multiple-T/F questions incorporating student 
ideas as statements.

4. Conduct think-aloud student interviews to ensure question  
clarity and response validity.a

5. Solicit feedback from biology faculty members at multiple  
institutions for approval of question content.a

6. Administer the assessment to upper-division students at  
multiple institutions.

7. Perform analyses to determine overall student performance, 
question statistics, and instrument reliability.

aSteps 4 and 5 occur concurrently and are accompanied by iterative 
question revision.
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upper-division courses. The concepts identified by faculty 
members embody broad biological principles; thus, each as-
sociated learning objective represents just one of many that 
might be formulated for a given concept.

Using the concepts and learning objectives as a guide, we 
developed open-ended questions addressing each learn-
ing objective and administered these questions to 7 to 12 
upper-division students during individual interviews. We 
then drafted multiple-T/F questions, each consisting of a 
narrative stem (sometimes including a graph or diagram) 

followed by four T/F statements based on results from the 
student interviews. For example, question 17 asks where a 
single-nucleotide polymorphism (SNP) linked to a drug 
response could be located within the human genome. The 
associated T/F statements reflect student awareness that 
this SNP could be located within regions that directly influ-
ence drug-related signaling and metabolism as well as the 
incorrect conception that the SNP must directly affect the 
expression or activity of these genes. In writing questions, 
we sought to exclude jargon, use only essential biological 

Table 2.  Concepts and learning objectives guiding the development of MBCA questions

Question Concept Learning objective—Students should be able to:

1 Genetic mutations arise randomly within a population. Explain how a specific mutation arose in a population that has 
undergone a change in its environment and exhibits different 
traits from its ancestors.

2 The differential reproductive success of individual organ-
isms within a genetically heterogeneous population leads 
to changes in the genetic composition of a population 
over time.

Draw conclusions from graphical representations to determine 
how the relative reproductive success of genetically distinct 
individuals affects the overall genetic composition of a popu-
lation.

3 Diversity arises from evolutionary processes that cause  
populations to become reproductively isolated and  
genetically distinct.

Predict the impact of different factors on the genetic composi-
tion of a newly isolated population compared with its parent 
population.

4 Gene expression is subject to multiple levels of regulatory 
control.

Distinguish among possible mechanisms for how transcription of 
a particular gene can vary between cell types.

5 One gene can direct the synthesis of multiple different  
protein products.

Distinguish among possible mechanisms for how two proteins of 
different apparent molecular weights can result from expres-
sion of a single gene.

6 A cell’s history affects its developmental fate and response to 
its environment.

Distinguish among possible mechanisms that can account for 
two sister cells responding differently to an identical stimulus.

7 Bacteria, archaea, and eukaryotes exhibit distinct differences 
in cell structure and function.

Identify structural and functional characteristics of bacteria.

8 The effect of a mutation depends upon the nature of the 
mutation (base substitution, insertion, deletion, or DNA 
rearrangement) and its location within a gene.

Predict, using the codon table, how silent and nonsense muta-
tions will affect transcription and translation.

9 A mutation that alters the translated portion of a transcript 
can affect the resulting protein sequence.

Determine how mutations at different locations within a gene 
can alter the amino acid sequence of the resulting protein.

10 The output of a signaling pathway depends on the activities 
of upstream components.

Predict the outcomes of inactivating various components of a 
known signaling pathway.

11 Chromosome partitioning during meiosis and mitosis affects 
the genetic identities of the resulting daughter cells.

Explain how a chromosome partitioning error at different stages 
of meiosis can give rise to a gamete lacking a particular chro-
mosome.

12 Individual molecules can move through a solution in a 
nondirected manner as a result of thermal motion and 
random diffusion.

Distinguish between possible mechanisms for explaining how a 
molecule can travel between cells located multiple cell lengths 
apart.

13 Closed biochemical systems proceed toward states of lower 
free energy.

Evaluate the contributions of free energy and entropy changes 
to the folding of a protein composed of polar and nonpolar 
amino acids.

14 The rate at which a biochemical reaction approaches 
equilibrium is governed by the activation energy for that 
reaction.

Explain in energetic terms why reaction rate changes when the 
reaction is heated or when a specific enzyme is added.

15 Intermolecular interactions are governed by binding affinity 
and molecular concentrations.

Interpret results from a binding experiment and predict how 
variations to the assay would affect the results.

