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Most students have difficulty reasoning about chance events, and misconceptions regarding prob-
ability can persist or even strengthen following traditional instruction. Many biostatistics classes 
sidestep this problem by prioritizing exploratory data analysis over probability. However, prob-
ability itself, in addition to statistics, is essential both to the biology curriculum and to informed 
decision making in daily life. One area in which probability is particularly important is medicine. 
Given the preponderance of pre health students, in addition to more general interest in medicine, 
we capitalized on students’ intrinsic motivation in this area to teach both probability and statistics. 
We use the randomized controlled trial as the centerpiece of the course, because it exemplifies the 
most salient features of the scientific method, and the application of critical thinking to medicine. 
The other two pillars of the course are biomedical applications of Bayes’ theorem and science and 
society content. Backward design from these three overarching aims was used to select appropriate 
probability and statistics content, with a focus on eliciting and countering previously documented 
misconceptions in their medical context. Pretest/posttest assessments using the Quantitative Rea-
soning Quotient and Attitudes Toward Statistics instruments are positive, bucking several negative 
trends previously reported in statistics education.

Article

misconceptions generally persist and can even become 
stronger after instruction (Sundre, 2003; Delmas et al., 2007). 
This can occur not only for traditional instruction, but also 
for more innovative, hands-on approaches (Hodgson, 1996; 
Pfaff and Weinberg, 2009). The stakes are high, because over-
coming these obstacles is essential for achieving numeracy 
to the level necessary for informed decision making in mod-
ern society (Gigerenzer, 2002; Gaissmaier and Gigerenzer, 
2011; Reyna and Brainerd, 2007).

Because both probability and statistics are difficult to teach, 
some have advocated bypassing formal probability in favor 
of early exploratory data analysis (Moore, 1997). A risk of this 
approach is that many students never get up to probability at 
all. This is a problem, because probability is not merely the 
foundation for statistics but is also directly relevant to med-
ical and other decisions that we all must make (Gaissmaier 
and Gigerenzer, 2011). Probability is also important to the bi-
ology curriculum via genetics (Masel, 2012), and so minimiz-
ing probability in a statistics class shifts instructional burden 
to the biology faculty. Given the central importance of un-
derstanding probability in becoming an informed citizen in 
general, as well as to the life sciences in particular, we believe 
that the effort to counter probability misconceptions warrants 
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INTRODUCTION

Most students have difficulty reasoning about chance events 
(Shaughnessy, 1977, 1992). Students arrive in the classroom 
with theories or intuitions about probability that are at odds 
with conventional thinking (see examples in Table 1) and can 
even hold multiple mutually contradictory misconceptions 
about the same situation (Konold, 1995). Unfortunately,  
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more than the brief treatment it often gets as rapid “back-
ground” in a genetics course. For students whose curriculum 
stresses the exploratory data analysis approach, probability 
has become an upper-division mathematics elective, such 
that even the few biology students who take it are unlikely to 
do so before exposure in genetics.

COURSE DESCRIPTION AND DESIGN

Students are intrinsically motivated to learn about med-
icine, providing a great opening to teach probability and 
statistics in a medical context starting earlier in the curric-
ulum. We therefore developed an undergraduate course in 
evidence-based medicine at the University of Arizona as a 
substitute for traditional 200-level biostatistics. It doubles 
as a substitute for either a traditional bioethics course or 
a science and society elective and meets both institutional 
requirements for a “writing-emphasis” course and the min-
imum quantity of reading and writing shown to be associat-
ed with gains on the Collegiate Learning Assessment (Arum 
and Roksa, 2011).

The primary tool of evidence-based medicine is the ran-
domized controlled trial (RCT). We therefore made this the 
centerpiece of the class, making the class as much an exercise 
in the scientific method as it was a course in probability and 
statistics. Instead of teaching a broad diversity of scientific 
methods, we focused on gold-standard RCTs as an ideal par-
adigm for teaching the application of the scientific method 
not just to medicine but also to all messy data, that is, to ev-
eryday life. To reinforce the link to normal life, students read 
an engrossing history of RCTs (Burch, 2009), and all students 
wrote a proposal to perform an RCT. As a capstone, students 
carried out a handful of the proposed RCTs as class projects, 
for example, testing whether texting increases the likelihood 
that volunteers follow through on their commitment to give 
blood (Littin, 2012), whether the digital removal of a Nike 
logo changes the desirability of an article of clothing, or 
whether men can bench-press more when a woman sits on 
their hips (Huynh, 2014, 2015; Innes, 2015). Teaching the sci-
entific method through RCTs is both a goal in and of itself, as 
well as a contextual tool that we hope may help make learn-
ing gains about probability stick.

