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Integration of inquiry-based approaches into curriculum is transforming the way science is taught 
and studied in undergraduate classrooms. Incorporating quantitative reasoning and mathematical 
skills into authentic biology undergraduate research projects has been shown to benefit students in 
developing various skills necessary for future scientists and to attract students to science, technol-
ogy, engineering, and mathematics disciplines. While large-scale data analysis became an essential 
part of modern biological research, students have few opportunities to engage in analysis of large 
biological data sets. RNA-seq analysis, a tool that allows precise measurement of the level of gene 
expression for all genes in a genome, revolutionized molecular biology and provides ample oppor-
tunities for engaging students in authentic research. We developed, implemented, and assessed a 
series of authentic research laboratory exercises incorporating a large data RNA-seq analysis into an 
introductory undergraduate classroom. Our laboratory series is focused on analyzing gene expres-
sion changes in response to abiotic stress in maize seedlings; however, it could be easily adapted to 
the analysis of any other biological system with available RNA-seq data. Objective and subjective 
assessment of student learning demonstrated gains in understanding important biological concepts 
and in skills related to the process of science.
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approaches, especially in their laboratory courses (Sundberg 
et  al., 2005; Ruiz-Primo et  al., 2011). Authentic undergrad-
uate research experiences have been repeatedly shown to 
benefit students in a variety of ways, leading them to learn 
to think like a scientist, find research exciting, and pursue 
graduate education or careers in science (Lopatto et al., 2008, 
2014; Thiry and Laursen, 2011). Moving from guided-in-
quiry toward research-based laboratory approaches in in-
troductory undergraduate science courses has been shown 
to keep students interested in science and to prepare them 
for future careers (Weaver et al., 2008). Several national proj-
ects working to advance course-based research experiences 
have been successful in providing students with high-im-
pact learning experiences in biology research (Hanauer et al., 
2006; Campbell et al., 2007; Ditty et al., 2010; Laursen et al., 
2010; Shaffer et al., 2010). The Course-based Undergraduate 
Research Network (CUREnet) provides support and helps 
foster collaboration among faculty interested in incorporat-
ing research experiences into their classrooms (Auchincloss 
et al., 2014). In addition, tools have been developed that al-
low assessment of student learning as a result of research 
experiences in individual courses and comparison of indi-
vidual courses with other courses with embedded research 
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INTRODUCTION

Integration of inquiry-based approaches into curriculum is 
transforming the way science is taught and studied in un-
dergraduate classrooms (National Research Council [NRC], 
2003; American Association for the Advancement of Science 
[AAAS], 2011). Reviews of novel curricular approaches in 
undergraduate science courses suggest that teaching prac-
tices are consistently changing in the direction of inquiry, 
with greater than 80% of the institutions using inquiry-based 
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experiences (Lopatto et al., 2008, 2014). Despite these prom-
ising trends, a recent survey of inquiry-based teaching in 
biology laboratory courses found that greater than 75% of 
inquiry-based laboratory studies were guided-inquiry exer-
cises rather than research experiences embedded in a course 
(Beck et al., 2014; Spell et al., 2014). Research experiences pro-
vide students with a higher degree of independence in de-
fining the research question and approaches to data analysis. 
Also, unlike in guided-inquiry exercises, the outcomes of the 
research are not known and hold the potential for generat-
ing new scientific knowledge (Weaver et  al., 2008). Greater 
than 75% of research experiences embedded in a course were 
targeted toward upper-level biology students rather than 
students in introductory courses (Beck et  al., 2014). Thus, 
development and integration of research experiences into 
introductory biology courses remains an important target in 
teaching science at the undergraduate level.

The recent explosion of big data in various fields of sci-
ence, including biology, has led to high demand for integra-
tion of big data analysis with computational and quantita-
tive thinking into the skill set required of graduates. “Data 
scientists” have been described as having the “sexiest job 
of the 21st century” (Davenport and Patil, 2012). However, 
many biology graduates lack sufficient skills in mathemati-
cal and quantitative reasoning, analysis and visualization of 
big data, and cross-disciplinary approaches required to solve 
complex biological problems (Feser et al., 2013; Magana et al., 
2014). Hence, it is vital to develop effective educational ap-
proaches and strategies for improving students’ mathemat-
ical reasoning in solving biological problems (Hester et al., 
2014), including students’ skills in analyzing large biological 
data sets. Approaches to integrating bioinformatics analysis 
to the curriculum target primarily DNA sequence analysis 
through BLAST and other National Center for Biotechnology 
Information (NCBI) tools and primary literature research 
through PubMed, and are focused primarily on analysis of 
single genes/proteins and gene families as opposed to large-
scale genomics data interpretations (Magana et al., 2014).

