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Redesigning undergraduate biology courses to integrate quantitative reasoning and skill devel-
opment is critical to prepare students for careers in modern medicine and scientific research. In 
this paper, we report on the development, implementation, and assessment of stand-alone mod-
ules that integrate quantitative reasoning into introductory biology courses. Modules are designed 
to improve skills in quantitative numeracy, interpreting data sets using visual tools, and making 
inferences about biological phenomena using mathematical/statistical models. We also examine 
demographic/background data that predict student improvement in these skills through exposure 
to these modules. We carried out pre/postassessment tests across four semesters and used student 
interviews in one semester to examine how students at different levels approached quantitative 
problems. We found that students improved in all skills in most semesters, although there was 
variation in the degree of improvement among skills from semester to semester. One demographic 
variable, transfer status, stood out as a major predictor of the degree to which students improved 
(transfer students achieved much lower gains every semester, despite the fact that pretest scores in 
each focus area were similar between transfer and nontransfer students). We propose that increased 
exposure to quantitative skill development in biology courses is effective at building competency in 
quantitative reasoning.

Article

part because undergraduate biology courses have been slow 
to incorporate quantitative reasoning into the classroom 
setting (Bialek and Botstein, 2004; Feser et al., 2013). Greater 
emphasis on quantitative skill development has been noted 
as increasingly important for preparing biology students for 
medical (see Association of American Medical Colleges/
Howard Hughes Medical Institute report [AAMC/HHMI, 
2009]) and graduate school (Barraquand et al., 2014). In ad-
dition, lack of training in quantitative sciences has been not-
ed as an impediment to advances in research by practicing 
biologists (Chitnis and Smith, 2012; Fawcett and Higginson, 
2012; Fernandes, 2012). Many recent papers and reports have 
called for a “revolution” in undergraduate biology education 
in which analysis, graphical thinking, and quantitative skills 
receive greater emphasis (e.g., National Research Council 
[NRC], 2003, 2009; Bialek and Botstein, 2004; Feser et  al., 
2013; Aikens and Dolan, 2014). A vision of how new curricula 
might look is laid out in a widely cited American Association 
for the Advancement of Science (AAAS) report Vision and 
Change in Undergraduate Biology Education (AAAS, 2010). Of 
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INTRODUCTION

The field of biology has become increasingly reliant on inter-
disciplinary approaches to address complex biological prob-
lems, and these approaches typically require significant use 
of quantitative analysis. However, preparation of students 
for this new era of quantitative biology has been lacking, in 
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note, the second core competency listed as necessary for all 
biology students in Vision and Change is the ability to use 
quantitative reasoning. The call for students to be better 
trained in quantitative reasoning has also been echoed by 
the AAMC/HHMI report (2009), which emphasizes the need 
to train life sciences students in how to integrate knowledge 
across scientific disciplines (e.g., mathematics, chemistry, 
physics). The MCAT has also been redesigned to reflect this 
view (Kirch et al., 2013).

At most universities, biology majors obtain quantitative 
skills through courses offered by other departments, such as 
mathematics, physics, and computer science. Until recently, 
little effort has been made to integrate quantitative reason-
ing into biology courses themselves (Brent, 2004; Gross, 
2004; Hoy, 2004). This compartmentalization may give stu-
dents the false impression that biological knowledge can be 
acquired with minimal understanding of the more quanti-
tative fields (e.g., mathematics and statistics) and leads to 
all-too-familiar situations in which students are unable to 
apply, or transfer, concepts learned in one domain to an-
other, such as applying the math they know in a biological 
context (NRC, 2000; Haskell, 2001; Mastascusa et al., 2011). 
Further, the level of quantitative rigor in mathematics and 
physics courses taught for biology students is often lower 
than that taught to mathematics, chemistry, physics, and en-
gineering undergraduates (Bialek and Botstein, 2004), which 
leaves many biology students unable to “think in math,” 
even if they understand its importance for their field (NRC, 
2003). While students often receive some practice in quanti-
tative thinking and analysis in upper-level courses, this may 
be too late in the curriculum to have much effect. The NRC’s 
BIO2010 paper specifically encourages integrating mathe-
matics into biology courses early in the curriculum, partic-
ularly in courses taken by first-year students (NRC, 2003).