Hypothesis testing was introduced early in the course, 
starting with two previously developed case studies, slightly 
modified by us for this course. The first, on Ignaz Semmel-
weis and hand-washing (Colyer, 1999), introduced hypoth-
esis testing and the scientific method in a nonquantitative 
setting and prepared the way for contemporary discussions 
of hand-washing and checklists (Gawande, 2007). The sec-
ond, based on Fisher’s original essay on the lady tasting tea 

(Maynard et al., 2009), extended this to bring in more formal 
hypothesis-testing concepts, including the null hypothesis, 
p-values, and the binomial distribution.

Motivated by the goal of understanding RCTs, we used 
backward-design principles to guide our choice of probabil-
ity and statistics content. Discrete data in a 2 × 2 contingency 
table (treatment vs. control, live vs. die) is the obvious way 
to approach a clinical trial. Rather than the traditional Pear-
son’s version of the chi-square test (comparing Σ(O − E)2/E 
with χ2), we taught the likelihood-ratio version (comparing 
G = 2ln [L(data|H1)/L(data|H0)] with χ2) (Howell, 2014), both 
to reinforce learning of probability, and also because, should 
students continue in science, likelihoods appear in most sta-
tistical settings, whereas Pearson’s approach is used only for 
contingency tables. To avoid the trap of a canned technique, 
as Pearson’s test so easily becomes, our teaching of the der-
ivation of the likelihood values required understanding 
the binomial distribution. Understanding of binomial coef-
ficients is in any case needed to understand Fisher’s argu-
ment involving eight-choose-four equally likely options in 
the lady tasting tea. A less mathematically intensive version 
of the course than ours might omit the full binomial distri-
bution and use Pearson’s test instead. In either case, p-val-
ues and type I and type II error rates are central topics, and 
working backward from what was needed, it was clear that 
a basic but firm grounding in probability is key.

To achieve this, we focused on eliciting and then com-
bating known student misconceptions about probability 
(Table 1). We were particularly concerned about the total fail-
ure to grasp stochasticity known as the “outcome orientation” 
(Konold, 1989), an especially strong danger in the medical 
context (Humphrey and Masel, 2014). The goal of students 
with an outcome orientation “in dealing with uncertainty is 
to predict the outcome of a single next trial” (Konold, 1989, 
p. 61). When guessing the outcome of the roll of an irregular 
die, they are happy to call their estimate as right or wrong 
based on a single roll and are remarkably uninterested in 
gathering data on multiple rolls (Konold, 1989). If students 
treat every patient outcome as a unique event, rather than as 
members of a statistical group, they will not be able to grasp 
the power of RCTs (Humphrey and Masel, 2014).

Probability, in its modern philosophical interpretations, 
can mean very different things (Hájek, 2012). Frequentism 
refers to “forward probability”: the probability of seeing par-
ticular data given a state of the world. For example, p-values 
give the probability of seeing data so at odds with the null 
hypothesis, given that the null hypothesis is true. The most 
accessible, classical cases of forward probability focus on 
randomization devices such as dice and cards, for which 
each of a set of outcomes is equally likely. In contrast, Bayes-
ianism focuses on “backward probability”; it is epistemic in 

Table 1.  Common misconceptions about probability

Misconception Reference Example of reasoning according to the misconception

Outcome orientation Konold, 1989 Considering the next 6 rolls of a dice with 5 black sides and one white, the most likely out-
come is 6 rolls of black.

Representativeness 
heuristic

Kahneman et al., 
1982

The sequence of births G B G B B G (G = girl; B = boy) is more likely than the sequence 
B G B B B B.

Equiprobability bias Lecoutre, 1992 When rolling two dice, rolling a 5 and a 6 is equally as likely as rolling two 5s.
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nature, with “probability” describing our degree of confi-
dence in an inference about the state of the world. Rather 
than promoting a single interpretation of probability or 
confusing students by presenting multiple interpretations 
simultaneously, we introduced notions of probability one 
at a time throughout the semester, in historical order. First, 
we worked with dice and playing cards to reinforce classi-
cal probability, trying to counter the outcome orientation by 
forcing students to consider dice rolls as a group. Then we 
did exercises with irregular dice (Bramald, 1994) to combat 
equiprobability bias during the transition from classical to 
frequentist probability. Some students had already encoun-
tered this distinction during K–12 as “theoretical” versus 
“experimental” or “empirical” probability. Here, we ad-
dressed outcome orientation again, stressing that however 
rare an event is, it can still happen, and that frequencies are 
the only way to put a number on this. We used combinator-
ics for both classical and frequentist probabilities, connected 
via the binomial distribution.