Most successful implementations of bioinformatics and ge-
nomics course modules are built around important biological 
concepts and are aimed at enhancing student understanding 
of these concepts (Magana et  al., 2014). One of the central 
biological concepts is the regulation of gene expression in 
response to changes in the environment or through various 
developmental stages. Large-scale gene expression analysis 
using microarrays was recently implemented in several dif-
ferent projects and was proven to be a powerful education 
tool targeting important and widely applicable biological 
concepts (Campbell et  al., 2007). RNA-seq analysis, a tech-
nique used to quantify the amount of RNA transcribed from 
each gene of an organism, has become a prevalent method 
for researchers investigating regulation of gene expression in 
a variety of biological systems. It could serve as a great tool to 
help students understand the principles of gene expression 
regulation. Even though producing RNA-seq data sets re-
mains a relatively expensive endeavor for many institutions, 
numerous RNA-seq data sets collected in various systems are 
freely available through the Sequence Read Archive (SRA) of 
NCBI and could be mined to answer a variety of biologically 
relevant questions (www.ncbi.nlm.nih.gov/Traces/sra). 
Most of the bioinformatics packages researchers use to an-
alyze RNA-seq data are also openly available and could be 

used by undergraduate student researchers. The availability 
of nearly unlimited RNA-seq data and access to powerful 
bioinformatics analyses from shared servers offer students 
the opportunity to develop into scientists while enrolled in 
undergraduate biology courses (Micklos et al., 2011). How-
ever, integration of RNA-seq analysis into the undergrad-
uate curriculum is complicated by the steep learning curve 
the educators themselves encounter. The Genome Consor-
tium for Active Teaching using Next-Generation Sequencing 
and the DNA Learning Center offer workshops that aim at 
helping educators gain necessary experience in the RNA-seq 
analysis and develop educational tools for their students 
(Buonaccorsi et  al., 2011, 2014). The DNA Learning Center 
in collaboration with iPlant (Goff et  al., 2011) developed a 
Green Line of the DNA Subway, a tool aimed at providing 
students with the opportunities to conduct research-grade 
RNA-seq analysis (http://dnasubway.iplantcollaborative 
.org). However, educational resources on RNA-seq analysis, 
including instructional materials and data analysis protocols 
that could be readily integrated into the classroom, are lim-
ited. Development and assessment of such resources is re-
quired to fully harness the potential of using RNA-seq anal-
ysis in the undergraduate classroom.

We present here a series of authentic research laboratory 
exercises incorporating a large data RNA-seq analysis into 
an introductory undergraduate classroom. During this labo-
ratory module, students work on a real research project, an-
alyzing novel data and potentially contributing to a pool of 
scientific knowledge. Our laboratory series is focused on an-
alyzing gene expression changes in response to abiotic stress 
in maize seedlings. However, it could be easily adapted to 
any other RNA-seq data set. Objective and subjective assess-
ment of student learning demonstrated gains in understand-
ing important biological concepts and in skills related to the 
process of science.

METHODS

Learning Objectives and Outcomes
After completing the lab module, the students should be able 
to 1) explain the concepts of gene expression and transcrip-
tional response of organisms to stress; 2) discuss the prin-
ciples of RNA-seq data analysis; 3) ask scientific questions 
relevant to RNA-seq data analysis and identify approaches 
to answer these questions; 4) perform basic RNA-seq data 
analysis using the Green Line of the DNA Subway and DE-
Seq of the R software package to assess the quality of the 
data and to identify genes differentially expressed between 
two samples; and 5) construct several types of graphs to vi-
sualize RNA-seq data.

Course Description and Student Demographics
The laboratory series on understanding plant response to 
abiotic stress using RNA-seq analysis was implemented as 
three 3-h laboratory periods (see Table 1, Figure 1, and the 
Supplemental Material for the details). It was conducted 
in 2014 during weeks 11–13 of Principles of Genetics, an 
introductory sophomore-level genetics course with 85 stu-
dents, and in 2015 during weeks 10–12 of Applied Biotech-
nology, an upper-level elective course with eight students. 
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The laboratory series on understanding transcriptional 
response to abiotic stress was conducted as a part of the 
lab component of both courses. Students worked in groups 
of two to four. In addition, six undergraduate research 
students working during Summer 2014 and Spring 2015 
completed this module as part of their training for RNA-
seq data analysis. Overall, 38% of the student participants 
were male; 17% of the students self-identified as African 
American, Asian American (Hmong), Hispanic, or multi-
racial, while 83% of the students self-identified as white. 
Principles of Genetics is a required course for students 
majoring in biology (∼60% of the students) and students 
majoring in exercise science (∼30% of the students), as well 
as for students of other majors seeking a forensic science 
certificate. Students majoring in biology usually take this 
course after taking ecology and evolution and physiolo-
gy courses, although it is not unusual for the students to 
take genetics and ecology and evolution simultaneously. 
Genetics is the first course of the biology sequence in which 
genetics concepts, including gene expression, are covered. 
For many students who are not majoring in biology, ge-
netics is their first biology course. Therefore, Principles of 
Genetics is considered an introductory biology course in 
our program. All of the Applied Biotechnology students 
and research students were biology majors. In all of the 
instances of the course implementation, most students 
(96%) did not have prior experience with large-scale data 
analysis, and none of the students had previous experience 
with RNA-seq data analysis, as was assessed using a pre-
course survey (Supplemental Material). The overwhelm-
ing majority of the students had no experience in using R 
or other computational approaches to data analysis and 
data visualization (Figure 2). When understanding of the 
concepts of gene expression regulation was assessed in the 
beginning of the course, the scores of individual students 

Table 1. Activities implemented as a part of lab series on RNA-seq data analysis

Activities Assessment

Worksheet 1. Transcriptional Response to Cold Stress: Primary Literature Analysis and Developing Testable Hypotheses

Observation and description: phenotypic effects of abiotic stress
Primary literature analysis: effects of abiotic stress on gene expression in plants
Formulating hypotheses/predictions: number and types of genes affected by the stress and 

variation in response to different stress and between different genotypes

Worksheet 1 (completeness and effort, 
feedback), lab report

Worksheet 2. RNA-seq Analysis: Principles
Concept discussion: classes of RNA molecules, similarities and differences
Knowledge building: principles of RNA-seq analysis, creating libraries, and sequencing