16 Membrane proteins and membrane-enclosed elements 
maintain fixed topologies as they traffic through different 
cellular compartments.

Predict which domains of a transmembrane protein will be acces-
sible to the cytosol during trafficking to the cell surface, based 
on the original orientation of the protein within the endoplas-
mic reticulum membrane.

17 Genomic markers can be used to identify the molecular 
bases of phenotypic variation within a population.

Predict the possible locations within the genome of a mutation 
linked to a particular trait.

18 Genetic traits can by modulated by genetic, epigenetic, and 
stochastic mechanisms.

Predict possible phenotypes resulting from a cross between a 
woman homozygous for a recessive X-linked mutation and a 
man who does not carry the mutation, taking into account the 
epigenetic phenomenon of X inactivation.
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(Brownell et al., 2014). To provide users with information on 
how MBCA questions align with Vision and Change core 
concepts, we asked 10 faculty members to identify a primary 
and, if applicable, a secondary core concept addressed by 
each question. Results from this survey were tabulated by 
weighting primary assignments as full votes and secondary 
assignments as half votes (Table 4). For each question, the 
concept that received the most votes was designated as the 
primary concept, while any concept receiving three or more 
votes was designated as a secondary concept.

Final Administration
We administered the final version of the MBCA to students 
at seven different institutions during the Spring and Fall 
semesters of 2013 (Table 5). Because most degree programs 
do not have an existing mechanism to survey graduating 
seniors, we administered the assessment to students in up-
per-division courses requiring prerequisite course work in 
molecular biology, cell biology, and genetics.

Owing to time constraints and content overlap issues, most 
piloting instructors were unable to allocate class time for the as-
sessment. Therefore, the MBCA was administered to students 
outside class time using the Qualtrics online survey platform. 
Instructors were asked to offer the assessment near the end of 
the semester during a week devoid of other tests or major proj-
ects. The assessment was first introduced to students through 
an in-class announcement made by the course instructor. Stu-
dents were asked to give their best effort and were told that 
their participation would help the department improve its 
educational program (Steedle, 2010). Immediately after class, 
students received a follow-up email from the course instructor 

terminology, and follow established item-writing guidelines, 
such as avoiding answer buzzwords and parenthetical ex-
pressions, writing statements of roughly the same length, 
and using either completely parallel or completely distinct 
wording structures for each statement (Frey et al., 2005).

Question Revision and Construct Validity
To improve the construct validity of the assessment, we used 
student interviews, faculty feedback, and pilot administra-
tions to inform the iterative revision of each question. We 
presented draft questions to upper-division students during 
semistructured interviews in which individual participants 
were asked to “think aloud” as they read and answered each 
question (Anders and Simon, 1980). We collected feedback 
from a total of 27 students, with each student seeing some 
or all of the assessment questions. In total, each question 
was answered by 6 to 19 students during initial interviews, 
followed by 8 students interviewed on the full set of assess-
ment questions. These interviews helped reveal whether stu-
dents were correctly interpreting the questions and whether 
their choices of “true” or “false” were based on appropriate 
underlying reasons.

We solicited faculty input from 25 different faculty mem-
bers at different institutions to help revise and validate the 
questions (Table 3). In total, each question was reviewed by 
10–12 faculty members during initial reviews, followed by 
10 additional faculty members who reviewed the complete 
assessment. Faculty members were asked to respond “yes” 
or “no” to whether each question was clear and scientifically 
accurate, aligned with the stated learning objective, and was 
appropriate for a graduating molecular biology major.

Two initial versions of the MBCA were also piloted in an 
online format to upper-division students during the Fall 
semester of 2012. The first version was administered to 137 
students at three institutions and the second version to 337 
students at four institutions. Resulting data were analyzed 
to determine whether the questions were well targeted and 
had suitable psychometric properties. Feedback from each 
of the above processes was incorporated during the revi-
sion process, ultimately leading to the final MBCA questions 
(Supplemental Material 1). Following question construction, 
we generated descriptions of the underlying knowledge re-
quired to correctly answer each question as an aid for inter-
preting student outcomes (Supplemental Material 2).