We introduced Bayesian probability much later in the 
semester, out of fear that content on subjective probability 
would accidentally reinforce the outcome orientation. Bayes’ 
theorem was taught in the context of medical-screening pro-
grams such as mammography (Gigerenzer, 2002) and Ioan-
nidis’ argument that “most published research findings are 
false” (Ioannidis, 2005). The latter required a strong ground-
ing in type I versus type II errors, built up during work on the 
likelihood ratio test. Conditional probability was introduced 
using real data on breast cancer incidence, with students 
exploring tables of data themselves before receiving formal 
instruction designed to distinguish between prob(A|B) and 
prob(B|A), in this case, prob(die of breast cancer|die young) 
≠ prob(die young|die of breast cancer). Building on this foun-
dation, Bayes’ theorem was then taught using dot diagrams 
and natural frequency trees (Sedlmeier and Gigerenzer, 2001; 
Figure 1) rather than via the equation.

We left out many traditional biostatistics topics, includ-
ing observational statistics. We taught mean, SD, variance, 
and SEM as background to the insight that the effect size 
that a study has adequate power to detect is proportional 
to one divided by the square root of the number of patients. 
But we did not teach correlation as a formal mathematical 
concept, although we did mention it informally when we 
stressed the importance of a randomized intervention as the 
only way to sort out association versus causation. For exam-
ple, we contrasted early observational results that women 

undergoing hormone replacement therapy have better 
health (Grodstein et al., 1996) with later contradictory results 
from randomized trials (Women’s Health Initiative Steering 
Committee, 2004), drawing attention to how socioeconomic 
factors confound the former result but not the latter. Incom-
ing students were all too keen to assert that it is impossible 
to reach conclusions without “controlling for” every con-
ceivable confounding factor; omitting correlation almost 
until the end of the course allowed us to stress the power 
of randomization to remove the need to do this and hence 
distinguish causation from correlation alone.

The basics of randomization turned out to be surprisingly 
hard to teach and required substantial time. We used a previ-
ously developed active-learning exercise in which students 
assign playing cards randomly into two groups (Enders et al., 
2006) and extended this exercise to have students physically 
implement a matched-pair design using playing cards. This 
was later reinforced by an exploration of alternative study 
designs, in particular comparing parallel groups with cross-
over design and with N of 1 designs.

The third pillar of the course, after RCTs and Bayes’ theo-
rem, was science and society. Indeed, topics such as placebo 
effects naturally combine statistical material (regression to the 
mean) with the human aspects of doctors’ and patients’ de-
sires “to please.” Students left the class with the useful take-
home skill of being able to place studies, such as those cited 
above on hormone replacement therapy, on an evidence pyra-
mid (Figure 2), knowing how to locate the highest quality evi-
dence, for example, Cochrane Reviews, and knowing that not 
treating a patient can be a valid medical option for providers. 
Interestingly, the most disturbing content for many students 
came not from fiercely partisan issues such as healthcare sys-
tem design or even from the troubling influence of money 
on medical decision making (Angell, 2005; Fugh-Berman and 
Ahari, 2007), but from challenges to the role of reductionism 
in biomedical science (Horrobin, 2003; Scannell et al., 2012). 
Table 2 outlines the topics covered by our course, and Table 3 
gives the complete list of learning objectives.

Active-learning techniques were used as much as possi-
ble, including dice-rolling whenever possible. In addition 
to the previously published activities cited and otherwise 
described above, we made liberal use of think–pair–share 
interspersed within the 75-min classes. The outlines of these 
active-learning techniques can be followed via the staggered 
presentation of material in the slides in the Supplemen-
tal Material. Complete course materials are also available 

Figure 1.  Use of a natural frequen-
cy tree to implement Bayes’ theo-
rem. For this problem, the informa-
tion given is “About 0.01% of men 
with no known risk factors have 
HIV. HIV+ men test positive 99.9% 
of the time. HIV− men test negative 
99.99% of the time. A man with no 
known risk factors tests positive. 
What is the probability that he has 
HIV?” The two individuals meeting 
the condition of testing positive are 
circled; one of them has HIV, mak-
ing the probability 0.5.
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Table 2.  Course content

Basic probability Statistics/randomized controlled trials Science and society Bayes’ theorem/medical screening

•	 Frequency = the num-
ber of times some-
thing happened ÷ the 
number of times it 
could have happened

•	 Probability = limit 
of frequency given 
a large number of 
“events,” e.g., rolls 
of a multilink cube or 
patients

•	 AND rule for inde-
pendent events, OR 
rule for mutually ex-
clusive events

•	 Coin tosses HH, 
HT, TH, and TT are 
equiprobable, but 2H, 
1H1T, and 2T are not

•	 Binomial distribution

•	 2 × 2 contingency table: treated vs. 
not, live vs. die

•	 Case study on Fisher’s lady tast-
ing tea, illustrating principles of 
experimental design

•	 Likelihood ratio test (using bino-
mial distributions) on 2 × 2 contin-
gency tables