Worksheet 2 (completeness and effort, 
feedback), lab report

Worksheet 3. RNA-seq Analysis: Data Quality and Initial Analysis
Understanding sequence read files (FastQ): how do my data look like?
Initial data analysis: data quality control using Green Line of the DNA Subway
Analogy and exercise: principles of mapping and counting RNA-seq reads

Worksheet 3 (completeness and effort, 
feedback), lab report

Worksheet 4. Data Analysis: Finding Differentially Expressed Genes
DE-Seq analysis: finding differentially expressed (DE) genes
Formulating questions, choosing approaches to data visualization
Data visualization and analysis

Lists of DE genes, summary tables, lab 
report

Worksheet 5. Data Visualization: Common Types of Graphs Used to Show RNA-seq Data

Student presentations and discussion, 
worksheet 5, lab report

Exploring various approaches to RNA-seq data graphical visualization
Data visualization and analysis
Sharing the results with other groups, discussion of data and graphs

consistently fluctuated at around 25–35% (Tables 2 and 3). 
In Principles of Genetics, the concepts of gene expression 
regulation were covered in lectures/course discussions be-
fore the laboratory series on RNA-seq data analysis, and 
the posttest therefore likely reflects the learning gains due 
to both lecture and lab portions of the course. Students in 
Applied Biotechnology and research students scored sig-
nificantly higher on the pretest compared with students in 
Principles of Genetics, likely suggesting the level of knowl-
edge retained from the previously taken course in genet-
ics that did not include RNA-seq data analysis. In Applied 
Biotechnology, the concepts of gene expression regulation 
were only discussed during the lab.

Lab Implementation
The workflow of the RNA-seq analysis and activities per-
formed by the students are shown in Figure 1. The complete 
list of student activities and associated assessment tools are 
shown in Table 1. All of the teaching materials are accessible 
under the Supplemental Materials.

Week 1. Students completed three worksheets aimed at 
understanding the experimental system and an RNA-seq 
approach to investigating gene expression. They also de-
veloped interesting experimental questions and testable 
hypotheses related to the effects of abiotic stress on gene ex-
pression.

Worksheet 1: Transcriptional Response to Cold Stress: Primary 
Literature Analysis and Developing Testable Hypotheses. Stu-
dents observed and described phenotypic effects of cold and 
heat stress on maize seedlings. They also conducted primary 
literature searches and briefly summarized two manuscripts 
describing the effects of exposure to abiotic stress in any plant 
system. Students were asked to use available information to 
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and sequencing by synthesis. Using many available resources, 
including the Internet, textbooks, and help from the instruc-
tor, students constructed the schematic representation of the 
RNA-seq experimental flow and briefly described it in their 
own words.

Worksheet 3: RNA-seq Analysis: Data Quality and Initial 
Analysis. Students analyzed sample FastQ files, the output 
of RNA-seq experiments, to understand the format and con-
tent of the data produced by RNA-seq. Students also used 
the Green Line of the DNA Subway portal developed by the 
iPlant Collaborative (Goff et  al., 2011; http://dnasubway 
.iplantcollaborative.org) to perform an initial analysis of the 
data quality for all abiotic stress maize samples (instruc-
tor-created public project “Maize Abiotic Stress”). Addi-
tionally, they discussed the ways data quality is graphically 
visualized in the DNA Subway software. Finally, students 
completed a short exercise demonstrating the principles of 
following steps of the RNA-seq analysis: mapping short 
reads back to the genome and read counting and normal-
ization. We chose to work with the Green Line of DNA 
Subway, because it provides the intuitive platform for con-
ducting some of the analysis, essential for students who lack 
computer programming skills and for a lab environment in 
which computer power and time are limited. An instruc-
tor-created public project (“Maize Abiotic Stress,” DNA 
Subway Green Line), which students could access from their 
computers, pre-ran quality-control analysis (Supplemental 
Figure 1; FastQC; http://dnasubway.iplantcollaborative 
.org). Although the DNA Subway Green Line allows the 
complete workflow of the RNA-seq analysis (Tuxedo pro-
tocol) to be conducted, many of the analysis steps take a 

predict the proportion and function of genes expected to re-
spond to abiotic stress conditions in maize seedlings and to 
compare transcriptome response between different abiotic 
stresses (cold and heat) and in plants from different genetic 
backgrounds (B73 and Mo17). After a discussion of the major 
concepts of environmental effects on gene expression and an 
introduction of the RNA-seq data set, students formulated 
hypotheses regarding gene expression changes that could be 
answered using this data set.

Worksheet 2: RNA-seq Analysis: Principles. Students dis-
cussed the similarities and differences of major classes of RNA 
molecules and the means of separating mRNA from other 
RNA types and converting mRNA to DNA. They also in-
vestigated general approaches of Illumina RNA sequencing: 
fragmentation, adaptor ligation, indexing and multiplexing, 

Figure 1. The flow of an RNA-seq experiment. The steps shown in 
blue were performed by students. Students completed learning ex-
ercises only for the steps shown in green.

Figure 2. Students’ prior exposure to the data analysis approaches 
used in the lab. During the first week of class, students were asked 
to rank their prior experience to gene expression analysis, analysis 
of large data sets, and using R or other programming tools in data 
analysis and data visualization. Data shown are for 85 students in a 
genetics course who completed this survey in 2014. The actual num-
ber of students is designated for each answer choice.
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two genotypes generated by the instructor (see Data Set 1 
in the Supplemental Material). The students identified ques-
tions of interest and created lists of differentially expressed 
genes for conditions relevant to their questions. They also 
discussed several approaches to visualizing RNA-seq data 
and used these approaches to answer the questions generat-
ed during the previous steps. Students informally presented 
their work to peers and the instructor to receive feedback 
and solve problems during the analysis.