The national report Vision and Change in Undergraduate Bi-
ology Education was published partway through the assess-
ment development process (AAAS, 2011). This report spec-
ifies five broad core concepts for biological understanding, 
which have been further elaborated in subsequent articles 

Table 3.  Summary of MBCA faculty reviews

 Questions with given faculty 
agreement

The question is: ≥ 90% ≥ 80% < 80%
Clear and scientifically accurate 15 3 0
Aligned with the stated  

concept/learning goal
17 0 1

Appropriate for a graduating 
molecular biology major

17 1 0

Table 4.  Alignment of MBCA questions to Vision and Change core 
concepts

Questions Aligned

Core concept Primary Secondary

Evolution 1, 2, 3
Structure and function 7, 15, 16 9, 11, 12, 13
Information flow, exchange, and 

storage
4, 5, 6, 8, 9, 10, 

11, 17, 18
Pathways and transformations 

of matter and energy
12, 13, 14 2, 15

Systems 6, 10

Table 5.  MBCA pilot institution Carnegie classificationsa

Control Research activity Region n

Public RU/VH West Coast 227
Public RU/VH Mountain West 100
Public RU/H Southeast 41
Public Master’s/L West Coast 41
Public RU/VH West Coast 39
Private RU/H Northeast 31
Public Master’s/L Midwest 25

aInstitutions are ordered by participant number. All institutions 
offer doctoral degrees. RU = research university; VH = very high 
research activity; H = high research activity; Master’s/ 
L = master’s-level, larger programs.
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the following formula: DQ = PQ(H) − PQ(L), where PQ(H) is the 
question difficulty for the top third of students and PQ(L) is 
the question difficulty for the bottom third of students.

Difficulty and discrimination were also calculated at the 
statement level. Statement difficulty (PS) was calculated as 
the fraction of correct responses for each statement. State-
ment discrimination (DS) was calculated using the following 
formula: DS = PS(H) − PS(L), where PS(H) is the statement diffi-
culty for the top third of students and PS(L) is the statement 
difficulty for the bottom third of students. Statement diffi-
culties for individual questions were analyzed by one-way 
ANOVA, followed by post hoc Student’s t tests for signifi-
cance.

Additional statistical analyses were used to estimate in-
strument reliability, or the consistency with which an assess-
ment measures student performance (Crocker and Algina, 
2006). There are several ways of determining reliability, 
some of which allow calculation from a single test admin-
istration, while others require two separate test administra-
tions. Cronbach’s alpha (α), an internal reliability coefficient, 
reflects the internal consistency of student responses by 
measuring the degree of covariance between all the different 
items on a test. Values for α can range from 0 to 1, with high 
covariance between test items producing values closer to 1. 
Cronbach’s α decreases when there is a lack of covariation 
between test items, such as when low-performing students 
outscore high-performing students on numerous questions. 
Cronbach’s α was calculated with SPSS software based on 
statement scores and thus reflects covariation between ques-
tions as well as within questions (Dudley, 2006).

A second reliability measure was used, because concept as-
sessments such as the MBCA often test a variety of different 
conceptual areas, and thus may not produce high internal re-
liabilities (Smith et al., 2008). Test–retest reliability measures 
the degree to which a test produces consistent scores over 
repeat administrations. The resulting stability coefficient (r) 
can range from 0 to 1, with high stability between consecutive 
performances producing values closer to 1. The test–retest 
method is commonly calculated as the correlation between 
overall scores for a group of students taking the same assess-
ment on two separate occasions, with the assumption that lit-
tle has been learned or forgotten during the intervening time 
period. Because these conditions were not possible for our 
sample, we adopted a modified approach used previously 
for other concept assessments (Smith et al., 2008). Students 
enrolled in consecutive semesters of a course are likely to per-
form similarly on an assessment, and thus they offer an alter-
native way to gauge instrument reliability. One of the courses 
in which we administered the MBCA was taught by the same 
instructor in consecutive semesters, allowing us to gauge the 
stability of response frequencies for two student groups with 
similar course backgrounds. Test–retest reliability was deter-
mined by calculating the Pearson’s correlation for statement 
difficulties across these two semesters. Overall scores between 
the two semesters were compared using Student’s t tests.

RESULTS

General Performance and Question Statistics
The MBCA contains 18 question stems, and each question has 
four accompanying T/F statements for a total of 72 statements. 

with a link to the online assessment, which remained open for 
1 wk. Students received a small amount of extra credit (deter-
mined by the instructor) for attempting the assessment.