•	 p-values, type I and type II errors/
power

•	 Mean, SD, and SEM
•	 The effect size you have power to 

detect goes with (SD)/sqrt(n)
•	 Statistical vs. clinical significance
•	 Randomized interventions dis-

tinguish between causation and 
correlation

•	 Randomization procedures with 
parallel groups, crossover, split-
body, and cluster study designs

•	 Efficacy and effectiveness
•	 Class projects with randomized 

designs
•	 Regression to the mean
•	 Experimental designs to distin-

guish between different kinds of 
placebo effects

•	 How bias can creep into experi-
mental design, e.g., cherry-pick-
ing outcomes, subgroup analysis

•	 Evidence pyramid

•	 Reading the history book Taking 
the Medicine (Burch, 2009), tracked 
by quizzes and class discussions

•	 Case study on Semmelweis and 
hand-washing

•	 Hand-washing and checklists to-
day

•	 Institutional review board proce-
dures, informed consent

•	 Reductionism in the biomedical 
sciences

•	 Case studies of the history behind 
drug discoveries

•	 Lack of evidence for “chemical im-
balance” theories

•	 Declining cost-effectiveness of 
drug discovery pipeline

•	 Placebo effects, e.g., for antide-
pressant drugs and vertebroplasty

•	 Ethics of placebo use
•	 Insurance and doctor payments 

systems, Affordable Care Act
•	 Essay on “How do you want the 

U.S. healthcare system to work?”
•	 Approval processes for new 

drugs/devices
•	 Drug company marketing strategies

•	 Conditional probability
•	 Prob(die of breast cancer | die 

young) ≠ prob(die young | die 
of breast cancer)

•	 Bayes’ theorem is needed for 
backward prob (hypothesis 
| data), likelihood = forward 
prob(data | hypothesis): when 
to use which

•	 Classical vs. frequentist vs. 
Bayesian definitions of what 
probability means

•	 Low base rates lead to high 
probability that a positive is 
false, e.g., for HIV and mammo-
grams

•	 Lead-time bias and length bias: 
earlier detection tests can per-
form worse

•	 False positives vs. overdiagnosis
•	 Balance sheet of harms vs. ben-

efits for mammograms and how 
to communicate them, e.g., rela-
tive vs. absolute risks

•	 “Why Most Published Research 
Findings Are False” (Ioannidis, 
2005), based on prior probabil-
ities, power, α, publication bias 
and sometimes other biases

Figure 2.  Evidence pyramid. Near 
the end of the course, students are 
exposed to alternatives to RCTs and 
learn to identify the level to which 
a research article belongs and to 
choose the highest level of evidence 
available for a given question. The 
value of meta-analyses vs. large 
single trials is discussed, with pub-
lication bias raising a question mark 
over the order shown here.

upon request. For example, think–pair–share was used for 
numerical questions such as applications of Bayes’ theorem 
via natural frequency trees, for guessing how things work 
in the real world for questions such as which categories of 
medical professionals are most and least likely to adhere to 
hand-washing and checklist regimes, and for open-ended 
experimental design questions such as what are the most 

important factors to control for/match. Role-playing exer-
cises included one in which students decide on the ratio of 
type I: type II errors that they consider a reasonable trade-
off, both for drug main effects and for serious side effects. 
Students then act out the roles of a desperate patient, a drug 
company rep, and an insurance company as each attempts 
to persuade the doctor as to the appropriate ratio.
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compared these overall scores precourse versus postcourse us-
ing repeated-measures ANOVA, but given the coarse-grained 
ordinal nature of the individual Likert items, we analyzed these 
with the nonparametric Wilcoxon signed-rank test. None-
theless, we display mean rather than median changes across 
students in ATS individual item scores precourse versus post-
course; otherwise the changes are sometimes invisible, even 
for statistically significant items. Raw anonymized data and 
scripts for QRQ and ATS analyses are available upon request.

RESULTS AND DISCUSSION

After several years of development, the latest iteration of our 
evidence-based medicine course was taught in Spring 2014 
to 40 students (22 women, at least 15 members of under-
represented minority groups). The only prerequisite to the 
course was a “C” or higher in college algebra or placement 
directly into calculus. In practice, our enrollment consisted of 
one freshman, eight sophomores, 15 juniors, and 15 seniors, 
most of whom had some prior exposure via an introductory 
biostatistics course, genetics course, and/or social science 
research methods course. We were delighted that, from pre-
test to posttest, QRQ increased by 0.63 pretest SDs (p < 0.001; 
Table 4), and the ATS increased by 0.32 pretest SDs (p = 0.002; 
Table 5). Figure 3 shows those QRQ subscores and ATS items 
showing improvement with p < 0.05 and 0.5 < p < 0.1; none 
deteriorated at this level. QRQ subscores that improved in-
cluded distinguishing correlation and causation, a task for 
which statistically significant deteriorations have previously 
been observed (Delmas et al., 2007).