Worksheet 4: Data Analysis: Finding Differentially Expressed 
Genes. This worksheet guides students through DE-Seq anal-
ysis in R statistical analysis software (Anders and Huber, 
2010) and provides necessary explanations of the steps in-
volved. Students performed data normalization and statis-
tical analysis of differentially expressed genes and filtered 
their results based on the significance level, fold difference 
of expression levels, and the minimal expression level in 
one or several samples (see Data Set 2 in the Supplemental 
Material for an example of a DE-Seq output file). The whole 
class engaged in the discussion of criteria that should be 
used to identify genes as differentially expressed. The stu-
dents discussed and chose the questions they would like to 
address and approaches to data visualization and analysis 
that could be used to answer their questions.

Worksheet 5: Data Visualization: Common Types of Graphs 
Used to Show RNA-seq Data.This worksheet aims at intro-
ducing students to various types of graphical representa-
tion of the RNA-seq data, such as scatter plots, histograms, 
kernel-density plots, heat maps, Venn diagrams, and ge-
nome views. It uses examples of figures from published 
RNA-seq studies and asks students to interpret these 
graphs. In addition to worksheet 5, students used a docu-
ment, “How to Make Graphs in R” (see the Supplemental 
Material), to guide them through building graphs for visu-
alizing their data.

Lab Assessment
Students’ experience of engaging with large-scale data 
analysis, gene expression, and RNA-seq analysis, as well 
as using R and other computational tools for analysis of 
biological data sets, was assessed during the first week of 
the course using a short survey (Supplemental Material). 
Students’ learning was assessed with a content assessment 
test, a set of 22 multiple-choice questions targeting general 
concepts of eukaryotic gene expression regulation as well as 
the principles of RNA-seq analysis and data visualization 
and interpretation (Table 2 and Supplemental Material). To 
assess student learning gains, we used the same test as a 
pretest and a posttest. Student scores were used to calcu-
late normalized learning gains (Hake, 1998), a metric that 
takes into account differences in student knowledge and 
measures the fraction of the available improvement that can 
be gained. In addition, students were asked to complete a 
CURE survey (Lopatto et al., 2008) to assess students’ per-
ception of their learning and development as scientists. A 
CURE presurvey and a content assessment pretest were 
conducted during week 2 of both courses, while a CURE 
postsurvey and a content assessment posttest were conduct-
ed during week 14, the last week of the courses, at least 1 wk 
after the lab reports were turned in. Owing to a low num-
ber of students in Applied Biotechnology, the assessment 

long time and could not be completed in 3-h lab periods. 
Instead, the students were provided with the files containing 
raw counts for reads corresponding to all maize genes for all 
genotype/condition combinations, essentially “skipping” 
tedious steps of read mapping and counting. This approach 
allowed students to focus on principles of read alignment 
and counting through a series of guided exercises in work-
sheet 3 and on discovering differentially expressed genes in 
worksheet 4.

Weeks 2 and 3. Students worked with files containing raw 
gene counts for two abiotic stresses and control samples for 

Table 3. Evidence of student learninga

Course and year
Number of 

students

Average score

Pretest Posttest

Principles of Genetics, 2014 85 27 ± 15% 79 ± 8%
Applied Biotechnology, 2015  8 52 ± 19% 90 ± 10%

aResults of pretest and posttest used to evaluate student learning 
after the completion of the laboratory project. Average student 
scores and SDs are shown. The test results were analyzed by using 
a paired two-tail t test. The results of the pretest and posttest were 
significantly different at p < 0.001 for Principles of Genetics and at  
p < 0.1 for Applied Biotechnology.

Table 2. Examples of questions used to assess student learning

Concept questiona

Percent of correct 
answersb

Pretest Posttest

Genes and gene regulation (11 questions: 1–6, 8–11, 14)
Which of the following human cells con-

tains a gene that specifies eye color?
34 85

In what way is the same environmental 
signal expected to modify gene activity 
in different individuals?

19 71

What proportion of genes is likely change 
their expression levels in response to 
environmental stress?

13 87

RNA-seq analysis (9 questions: 7, 12, 13, 15–18, 20, 21)
What is not true about RNA molecules 

that are “sequenced” during RNA-seq 
experiments?

12 78

What is not necessary to have in order to 
perform an RNA-seq experiment?

68 86

Data visualization (2 questions: 19, 22)
Two graphs below show the comparison 

of normalized gene counts from an 
RNA-seq experiment. What can you 
conclude based on these graphs?