Altogether, the final MBCA was offered to 677 students from 
nine courses and attempted by 588 students. Five submissions 
were excluded from analyses, because they lacked answers 
to at least half of the T/F statements. The MBCA takes ap-
proximately 30 min to complete, and in separate in-class, pa-
per-based administrations, we did not observe anyone finish 
in fewer than 15 min. To account for students who gave only 
cursory effort to the out-of-class administration, we removed 
an additional 79 submissions from students who completed 
the assessment in less than 15 min. The remaining 504 sub-
missions included in the final analysis represent 74% of the 
students contacted to take the assessment. The last question 
on the assessment asked students to self-report their class 
standing, and the results indicated that the analyzed sample 
consisted almost entirely of upper-division students (Table 6).

Statistical Analyses
Various descriptive statistics were used to characterize stu-
dent performance on the whole assessment as well as on in-
dividual questions and T/F statements. Each T/F statement 
response was scored as 1 = correct or 0 = incorrect. Students 
provided responses to 99.5% of all statements; nonresponses 
were counted as incorrect. For the “fractional” scoring meth-
od, overall scores were calculated by summing the number 
of correct T/F statements for each student and dividing by 
the total number of statements. For the “all-or-nothing” scor-
ing method, overall scores were calculated by summing the 
number of questions for which a student answered all four 
T/F statements correctly and dividing by the total number 
of questions. Overall score distributions were also generated 
for individual courses using the fractional scoring method, 
and the different course means were analyzed using a one-
way analysis of variance (ANOVA), followed by Tukey’s 
multiple comparison test between all pairs of courses.

With the multiple-T/F format, item statistics can be de-
termined both for questions and individual T/F statements. 
At the question level, question difficulty (PQ) was computed 
by taking the average percent correct for the four T/F state-
ments comprising the question. Each student was first given 
a question score based on the number of T/F statements an-
swered correctly. For example, a student answering three of 
four statements correctly received a question score of 0.75. 
Question difficulty was then calculated as the average score 
for each question (note that a higher PQ value indicates a 
less difficult question). Question discrimination (DQ) reflects 
how well each question distinguishes between high-per-
forming and low-performing students, as defined by overall 
test scores. Question discrimination was calculated using 

Table 6.  Class standings of MBCA student participants

Freshman Sophomore Junior Senior

Students 0 8 129 365
Percenta 0 1.6 25.6 72.4

aNote that percentages do not add to 100% because two students 
did not report their class standing.
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questions 5 and 15 to 0.55 for question 12 (large black ovals). 
We also calculated question discrimination values, which 
serve as a reflection of how well each question distinguishes 
high- and low-performing students as defined by overall 
test scores. Question discrimination values were mostly in 
the range of 0.2–0.4, with three questions having discrimi-
nation values below 0.2. These results indicate that, for the 
majority of questions, the top third of students outperformed 
the bottom third of students by 20–40%. The T/F statements 
comprising each question showed a much broader range of 
difficulty and discrimination values (small gray dots).

One of the benefits of the multiple-T/F format is that stu-
dent performance on individual T/F statements can provide 
diagnostic information on specific areas of student profi-
ciency or deficiency. A complete listing of all statement diffi-
culties is provided along with the MBCA questions in Sup-
plemental Material 1. A subset of these results exemplifying 
different response patterns is shown in Figure 3. In some 
cases, students performed well on one statement, while 
struggling with the other three statements. Question 3 asks 
students to evaluate different ways that the genetic compo-
sition of a new population can become different from a par-
ent population (Figure 4A). While most students recognized 
that natural selection can cause changes in allele frequencies 
within a population (statement 3C), students had difficulty 
recognizing the potential impacts of other phenomena, such 
as founder effects, inbreeding, and new mutations (state-
ments 3A, B, and D, respectively). These results suggest that 
biology students may recognize that natural selection can 
lead to evolution but fail to grasp additional factors affecting 
evolution. In other cases, students performed well on three 
statements but struggled with the fourth. Question 13 asks 
students how free energy and entropy contribute to protein 
folding (Figure 4B). For this question, many students cor-
rectly predicted that nonpolar side chains will generally be 
buried within the core of the final protein, that the folding 
process proceeds toward a state of lower free energy, and 
that the entropy (disorder) of the polypeptide chain is lower 
in the folded state (statements 13A, B, and C, respectively). 
However, roughly half of the students did not indicate that 
the entropy of surrounding water molecules increases as 