ASSESSMENT METHODS

To assess our success in improving not only context-specific 
qualitative understanding, but also more generalized nu-
meracy, we compared precourse versus postcourse results 
for each student using the Quantitative Reasoning Quotient 
(QRQ) instrument (Sundre, 2003), a refinement of the earlier 
Statistical Reasoning Assessment instrument (Garfield, 1998, 
2003). While many later instruments focus on statistics alone, 
we chose the QRQ, because it also covers probability in a 
multiple-choice format that assesses many conceptions and 
misconceptions simultaneously. Note that, in previous stud-
ies, instruction does not have a good track record of improv-
ing QRQ scores. For example, sophomores who have com-
pleted their 10–12 credit-hour requirement in mathematics 
and sciences do not perform better on the QRQ than those 
who have not (Sundre, 2003). Indeed, it is not uncommon 
for some misconceptions to increase postcourse versus pre-
course (Delmas et al., 2007).

We simultaneously surveyed students’ Attitudes Towards 
Statistics (ATS; Wise, 1985), precourse and postcourse. Pre-
vious research with this and related instruments has found 
that students’ positive attitudes coming into a statistics 
course predicts their eventual performance in such a course 
and that attitudes improve only marginally following in-
struction (Elmore, 1993; Shultz and Koshino, 1998) or can 
even deteriorate (Schau and Emmioglu, 2012).

We compared overall correct score and individual QRQ sub-
scores precourse versus postcourse using repeated-measures 
analysis of variance (ANOVA). For the ATS, we summed to-
tal positive attitude scores from the 29 ATS Likert items and 

Table 3.  Course learning objectives are for students to

•	 Recognize opportunities for gaining knowledge via randomized trials in familiar contexts within your daily life
•	 Recognize the temptations to, and dangers of, not using randomized trials, including in contexts you have not seen before
•	 Understand why randomization removes the need to “control” for everything in an experiment
•	 Understand how a randomized intervention solves the problem of distinguishing between correlation and causation
•	 Calculate probabilities and frequencies, using tools that include the “AND” and “OR” rules, the binomial distribution, and Bayes’ theorem
•	 Use the most appropriate interpretation of probability (classical, frequentist, and Bayesian) depending on the task
•	 Distinguish between prob(A | B) and prob(B | A) and choose the correct one for any question
•	 Identify null and alternative hypotheses in novel situations
•	 Explain and justify the philosophy of a null hypothesis and a p-value
•	 Identify type I and type II errors (false positives and false negatives), including in contexts you have not seen before
•	 Calculate mean, variance, SD, the SEM, and the SE of the difference between two means, and relate these quantities to power and to each 

other
•	 Analyze alternative study designs (e.g., parallel, crossover, N of 1, matched, cluster) according to their feasibility, power, and intent (e.g., 

effectiveness vs. efficacy), and design optimal experiments for a given circumstance
•	 Test hypotheses using a log-likelihood test for discrete data and the direct application of the binomial distribution (Fisher’s lady tasting 

tea) for discrete data, also having some familiarity with the t-test for continuous data
•	 Critique our current systems of healthcare and biomedical research, including the roles of reductionism, the Food and Drug Administra-

tion, the drug companies, and payment/insurance systems
•	 Understand the pipeline of drug discovery and approval
•	 Evaluate biomedical ethical regulations, norms, and decision-making processes
•	 Compare, contrast, and critique the different ways to communicate statistics (relative risk reduction, absolute risk reduction, number 

needed to treat, and increase in life expectancy)
•	 Apply Bayes’ theorem to clinical screening programs such as mammography
•	 Develop correct intuitions about the importance of different factors on Bayes’ theorem and power calculations
•	 Analyze how lead-time bias and length bias affect screening programs such as mammography
•	 Distinguish between false positives and overdiagnosis
•	 Evaluate the appropriateness of screening decisions based both on available data and on patient values
•	 Identify multiple placebo effects in medicine (including regression to the mean) and design experiments to control for/investigate them
•	 Evaluate the reliability of biomedical findings using the evidence-based pyramid, taking into account factors including publication bias 

and reproducibility
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QRQ; both p > 0.35). This indicates despite the diversity 
in ability and attitudes present in a class with as few pre
requisites as ours, initially strong or positive students were 
not systematically more or less likely to benefit from instruc-
tion than weaker or more negative students.

Despite the small class size, the assessment evidence sug-
gests that the course was a spectacular success, especially 
relative to the somewhat dismal history of probability and 
statistics education. Note that it aligns well with many calls 
for change (Table 6). We believe it to be far superior to the 
standard biostatistics curriculum in preparing students for 
real-world decision making, which benefits from a critical 
evaluation of (and perhaps even generation of) evidence. 
Indeed, we have heard a number of promising anecdotes 
about former students applying knowledge from their class, 
both as patients and as medical workers, in ways that af-
fected medical care choices.