39 90

aA detailed copy of the content assessment test and the correct 
answers can be found in the Supplemental Material. The numbers 
of questions corresponding to the content assessment test are listed 
for each of the concepts assessed by this instrument.
bThe proportion of correct answers for a given question is shown. 
The questions had a multiple-choice format; some questions were 
slightly modified (rephrased) to fit into this table.
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ent abiotic stress conditions, heat and cold, in two maize ge-
netic backgrounds, Mo17 and B73 (Makarevitch et al., 2015). 
This data set allowed students to ask a variety of questions 
about the effects of abiotic stress on gene expression and 
offered a wealth of hypotheses that students could test. To 
provide students with the background on abiotic stress and 
experimental flow (Figure 1), we had students reproduce 
the conditions of the experiment and observe the effects of 
cold- and heat-stress exposure on maize seedlings (Figure 3). 
When the stressed plants were allowed to recover after stress 
for 24 h, phenotypic consequences became apparent for both 
stress treatments. While Mo17 plants were resistant to cold 
stress and showed very little, if any, phenotypic differences 
compared with control plants, B73 seedlings showed strik-
ing phenotypic response with dry and necrotic leaf edges 

data described here refer to the students from Principles of 
Genetics, unless noted otherwise. Extra-credit points were 
assigned for correct answers to the content assessment 
pre- and posttests and for completion of CURE surveys. To 
assess student skills in data visualization and interpreta-
tion of graphs related to RNA-seq analysis, we assessed the 
results sections of the students’ lab reports using a rubric 
focusing on the appropriateness, clarity, and quality of the 
figures and figure legends and the interpretation of the data 
presented in the figures (see the Supplemental Material for 
the rubric used). In addition to the pre/posttest assessment, 
all of the student group worksheets were graded by the 
instructor, and all mistakes and misconceptions were dis-
cussed in class. Finally, students were asked to provide any 
unsolicited comments about the RNA-seq laboratory series 
as a part of the university-wide postcourse online student 
evaluations. These comments remained completely anony-
mous and confidential.

Plant Growth and Stress Conditions
B73 and Mo17 maize seedlings were grown at 24°C in 1:1 
mix of autoclaved field soil and MetroMix under natural 
light conditions. For cold stress, seedlings were incubated 
at 5°C for 16 h. For heat stress, seedlings were incubated at 
50°C for 4 h. Light conditions were the same for all stress and 
control conditions.

Data Set Description and Data Analysis
The RNA-seq data set of SRA Project PRJNA244661 was used 
in implementation of the lab exercises (Makarevitch et  al., 
2015). This data set includes three replicates of RNA-seq 
data from 14-d-old maize seedlings of two inbred lines, B73 
and Mo17, grown under controlled conditions and subject-
ed to cold and heat stress as described above (for the details 
of plant growth, sample collection, RNA isolation, library 
preparation, and sequencing, see Makarevitch et al., 2015). 
Transcript abundance was calculated by mapping reads to 
the combined transcript models of the maize reference ge-
nome (AGPv2) using TopHat (Trapnell et al., 2009). Reads 
were filtered to allow for only uniquely mapped reads. A 
high degree of correlation between replicates was observed 
(r > 0.98). RPKM (reads per kilobase of transcript per mil-
lion reads mapped) values were developed using BAM to 
Counts across the exon space of the maize genome reference 
working gene set (ZmB73_5a) within the iPlant Discovery 
Environment (www.iplantcollaborative.org). Genes were 
considered to be expressed if RPKM > 1 and differentially 
expressed if log2(stress/control) > 1 or log2(stress/control) 
< −1. Statistical significance of expression differences was 
determined using the DE-Seq package (Anders and Huber, 
2010). Gene ontology analysis was performed using infor-
mation from the Maize Genetics Database (maizegdb.org).

RESULTS

Plant Materials and the RNA-seq Data Set
The key to successful implementation of this series of lab ex-
ercises is the choice of the data set for analysis. We chose a 
data set representing a transcriptional response to two differ-

Figure 3. Phenotypic effects of exposure to abiotic stress observed 
by students. B73 seedlings show strong response to cold stress with 
dry necrotic leaf edges and tips, while Mo17 seedlings show only 
minimal response to cold. Both B73 and Mo17 seedlings show re-
sponse to heat stress with wilted leaves.
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lab period (posttest). The proportion of correct answers 
increased from 27 to 79% (normalized learning gain of 0.71) 
for students in Principle of Genetics and from 52 to 87% (nor-
malized learning gain of 0.73) for students in Applied Bio-
technology (Figure 5 and Tables 2 and 3). Although there are 
no established criteria for what constitutes acceptable learn-
ing gains on these tests, a normalized gain of ≥0.50 proba-
bly represents a substantial achievement. The questions 
were designed to test understanding of principles of gene 
expression regulation, major concepts of RNA-seq analysis, 
and data analysis skills (see Table 2 for question category 
assignment). Although students were expected to be more 
familiar with gene expression regulation concepts compared 
with principles of RNA-seq analysis, average pretest scores 
for both categories were low (25 and 27% for RNA-seq anal-
ysis and gene expression regulation, respectively), possibly 
suggesting low emphasis on these topics in high school biol-
ogy courses. Interestingly, the most difficult questions from 
the regulation of gene expression category (questions 3, 9, 
and 14) focused on the overall transcriptional response to 
stress and its magnitude and variation. The overwhelming 
majority of students in Principles of Genetics said that stress 
affects gene expression in a predictable way, primarily acti-
vating gene expression of a relatively small number of genes. 
Conversations with the students during their work on pri-
mary literature analysis and, especially, during their analysis 
of differentially expressed genes, confirmed these observa-
tions, since students were very surprised to see that as many 
as 10% of maize genes could be either up- or down-regulated 
in response to stress with response varying between maize 
seedlings of different genetic background.

For assessment of student skills in graphical data visual-
ization and interpretation, 27 group lab reports were assessed 
using the rubric that focused on the appropriateness, clarity, 
and quality of the figures, figure legends, and data interpre-
tations (Table 4; see the Supplemental Material for the rubric 
used). Only three of 27 lab reports (11%) failed to achieve the 
level of “accomplished” (15/20 points), while seven reports 
(26%) scored 19 or 20 points. Average scores in all five rubric 
categories exceeded the level of “accomplished” (3/4 points), 
demonstrating that the students were able to state appropri-
ate experimental questions, choose and build adequate data 
visualizations, and interpret the results of their experiments.