The overall performance distribution of 504 students from 
upper-division courses at seven different institutions is pre-
sented in Figure 1. Multiple-T/F questions can be scored in 
different ways (Gross, 1982; Tsai and Suen, 1993; see Meth-
ods: Statistical Analyses section). Using the fractional scoring 
method, the overall mean for the entire sample was 67.2 ± 
11.5% SD. Using the more restrictive all-or-nothing scoring 
model, the overall mean was much lower at 25.9 ± 16.1% SD. 
Individual courses showed a wide range of scores with the 
fractional scoring method, with overall median scores rang-
ing from 58 to 75% (Figure 2). A one-way ANOVA suggested 
that the MBCA is capable of detecting differences in the mean 
performance of students from different courses (p < 0.001).

Individual question results provide insights into student 
achievement levels for different learning objectives (Figure 3). 
The 18 questions showed a range of difficulties, from 0.77 for 

Figure 1.  Frequency distribution of overall student scores. Bars represent percent of students having overall test scores within the given per-
cent correct bins. Filled bars indicate student scores using the fractional scoring method, in which students are given credit for each correct 
T/F statement. Unfilled bars indicate student scores using the all-or-nothing scoring method, in which students are given credit for a question 
only if they answer all four accompanying T/F statements correctly. Bin labels indicate the upper threshold of each bin. For example, the right-
most bin contains scores greater than 94% and less than or equal to 100%. n = 504 students.

Figure 2.  Overall score distributions for individual courses using 
the fractional scoring method. Central bars represent course medi-
an scores, boxes represent inner quartiles, and whiskers represent 
minimum/maximum scores. Courses are ordered by median scores. 
ANOVA of individual course means, F(8,495) = 11.2, p < 0.001. Of the 
36 pairwise course comparisons possible, Tukey’s multiple compar-
ison test revealed significant differences between 15 different pairs 
(p < 0.05). For example, Course 1 performance was significantly 
greater than those of Courses 4, 6, 7, 8, and 9.
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Figure 4.  Individual T/F statement difficulty for three selected questions. Bars represent statement difficulties for each different T/F state-
ment ± SEM. (A) For question 3, statement C is significantly higher than all the other statements: ANOVA, F(3, 2012) = 64.8, p < 0.001; post hoc 
t tests, p < 0.001. (B) For question 13, statement D is significantly lower than all the other statements: ANOVA, F(3, 2012) = 39.6, p < 0.001; post 
hoc t tests, p < 0.001. (C) For question 12, statements A and D are significantly higher than statements B and C: ANOVA, F(3, 2012) = 158.1,  
p < 0.001; post hoc t tests, p < 0.001. 

Figure 3.  Question/statement difficulty and discrimination. Large black ovals represent (A) difficulty and (B) discrimination values for each 
question. Small gray dots represent (A) difficulty and (B) discrimination values for the four individual T/F statements comprising each 
question. Questions are shown in the order they appear on the assessment. Note that a higher difficulty value indicates a higher proportion 
of correct answers (i.e., an easier question).
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ters of this course (semester 1 = 65.3%, semester 2 = 66.4%; 
p > 0.05).

DISCUSSION

Research Findings and Implications
We developed an assessment to gauge upper-division stu-
dent understanding of fundamental concepts from molec-
ular biology. The multiple-T/F format used in the MBCA 
helps capture additional dimensions of student thinking 
beyond those offered using the traditional MC format. 
We sought to ensure that our questions were scientifically 
accurate and that student responses were representative of 
their underlying thinking by incorporating extensive faculty 
and student feedback during the development process. Ad-
ministration of the MBCA to more than 500 students at mul-
tiple institutions provides several insights regarding student 
achievement of the specified learning objectives.