We have begun developing a new hybrid (50% online 50% 
face-to-face) version of the course, taught for the first time 
in Spring 2015 to 29 students. This move was motivated pri-
marily by pedagogical concerns; our quantitative material 
is highly cumulative in nature, inevitably leaving some stu-
dents behind in face-to-face classes. When material is give 
online, students have more ability to set their own pace, and 
interspersing content with frequent autograded quizzes can 

Previous research suggests that QRQ-like scores correlate 
negatively with effort-based course grades (explaining previ-
ously noted gender biases) and only weakly positively with 
other graded items (Tempelaar et al., 2006). Results for our 
course were different: posttest QRQ correlations (Pearson’s 
r) with both course grades as a whole and with our final 
closed-book exam (included in the Supplemental Materials) 
were high at 0.5, and even correlations on more effort-based 
items such as homework problem sets (as found in the Sup-
plemental Materials) were 0.38. Pretest QRQ correlations 
with final course grade, final exam, and effort-based content 
were similarly high. This demonstrates that our course as-
sessments are well aligned with the widely endorsed learning 
objectives of the QRQ (Sundre, 2003). This is despite the fact  
that course assessments, for example, the two final exams 
included as Supplemental Materials, differ substantially in 
content from the QRQ, testing course-specific information 
in addition to general quantitative reasoning skills. ATS 
pre- and posttests also predicted course performance, in 
line with previous studies on attitudes using both the ATS 
(Waters et al., 1988; Vanhoof et al., 2006) and similar instru-
ments (Emmioglu and Capa-Aydin, 2012) in other statistics 
classes. Changes in attitudes and quantitative reasoning re-
flected in the ATS and QRQ were not significantly correlated 
with pretest scores (Pearson’s r = –0.18 for ATS; –0.19 for 

Table 4.  Precourse, postcourse, and changes in QRQ total and subscores

Category Category text
Pretest 
meana

Pretest  
SD

Posttest 
meana

Posttest  
SD

Mean  
difference p

Overall — 58.95 9.9 65.15 12.28 6.2 (± 2.93) <0.001
Competencies Correctly interprets probabilities 2.55 1.4 2.85 1.46 0.30 (± 0.44) 0.183

Correctly interprets measures of central tendency 3.74 0.79 3.89 0.75 0.14 (± 0.25) 0.263
Understands how to select an appropriate average 2.4 0.9 2.67 0.99 0.27 (± 0.35) 0.132
Correctly computes probability 2.78 1.1 2.48 1.13 −0.30 (± 0.5) 0.239
Understands independence 3.83 1.21 4.23 1.02 0.40 (± 0.43) 0.073
Understands sampling variability 2.56 0.79 3.33 0.83 0.77 (± 0.28) <0.001
Distinguishes between correlation and causation 3.57 1.22 4.03 1.31 0.47 (± 0.38) 0.018
Correctly interprets two-way tables 3.1 1.81 3.2 1.8 0.10 (± 0.82) 0.809
Understands importance of large samples 3.15 1.66 3.85 1.49 0.70 (± 0.68) 0.046
Understands sources of bias and error 3.94 0.86 4.26 0.84 0.32 (± 0.31) 0.044
Recognizes features of good experimental design 3.73 1.11 3.58 1.24 −0.15 (± 0.41) 0.467

Misconceptions Misconceptions involving averages 2.54 0.7 2.2 0.66 −0.34 (± 0.28) 0.018
Outcome orientation misconception 1.53 0.37 1.39 0.35 −0.14 (± 0.14) 0.048
Good samples have to represent a high percentage of the 

population
2.5 1.28 2.43 1.34 −0.08 (± 0.47) 0.752

Law of small numbers 2.05 1.2 1.6 0.93 −0.45 (± 0.49) 0.071
Representativeness misconception 1.93 0.89 1.6 0.77 −0.33 (± 0.29) 0.025
Correlation implies causation 2.43 1.22 1.97 1.31 −0.47 (± 0.38) 0.018
Equiprobability bias 3.25 1.39 3.43 1.34 0.18 (± 0.6) 0.562
Groups can only be compared if they are the same size 2.1 1.8 2.5 1.96 0.40 (± 0.75) 0.291
Failure to distinguish the difference between a sample and 

a population
2 1.01 1.75 0.98 −0.25 (± 0.38) 0.200

Failure to consider and evaluate all of the data 1.25 0.5 1.23 0.53 −0.03 (± 0.18) 0.785
Inability to create and evaluate fractions or percents 1.4 0.41 1.5 0.51 0.10 (± 0.19) 0.291
Only large effects can be considered meaningful 2 1.76 1.7 1.54 −0.30 (± 0.66) 0.372
Failure to recognize potential sources of bias and error 1.97 0.81 1.63 0.72 −0.33 (± 0.27) 0.018
Assumes more decimal places indicate greater accuracy 1.1 0.64 1.2 0.88 0.10 (± 0.35) 0.570
Inability to interpret probabilities 1.3 0.27 1.26 0.25 −0.04 (± 0.09) 0.418