For assessment of student perception of the lab series 
and the learning gains, a CURE survey was implemented 
(Lopatto et al., 2008). Students reported perceived learning 
gains higher or comparable with learning gains reported 
by all CURE participants in all 21 categories, with the larg-
est gains in categories related to understanding the scien-
tific process and skills in data analysis (Table 5). Finally, 
students were asked to provide comments regarding the 
RNA-seq data analysis lab experience in the anonymous 
university-wide online student evaluations of the course, 
and 65 students chose to provide comments. All student 
responses were analyzed using the constant comparative 
method (Erickson, 2012). Student comments were initially 
coded using open codes, such as “challenging,” “frustrat-
ing,” “engaging,” “exciting,” “real research,” “large data,” 
“real tools,” and “confusing.” Initial codes were combined 
into conceptual codes that were used to identify the themes 
emerging from the data. Emerging themes identified in 
the analysis characterized the students’ engagement and 

and tips and severe wilting. Both Mo17 and B73 seedlings 
showed mild response to heat stress, with wilted and discol-
ored leaves (Figure 3).

Experimental Questions and Data-Visualization 
Approaches Chosen by Students
Guided by worksheet 1, students investigated primary lit-
erature on stress response in plants and formulated a se-
ries of questions that could be asked about the data (see 
Supplemental Table 1 for a list of students’ questions). The 
questions ranged from “Expression of how many genes is 
affected by cold?” to “What biochemical pathways are ac-
tivated in response to stress?” Given variation in response 
to stress between maize seedlings of different genetic back-
grounds, many students were interested in comparing the 
lists of genes affected by cold stress in Mo17 and B73 gen-
otypes and in finding potential candidate genes that would 
explain the resistance of Mo17 to cold. Several student 
groups were interested in comparing genes that respond-
ed to different stress conditions, asking, “Do different abi-
otic stress conditions elicit similar or different responses in 
gene expression?” Students successfully ran DE-Seq analy-
sis of the samples pertinent to their research questions and 
identified genes differentially expressed in response to abi-
otic stress. Students from different groups compiled a table 
summarizing the number of genes differentially expressed 
in response to different abiotic stress conditions in both gen-
otypes (Supplemental Table 2). One of the most interesting 
discussions driven by students revolved around what genes 
should be called “differentially expressed,” the criteria that 
should be used to define “differentially expressed genes,” 
and whether these criteria should be uniform for a group of 
scientists working on the same problem. Generating lists of 
differentially expressed genes stimulated further questions. 
With some guidance, students explored the approaches to 
visualizing data and asked deeper questions about differ-
entially expressed genes (worksheet 5). Students used a va-
riety of approaches to visualize the data pertinent to their 
research questions (Supplemental Table 1 and Figure 4). 
Some groups investigated the level of individual variation 
in transcriptional response to abiotic stress by comparing 
variation between replicates of the same condition and be-
tween different samples using scatter plots (Figure 4, A and 
B). Other students asked the same question by constructing 
a heat map that visualized differentially expressed genes in 
two genotypes under stress conditions (Figure 4E). Several 
student groups compared the stress response between maize 
genotypes (Figures 4, C and E). Students also asked wheth-
er some genes responded in a similar manner to different 
abiotic stress conditions (Figure 4F). Finally, students inves-
tigated the likely functions of the stress-response genes by 
comparing the proportion of genes that belong to different 
gene ontology categories for all maize genes and genes dif-
ferentially expressed in response to stress (Figure 4D).

Assessment of Student Learning
A combination of subjective and objective assessment ap-
proaches were used to assess student learning as the result 
of this lab series. First, students were asked to complete a 
test with 22 multiple-choice questions once during the first 
week of the class (pretest) and once at the end of the last 
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Figure 4. Examples of graphs students used to visualize data and answer the questions. (A and B) Comparison of variation between two 
replicates of the same condition and between stress and control conditions. Log2RPKM values are graphed for all maize genes. (C) The conser-
vation of stress response. Many genes up-regulated in response to cold stress in B73 are also up-regulated in response to cold stress in Mo17, 
while many genes show response in only one of the genotypes. (D) The proportion of all maize genes, genes up-regulated in response to cold, 
and genes down-regulated in response to cold is shown. SE is shown with error bars. Three gene ontology categories significantly overrepre-
sented among genes up-regulated in response to cold stress are shown (p < 0.05). (E) Abiotic stress exposure results in up- or down-regulation 
for a number of maize genes in each genotype. The Z-normalized RPKM values for all differentially expressed genes were used to perform 
hierarchical clustering of the gene expression values. The genotypes (B73: B; Mo17: M) and conditions (heat: red; control: green; cold: blue) 
are indicated below each column. Three replicates of each condition are shown. (F) Genes affected by cold stress are frequently up-regulated 
in response to heat stress as well. Genes up- and down-regulated for cold stress in B73 are shown, as is their response to heat stress. ND: the 
genes with no differential expression. The number of genes in each category is shown.

perceptions of the laboratory series on RNA-seq analysis as 
a difficult and engaging real research experience in com-
putational biology: “exciting and interesting,” “authentic 
research,” “computational nature of biology research,” and 

“discontent and frustration” (Table 6). While most of the 
students reacted positively to the experiences of this lab-
oratory module, greater than 20% of the students included 
comments suggesting that the activities were too complex 
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most common mistakes, would significantly ameliorate this 
problem.