Overall student performance on the MBCA raises some 
concerns regarding the depth of upper-division student un-
derstanding of molecular biology. With the fractional scoring 
method, students averaged 67%, which only modestly ex-
ceeds the 50% average that would result from random guess-
ing (addressed in more detail in Statistical Criteria below). 
Under the more stringent all-or-nothing scoring method, stu-
dents averaged 26%, indicating that students answer at least 
one statement incorrectly for most questions. Furthermore, 
there are several statements for which more than half of the 
students answered incorrectly (Table 7). Many students dis-
played incorrect conceptions regarding molecular dynamics 
and interactions. For example, greater than 50% of students 
indicated that enzymes catalyze reactions by raising the sub-
strate free-energy level (statement 14C) and that the binding 
affinity between two molecules changes as a function of their 
concentrations (for noncooperative binding; statement 15B). 
Students also had trouble understanding that unequal distri-
bution of cytoplasmic factors such as mRNAs and proteins 
during cell division can lead to differences in daughter cell 
behavior (statements 6B and C).

Several concepts that were challenging for students have 
been highlighted before in other publications and concept 
assessments. Students generally struggled with interpreting 
the output of a signaling pathway containing positive and 
negative regulatory factors (question 10). Consistent with 
previous reports regarding the difficulty of understanding 
genetic epistasis, this difficulty was most pronounced for 
the final statement in which two factors have been rendered 
nonfunctional (Knight et al., 2013). In some cases, concepts 
assessed on the MBCA are known to be challenging for intro-
ductory students, suggesting that students taking upper-di-
vision courses have not yet mastered these concepts. On 
statement 1A, 43% of students incorrectly indicated that or-
ganisms can induce specific mutations to intentionally avoid 
predators, a naïve conception that has been documented pre-
viously (Anderson et al., 2002; Shi et al., 2010). In their work 
using the Biology Concept Inventory (BCI), Garvin-Doxas 
and Klymkowsky found that students frequently cite charge 
attractions and transport mechanisms as ways in which 
molecules find their cognate receptors and that student 
performance on this question does not improve markedly 
across four semesters of biology instruction (Garvin-Doxas 
and Klymkowsky, 2008). These results are consistent with 

hydrophobic side chains aggregate (statement 13D), which 
suggests that students are missing a critical principle under-
lying the behavior of hydrophobic substances in water and 
an important mechanism of protein folding.

Three questions on the MBCA have one true statement 
and three false statements, and thus they are interconvertible 
to an MC format. These questions provide an opportunity to 
demonstrate the increased ability of the multiple-T/F format 
to capture underlying student reasoning. Question 12 asks 
students how a secreted ligand travels across a fluid-filled 
cavity to bind to a target receptor (Figure 4C). The majority 
of students (74%) correctly selected “true” for statement 12D, 
indicating they recognized that a molecule can travel via 
nondirected diffusion. The remaining statements each target 
a different incorrect conception regarding intercellular diffu-
sion. Interestingly, of the students who correctly answered 
“true” to statement 12D, 84% incorrectly identified at least 
one other statement as being true. This same pattern was 
seen for the other two interconvertible questions, for which 
87% (question 8) and 68% (question 15) of students who cor-
rectly identified the true statement also incorrectly selected 
as true at least one of the remaining false statements.

Evidence of Test Reliability
Cronbach’s α for the final MBCA administration was 0.80, 
which falls within a range of acceptable values (Kline, 2000). 
This value is on par with those of commercially available 
tests, such as the ETS Proficiency Profile, a general test of 
critical-thinking, reading, writing, and mathematics for col-
lege students (α = 0.78; Liu et al., 2012). Test–retest reliability 
was 0.93 based on student results from consecutive offer-
ings of the same course (Figure 5). This stability coefficient 
also falls within a range of acceptable values (Crocker and 
Algina, 2006) and is similar to those of other published con-
cept assessments, such as the Genetics Concept Assessment 
(r = 0.93; Smith et al., 2008). Overall student MBCA perfor-
mance did not significantly differ between the two semes-

Figure 5.  Test-retest reliability. Graph displays statement difficul-
ties from two MBCA administrations in consecutive semesters of the 
same course. Each gray dot corresponds to the statement difficulty 
of one of the 72 different statements. Semester 1: n = 112 students; 
semester 2: n = 115 students.
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for individual learning objectives (Nehm and Reilly, 2007; 
Nehm and Schonfeld, 2008).