aOverall score scaled to 0–100%; individual scores scaled to 1–5 Likert-like scale. Error on mean differences is ± 2 × SEM of paired post- vs. 
pretest differences.
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and ATS scores each showed improvements of 0.28 pretest 
SDs (p = 0.046 for QRQ; p = 0.077 for ATS; Supplemental Ta-
bles 1 and 2). These effect sizes are on the whole (nonstatis-
tically significantly) smaller, around half the size of the fully 
face-to-face class discussed at length above. When data from 
both years were combined, effect sizes for both QRQ and 
ATS overall scores were intermediate and remained statisti-
cally significant (0.46 and 0.42 pretest SDs for QRQ and ATS, 
respectively; both p < 0.001; Supplemental Tables 3 and 4).

Note that while there is a strong correlation between sub-
score effect sizes across the two semesters for QRQ (Pearson’s 
r = 0.55, p < 0.001), the best- and worst-performing subscores 
in Table 4 nevertheless regress to the mean in Supplemental 
Tables 1 and 2, a fact that acts as a caution against the over-
interpretation of outlier subscores. Nevertheless, the added 
power afforded by combining results from both years in-
creased the number of individual subscore items showing 
a change with p < 0.05 (Supplemental Table 3). A consistent 

provide additional help through greater formative assess-
ment and learning through testing (Brown et al., 2014). We 
have developed two new online apps as part of the online 
materials, one on confirmation bias (http://bias.oia.arizona 
.edu/index.html) and one on the mathematics of power 
(http://power.oia.arizona.edu/index.html). The power app 
was designed to be used to illustrate how the effect size that 
a study has power to detect depends on the SD among pa-
tients divided by the square root of the number of patients. 
Customizable options (at http://bias.oia.arizona.edu/ 
options.html and http://power.oia.arizona.edu/options 
.html for confirmation bias and power, respectively) allow the 
staged introduction of elements of the apps.

We hope these changes will lead to learning gains in a 
higher proportion of the class. QRQ and ATS scores for our 
first offering of the hybrid version (Spring 2015) are shown 
in Supplemental Tables 1 and 2, and pooled data across both 
semesters is shown in Supplemental Tables 3 and 4. QRQ 

Table 5.  Precourse, postcourse, and changes in ATS total and individual items

Category
Pretest  
meana

Pretest  
SD

Posttest  
meana

Posttest  
SD

Mean  
difference p

Overall attitude 63.71 10.35 69.50 12.57 5.78 (± 3.64) 0.002
I feel that statistics will be useful to me in my profession 3.85 0.93 4.18 0.97 0.33 (± 0.34) 0.037
The thought of being enrolled in a statistics course makes me nervous 3 1 3.08 1.11 0.08 (± 0.33) 0.656
A good researcher must have training in statistics 3.95 0.86 4.56 0.55 0.62 (± 0.3) 0.001
Statistics seems very mysterious to me 3.31 0.92 3.54 0.85 0.23 (± 0.33) 0.214
Most people would benefit from taking a statistics course 3.64 0.71 4 0.69 0.36 (± 0.23) 0.005
I have difficulty seeing how statistics relates to my field of study 3.79 0.92 4.05 1 0.26 (± 0.32) 0.106
I see being enrolled in a statistics course as a very unpleasant experience 3.05 0.96 3.55 0.92 0.50 (± 0.38) 0.014
I would like to continue my statistical training in an advanced course 2.56 0.72 2.92 1.09 0.36 (± 0.32) 0.031
Statistics will be useful to me in comparing the relative merits of different 

objects, methods, programs, etc.
3.82 0.6 3.95 0.79 0.13 (± 0.3) 0.414

Statistics is not really very useful, because it tells us what we already know 
anyway

4.03 0.67 4.31 0.69 0.28 (± 0.24) 0.029

Statistical training is relevant to my performance in my field of study 3.66 0.88 4.05 0.8 0.39 (± 0.23) 0.003
I wish that I could have avoided taking my statistics course 3.13 1.08 3.59 1.14 0.46 (± 0.38) 0.023
Statistics is a worthwhile part of my professional training 3.66 0.71 3.92 0.78 0.26 (± 0.24) 0.043
Statistics is too math oriented to be of much use to me in the future 3.97 0.74 4.1 0.94 0.13 (± 0.28) 0.386
I get upset at the thought of enrolling in another statistics course 3.08 1.02 3.32 1.16 0.24 (± 0.4) 0.238
Statistical analysis is best left to the “experts” and should not be part of a lay 

professional's job
3.76 0.85 3.82 0.69 0.05 (± 0.29) 0.721

Statistics is an inseparable aspect of scientific research 4.03 0.79 4.08 0.91 0.05 (± 0.26) 0.721
I feel intimidated when I have to deal with mathematical formulas 3.13 1.04 3.42 1.15 0.29 (± 0.32) 0.100
I am excited at the prospect of actually using statistics in my job 2.76 0.86 3.14 1.03 0.38 (± 0.39) 0.072
Studying statistics is a waste of time 4.16 0.68 4.24 0.88 0.08 (± 0.27) 0.607
My statistical training will help me better understand the research being done in 

my field of study
3.92 0.78 4.05 0.84 0.13 (± 0.2) 0.212

One becomes a more effective “consumer” of research findings if one has some 
training in statistics