DISCUSSION

We developed a series of laboratory exercises that engages 
students in investigating transcriptional response of maize 
seedlings to abiotic stress. In our experience, a connection 
to climate change served as a great way to excite students 
about plant genetics and show them the relevance of plant 
genetics research. Analysis of student comments in the on-
line course evaluations suggests that students were excited 
to participate in the real research project and analyze the 
unpublished data, potentially exploring novel scientific 
ideas and connections (Table 6), highlighting the need for a 
careful choice of the RNA-seq data set. We chose a data set 
that was not fully characterized by the time of the lab imple-
mentation and plan to develop a novel data set for the next 
year’s course based on the ideas the students developed in 
Principles of Genetics. One of the main advantages of the 
approach we used is the opportunity to engage students us-
ing any publicly available RNA-seq data set. Since its intro-
duction, RNA-seq, the tool to precisely measure the levels 
of transcripts, has revolutionized our view of the extent and 
complexity of eukaryotic transcriptomes (Wang et al., 2009). 
The SRA of the NCBI is a public repository containing more 

or some of the aspects of the analysis were difficult to com-
plete during the time allotted. We believe that extending 
this laboratory module to four or even five lab periods by 
incorporating additional debriefing activities, or even mini-
lectures provided by the instructor and aimed at explaining 

Figure 5. Assessment of student learning. Student learning was 
assessed using a test consisting of 22 multiple-choice questions. 
Questions were separated into three categories, and the average 
proportion of correct answers for the questions in these categories 
was calculated for two courses (Principles of Genetics and Applied 
Biotechnology). Vertical bars show SD. For all three categories, the 
differences between pretest and posttest were significant as tested 
by paired t test (p < 0.01).

Table 5. Learning gains reported by Principles of Genetics students in CURE surveya

Category
Genetics learning gains  

(65 students)
CURE participants 

(4800 students)

Understanding science process
Understanding how knowledge is constructed 3.49 3.42
Understanding the research process 3.50 3.46
Understanding how scientists work on real problems 3.62 3.58
Understanding that scientific assertions require supporting evidence 3.59 3.64
Understanding science 3.66 3.58
Data analysis skills
Ability to integrate theory and practice 3.38 3.46
Ability to analyze data and other information 3.96 3.74
Skill in interpretation of results 3.62 3.54
Ability to read and understand primary literature 3.45 3.34
Communication skills

Skill in science writing 3.39 3.31

aLopatto et al. (2008).

Table 4. Assessment of data visualization and interpretation in student lab reports

Rubric category Criteria for the correct responses
Student scores (out of 4 points 

for each category)

Experimental question Clarity and appropriateness of the experimental question 3.46 ± 0.68
Graphs The choice of the visualization approach and the correct organization of the graph 3.20 ± 0.62
Graph labels Presence and accuracy of the graph labels 3.42 ± 0.60
Figure legends Completeness and accuracy of the figure legends 3.25 ± 0.64
Data interpretation Clarity and appropriateness of the conclusions, support of the conclusions by the 

graphs
3.20 ± 0.70

Total 16.45 ± 2.44
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time required for running the applications for read mapping 
and counting for a large maize genome on the Green Line 
was too long to be effectively integrated in a time-limited lab 
environment. To overcome this issue and to allow students 
to concentrate on data analysis instead of technical details 
of the computer applications, we chose to provide students 
with the raw read counts. Students were engaged in a series 
of exercises simulating these activities, including analysis of 
analogies aimed at helping them understand the purpose 
and potential limitations of each of the steps. Students used 
a DE-Seq R package to find differentially expressed genes 
and to conduct downstream analysis of these genes (Anders 
and Huber, 2010). While the students were provided with 
the template scripts for DE-Seq analysis and using R to build 
various graphs, students had to modify these scripts to their 
specific questions, a task that required them to understand 
the purpose of each line of code. Such an approach allowed 
avoidance of some of the apprehension toward program-
ming and incorporated genuine biologically relevant pro-
gramming experience that went beyond the use of “black 
box software” as called for by BIO2010 (NRC, 2003). This lab 
series introduced many mathematical skills, including data 
normalization and statistical testing of differential gene ex-
pression, through real-world examples, an approach shown 
to result in higher learning gains in quantitative reasoning 
skills for biology students (Matthews et al., 2010; Feser et al., 
2013; Hester et  al., 2014). In addition, the instructional ap-
proach described here, specifically peer-to-peer presenta-
tions and peer reviews of the lab reports, presents potential 
for students to develop written and oral communication 
skills. Although beyond the scope of this project, formal as-
sessment of development of mathematical and communica-
tion skills as the result of implementing this laboratory series 
should provide interesting data on integrative development 
of student skills related to science.

than 150,000 RNA-seq data sets that are freely available for 
download. The manuscripts describing these data sets usual-
ly address specific questions and leave a lot of room for ad-
ditional questions that students could investigate. Further-
more, the costs for library construction and sequencing, the 
most expensive steps of generating RNA-seq data, continue 
to decrease, and the possibility of running RNA-seq exper-
iments designed and run by students in undergraduate bi-
ology courses is already within reach for many institutions. 
Most of the exercises and the general approach described 
here can be easily adopted for analysis of any RNA-seq 
data set. The series of laboratory exercises on transcription-
al response to abiotic stress in maize was implemented in 
the introductory genetics course and in the upper-level bio-
technology course and as an approach to introduce summer 
research students to RNA-seq analysis. Depending on time 
commitment and the level of the students, these exercises 
could be extended to incorporate quantitative reverse-tran-
scription polymerase chain reaction (qRT-PCR) validation of 
most interesting differentially expressed genes as well as to 
test expression of these genes under other relevant condi-
tions, further investigating the biological role of identified 
differentially expressed genes. Approaches to integrating 
qRT-PCR, as well as primer design, into undergraduate lab 
exercises have been previously described (Robertson and 
Phillips, 2008; Hancock et al., 2010).