Statistical Criteria
In developing the MBCA, our principal goal was to pro-
duce an instrument that could provide information on 
what students had learned over the course of a molecular 
biology major. Because most concept assessments, including 
the MBCA, are designed to sample many different areas of 
student understanding, psychometric criteria that depend 
on consistency of student performance across an entire test 
should be used with caution (Adams and Wieman, 2011). 
While we intended for our assessment to satisfy established 
psychometric guidelines, we also weighed these consid-
erations in light of the format and purpose of the assess-
ment. For example, test developers whose sole purpose is 
to rank-order students based on ability levels typically seek 
item discrimination values greater than 0.3 for all questions 
(Doran, 1980). Questions failing to meet this criterion are 
modified or removed from the assessment. This criterion 
was developed for MC assessments in which the guess rate 
is 0.25 and the maximum theoretical discrimination value is 
0.75. Because the multiple-T/F format has a guess rate of 0.5, 
and therefore a maximum theoretical discrimination value 
of 0.5, we established a working discrimination cutoff of 0.2 
for each question. During our early pilot administrations, we 
took note of any questions or T/F statements with low dis-
crimination values and revised them to the extent possible, 
while maintaining alignment to the underlying concept and 
learning objective.

Despite repeated rewordings, several T/F statements con-
tinued to have low discrimination values (e.g., statements 
4D, 5B, and 17B), which in some cases prevented their re-
spective questions from reaching the 0.2 discrimination 
threshold. Faculty and student feedback did not reveal any 
overt issues with the content or interpretation of these state-
ments. Furthermore, interview responses indicated that stu-
dents indeed struggle with the underlying concepts. For ex-
ample, statement 17B has a difficulty of 0.30, suggesting that 
a majority of students do not fully understand the concept 
of genetic linkage. This confusion could arise from curricula 
that do not explicitly connect the concept of genetic linkage 
to genomic applications. These particular statements also 
share the common feature of requiring careful thought in 
order to be answered correctly. Thus, it is also possible that 
low discrimination values are the product of a low-stakes 
testing environment, in which high-performing students 
may select an obvious answer without more sophisticated 
consideration. Because these statements provided valuable 
information, they were retained in the final version of the as-
sessment. A Cronbach’s α of 0.80 suggests the MBCA has an 
acceptable level of internal reliability, despite the presence of 
several T/F statements with low discrimination values.

One potential drawback of the multiple-T/F format is 
the 0.5 guess rate for each T/F statement, which has the 
potential to limit the range of overall test scores and to in-
fluence interpretation of individual statement results. Other 
researchers have found, however, that this high guess rate 
is offset by students being able to answer nearly four times 
as many individual items (T/F statements) compared with 
MC questions in a similar amount of time. This increase in 

our finding that advanced students still struggle with 
these concepts, as evidenced by the 68 and 66% percent of 
students who incorrectly answered statements 12B and C, 
respectively. Conversely, while few students selected ran-
dom molecular motion as a viable mechanism on the BCI, 
students taking the MBCA correctly selected this option 74% 
of the time (statement 12D).

The MBCA’s multiple-T/F format allows the collection 
of fine-grained information regarding the depth of student 
understanding for a given concept, while still retaining the 
convenience of machine grading. In many cases, students 
may correctly recognize one statement as true or false but 
lack more in-depth understanding of another aspect of this 
concept. For example, question 4 asks students how a gene 
can undergo differential expression in different cell types. 
Students generally indicate that this phenomenon can re-
sult from differences in the transcription factors present in 
each cell type (statement 4C). However, they are less likely 
to recognize that differences in gene expression can also be 
due to chemical modifications to DNA (e.g., methylation; 
statement 4B) or that transcription factor activity can be 
regulated through posttranslational modifications and in-
teractions with other cellular factors (statement 4D). While 
the MC format reduces question performance to a single 
binary outcome, this study and others indicate that student 
understanding covers a much more diverse spectrum, even 

Table 7.  Common incorrect conceptions among advanced students

Incorrect idea Statement % Incorrect

Inbreeding causes new alleles to occur 
within a population (Anderson et al., 
2002).

3B 55

Differences in daughter cell behavior 
in the early frog embryo are not due 
to differences in the inheritance of 
cytoplasmic factors, such as mRNAsa 
(Knight and Wood, 2005).

6B 57

In a linear signaling pathway, the 
phenotype resulting from making 
two factors nonfunctional is the same 
as when only the upstream factor is 
nonfunctional (Knight et al., 2013).