3.84 0.59 4.08 0.82 0.24 (± 0.32) 0.166

Training in statistics makes for a more well-rounded professional experience 3.92 0.43 4.05 0.77 0.13 (± 0.27) 0.374
Statistical thinking can play a useful role in everyday life 3.68 0.62 3.92 0.85 0.24 (± 0.27) 0.100
Dealing with numbers makes me uneasy 3.58 1 3.74 1.06 0.16 (± 0.25) 0.228
I feel that statistics should be required early in one's professional training 3.26 0.6 3.63 0.79 0.37 (± 0.27) 0.014
Statistics is too complicated for me to use effectively 3.63 0.82 3.74 1 0.11 (± 0.32) 0.597
Statistical training is not really useful for most professionals 3.68 0.77 3.89 0.8 0.21 (± 0.26) 0.120
Statistical thinking will one day be as necessary for efficient citizenship as the 

ability to read and write
2.68 0.84 2.53 0.89 –0.16 (± 0.3) 0.313

aOverall scores scaled to 0–100%; individual scores reflect 1–5 Likert scale. Scores for all items oriented to reflect 1–5 negative-to-positive 
transition, with 3 being neutral. Error on mean differences are ± 2 × SEM of paired post-vs. pretest differences. p-values for individual items 
were obtained from nonparametric paired Wilcoxon signed-rank tests and for overall attitudes by repeated-measures ANOVA.
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associated with the transition to online instruction, and we 
hope to see learning gains improve over the coming years as 
the online materials are refined in the light of the abundant 
data that online instruction generates. If and when the online 
hybrid version outperforms the original, a second benefit of 
the new format is to make it easy to disseminate; its writ-
ing-intensive nature can be preserved if a high faculty–stu-
dent ratio is available, or a simplified version should work 
for larger classes, helping meet high demand. In the mean-
time, extensive and up-to-date course materials beyond the 
Supplemental Materials are available on request.

underperformer across both semesters was equiprobability 
bias, which we intend to target more actively next time. Simi-
larly, while overall ATS improvements were seen in each year, 
when both were combined, the effect sizes of individual ATS 
items were entirely uncorrelated between years (Pearson’s r = 
10−5). This reinforces the caution that individual attitude items 
are likely uninformative, even though the overall effect sizes 
may indicate a more general and positive shift in attitudes.

While not definitively worse, clearly the hybrid version 
is not outperforming the face-to-face version at this time. 
We note that there were the inevitable teething problems 

Table 6.  The course addresses calls for change

Challenge addressed Document Reference Specific competencies covered by our course

Four out of six core 
competencies

Vision and Change in 
Undergraduate Biology 
Education: A Call to 
Action

American Association 
for the Advance-
ment of Science, 
2011

Ability to apply the process of science
Ability to use quantitative reasoning
Ability to tap into the interdisciplinary nature of science
Ability to understand the relationship between science  

and society

Two of the eight 
competencies

Scientific Foundations for 
Future Physicians

Association of 
American Medical 
Colleges–Howard 
Hughes Medical 
Institute, 2009

Apply quantitative reasoning and appropriate mathematics 
to describe or explain phenomena in the natural world

Demonstrate understanding of the process of scientific  
inquiry and explain how scientific knowledge is 
discovered and validated

New MCAT 
requirements

— Schwartzstein et al., 
2013

Psychological, Social, and Biological Foundations of Behavior
Critical Analysis and Reasoning Skills

Integrate ethics with 
scientific content

— Cech, 2014 —

Figure 3.  We observed postcourse vs. 
precourse (a) overall improvements and 
improvements in some (b) QRQ subscores 
and (c) ATS item scores for our Spring 
2014 course offering. The ATS is a 1–5 
Likert scale, and QRQ scores are arbitrari-
ly scaled to match. Negatively phrased 
ATS questions are shown with scores in 
reverse direction such that higher scores 
indicate more positive attitudes across all 
items; an attitude score of 3 is “neutral.” 
Because analysis is of paired measures, 
95% confidence intervals (red) are shown 
once for the precourse vs. postcourse dif-
ferences rather than separately for pre-
course and for postcourse scores.
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