One of the difficulties in incorporating RNA-seq analysis 
into the classroom is the complexity of the tools used by the 
research community to map and count RNA-seq reads and 
to find differentially expressed genes. The DNA Learning 
Center in collaboration with iPlant developed a Green Line 
on the DNA Subway website that allows for storage and 
analysis of the RNA-seq data. Many features of the Green 
Line are readily accessible, and the students were able to 
conduct analyses and interpret their data. Unfortunately, the 

Table 6. Student perception of the lab series on RNA-seq data analysis

Open codes Theme Description Student quotes

Cool lab
Interesting
Unusual lab
Fun

Exciting and interesting Overall perception of the 
lab series

“I never had so much fun building graphs.”
“Great addition to Genetics.”
“The lab was very frustrating and difficult, but I 

learned a lot!”
Real research
Real science
Cool experiment
Real data

Authentic research Includes references to the 
research nature of the lab 
series

“Doing real research in class is really cool.”
“We worked with real data on real research 

problem[s].”
“Nobody knew the answers to our questions.”
“We got to build graphs in R and they looked like the 

graphs from the papers we were reading!”
Programming
Bioinformatics
Databases
A lot of computation
Large data sets

Computational nature 
of biology research

Describes the student 
perception of program-
ming and computational 
studies as a part of 
biology

“This was the first time I was involved in large data 
analysis; it would be great to do it more often!”

“I never realized that biology is almost computer 
science now.”

“I wish I knew more programming and was more 
familiar with computers, this was fun!”

Confusion
Frustration
Analysis did not work
Lack of engagement
Too complex

Discontent and 
frustration

Reflects negative percep-
tions of the lab series due 
to lack of interest, confu-
sion, or frustration

“This lab is way too difficult and should not be a part 
of introductory course.”

“I was confused through the whole three weeks.”
“My R code never worked and the instructor had to fix 

it all the time. Very frustrating.”
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opportunities to involve students in real biological research, 
improving students’ skills in data analysis, data visualiza-
tion, and science communication.

In addition to teaching concepts of gene expression and 
regulation in response to changes in environmental con-
ditions, this laboratory series aimed to increase student 
skills in data analysis. One of the major emphases of our 
approach was to help students analyze various types of 
graphs that are common in primary literature describing 
RNA-seq data and to provide students with the opportuni-
ties to build similar graphs using their own data. In framing 
graph analysis exercises in worksheet 5, we enhanced many 
of the ideas from Figure Facts (Round and Campbell, 2013) 
with the peer-to-peer presentations of the primary litera-
ture graphs and found this approach to be very effective. 
An opportunity to build and present graphs similar to the 
ones seen in primary literature using students’ own data 
further enriched this experience in data visualization. Such 
an approach of mimicking the peer-review process used by 
scientists through critiquing one another’s papers has been 
demonstrated to be beneficial for students (Guilford, 2001). 
Our objective assessment data (relevant questions in the test 
and the quality of figures and data interpretation in the stu-
dents’ reports) and subjective assessment data (the CURE 
survey) suggest that engaging in the RNA-seq analysis lab-
oratory experience led to learning gains in data analysis and 
interpretation skills.

The National Science Education Standards and education 
research literature emphasize that students need to develop 
skills in quantitative data analysis (NRC, 2003; Bialek and 
Botstein, 2004; AAAS, 2011; Feser et al., 2013). Biology un-
dergraduate students are lacking opportunities to be di-
rectly involved in quantitative data analysis, especially in 
analysis of large data sets that have become a “staple food” 
of current biology research. In addition, biology students 
lack mathematical and computational skills necessary for 
data analysis and perceive mathematics as irrelevant to their 
field (Zan et al., 2006). This problem is well recognized by 
the community, and a concerted effort to infuse computa-
tional and mathematical training into biology courses will 
likely help in developing more opportunities for students 
to develop these skills (Caudill et  al., 2010; Milton et  al., 
2010; Sorgo, 2010; Feser et al., 2013; Hester et al., 2014). As 
measured by the Survey of Undergraduate Research Ex-
periences and the CURE survey, authentic undergraduate 
research experiences provide significantly higher gains 
in data analysis skills, as well as in many other areas, in-
cluding knowledge and understanding of science and the 
research process, problem solving, communication skills, 
and critical thinking (Lopatto et  al., 2008, 2014). Develop-
ing authentic student research experiences that incorporate 
large data analysis is hindered by the high level of com-
plexity impeding students’ ability to fully comprehend the 
problem and by limited access to the computational tools 
and data sets. In addition, projects should provide students 
with opportunities to develop independent research ques-
tions and should be engaging for students and relevant to 
the course in which they are embedded. RNA-seq experi-
ments are particularly flexible in that regard. RNA-seq anal-
ysis is widely used in research projects across most fields 
of biology and across most biological systems, making it a 
great tool to excite students interested in different biologi-
cal processes and providing ample data to allow students to 
investigate independent research questions. Incorporating 
RNA-seq analysis in a biology curriculum provides unique 
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