10D 53

Charged regions on signaling ligands and 
their receptors can attract each other 
across long distances (Garvin-Doxas 
and Klymkowsky, 2008).

12B 68

Motor proteins actively transport signal-
ing ligands across extracellular spaces 
(Garvin-Doxas and Klymkowsky, 
2008).

12C 66

Binding of a substrate to an enzyme 
raises the free energy of the reactant 
molecule to the level of the transition 
state.

14C 51

For noncooperative interactions, binding 
affinity between two molecules 
changes as a function of their concen-
trations.

15B 53

SNPs associated with certain traits must 
directly cause those traits.

17B 70

aStatement 6C, which asks a similar question regarding unequal 
inheritance of proteins, is answered incorrectly 48% of the time.
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changes over time and will help departments structure their 
programs to better promote student learning and retention 
of biological concepts.

In addition to the conceptual understanding that is the fo-
cus of the MBCA, a successful molecular biology program 
should aspire to achieve other outcomes, such as improving 
science process skills and attitudes toward science (Semsar 
et al., 2011; Gormally et al., 2012; Dirks et al., 2013). Thus, 
the MBCA represents just one of the many ways in which 
departments might gauge student outcomes. The ongoing 
development and use of diverse instruments will allow de-
partments to construct more accurate portraits of student 
progress and to reflect on how their programs might change 
to optimize student achievement.

Availability of the MBCA
An administrable version of the MBCA questions (along 
with an answer key) is available upon request. Potential 
users should note that the reported test characteristics were 
collected under the specific conditions reported here and 
that student performance may change based on assessment 
location, delivery format, and student incentives. Interested 
instructors should email their requests to J.K.K., including a 
link to an institutional Web page where their instructor sta-
tus can be verified.

the number of separate test items allows for much greater 
content sampling and increased test reliability (Frisbie and 
Sweeney, 1982). With regard to the interpretation of MBCA 
scores, it would have been difficult to achieve high internal 
reliability if a substantial fraction of students were guessing. 
In addition, there are several statements, including some 
on questions later in the assessment, with difficulties above 
0.9 or below 0.4, extremes that are statistically unlikely under 
conditions of significant guessing.

Administration Format
Unlike most concept assessments, which target specific top-
ics or courses, the MBCA integrates concepts from multiple 
courses and thus ideally should be administered at the de-
partmental level as students are graduating. Unfortunate-
ly, most biology departments lack suitable mechanisms for 
administering an “exit” assessment. For the development 
process, we elected to administer the assessment through 
specific upper-division courses, because this provided a 
feasible way to reach the appropriate student group. De-
partments interested in assessing students as they leave the 
major will need to develop additional approaches to recruit-
ing students in an unbiased manner, particularly as calls for 
student learning outcomes increase in coming years (Mid-
daugh, 2009).

In addition to recruitment, both assessment delivery 
and student participation incentives must be considered. 
Because the MBCA’s content is not intended to be aligned 
with a particular course, we administered the assessment in 
an online format outside class time. Faculty members gave 
students participation credit as an incentive for completing 
the assessment. However, there was no external incentive 
for students to put forward their best effort. We requested 
that faculty members not award points for correct answers 
for several reasons: 1) this could be considered unfair, since 
the specific MBCA content was not covered in that partic-
ular course; 2) this would likely promote the utilization of 
outside resources (e.g., textbooks or websites) and would 
compromise valid interpretations of student understanding;  
3) this would increase the likelihood that assessment answers 
would be posted to the Internet. While we achieved a 74% 
participation rate under these low-stakes conditions, several 
reports suggest that overall student scores may improve un-
der higher-stakes conditions (Wolf and Smith, 1995; Sundre, 
1999; Wise and DeMars, 2005; Liu et al., 2012). Depending 
on their reasons for the administration, departments should 
consider adopting other incentives, such as rewarding high 
achievement, that may motivate students to perform at a 
higher level.

Future Directions
Student performance on the MBCA also raises further ques-
tions regarding the extent and trajectory of student learning 
during a major. At what point do students learn particular 
concepts, and do they retain these concepts over subsequent 
years? We are currently working with collaborators at the 
University of Maine, Arizona State University, and the Uni-
versity of Washington to develop ways to use assessments 
to monitor learning as students progress through a biology 
major (NSF DUE-1322364). We anticipate that these efforts 
will provide key insights into how student understanding 
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