In this paper, we report on the development and assess-
ment of four stand-alone modules that require students to 
integrate quantitative thinking into an introductory under-
graduate biology course focused on ecology and evolution. 
These modules are designed for use in weekly group-based 
active-learning class sessions. Each module is designed as a 
dry laboratory exercise (pencil and paper/computer based) 
that applies quantitative thinking to biological problems 
that are ideally covered concurrently in the lecture compo-
nent of the course. Applying mathematical and statistical 
concepts in a biological context would, we hoped, teach stu-
dents that quantitative thinking was a useful, practical, and 
indeed indispensable way to approach biological problems. 
We assessed the influence of these modules on development 
of student competencies in three focal areas, as outlined in 
the AAMC/HHMI Report (2009): 1) their ability to demon-
strate quantitative numeracy and facility with the language 
of mathematics (skill E1.1 in AAMC/HHMI, 2009, hereafter 
referred to as “quantitative numeracy”), 2) their ability to 
interpret data sets and communicate those interpretations 
using visual and other appropriate tools (skill E1.2, hereafter 
referred to as “data interpretation”), and 3) their ability to 
make inferences about natural phenomena using mathemat-
ical models (skill E1.5, hereafter referred to as “mathematical 
modeling”). We assessed these skills with a pre- and postas-
sessment test over each of four semesters in large introduc-
tory biology courses (class sizes ranged from ∼65 students 
in the Summer to >250 in the Fall and Spring semesters). 

We analyzed student gains in reference to demographic and 
other background student information (e.g., transfer vs. non-
transfer student) after the posttest was administered.

We also conducted a small, qualitative, interview-based 
study of students’ reasoning on quantitative problems. 
While this study was quite limited in its scope and aims, it 
provides some insights into the various forms of reasoning 
students bring to bear on problems that call for quantitative 
reasoning and highlights certain concepts and terminology 
of quantitative biology with which students struggle.

METHODS

Module Development
The first-year biology sequence at University of Maryland–
Baltimore County (UMBC) comprises two courses: 1) mo-
lecular/cellular biology and 2) ecology and evolution. This 
paper focuses only on modules used in the eco/evo course. 
However, we have developed an additional 10 quantitative 
modules that have yet to be implemented, including four ad-
ditional modules for use in ecology and evolution and six in 
cellular and molecular biology. These, and the four modules 
reported on in this study, are available by request at http://
nexus.umbc.edu.

To develop each module, we first chose a topic in the course 
that we felt naturally lent itself to quantitative treatment and 
for which we thought quantitative treatment could enhance 
student understanding of the biological concept. We then de-
signed the modules with several components to make it easy 
for faculty to adopt them in their courses: 1) a tutor guide that 
includes an introduction to the biological content; 2) a sum-
mary of the contents, including a table aligning each activity 
with learning objectives and quantitative competencies re-
lated to quantitative reasoning (as outlined by the AAMC/
HHMI report, 2009); 3) a list of the mathematical and statisti-
cal concepts covered and quantitative skills required and esti-
mated time to complete the in-class component of the module; 
4) an in-class worksheet component of the module that the 
students receive, which provides an introduction to the bio-
logical problem and the activities to be completed; 5) preclass 
exercises designed to review the mathematical and statistical 
concepts needed to successfully complete the module; 6) a 
student survey form to be completed online after completion 
of the module, to obtain feedback on how helpful the module 
was to their learning; 7) a suggested list of formative assess-
ment questions along with their alignment to AAMC/HHMI 
core competencies and learning objectives; and 8) a teacher’s 
guide for implementation. An example of the instructional 
guide typical of all modules, including a table of learning 
goals cross-referenced to specific activities in the module, is 
provided in Appendix 1 in the Supplemental Material.

Module Implementation
The in-class worksheet is designed for groups of three or four 
students to complete in a 50- to 60-min discussion section. At 
UMBC, these modules were implemented in a smart class-
room with a capacity of 90 students in 75-min discussion 
sections (allowing time to discuss the modules before and 
after completion). One to two graduate teaching assistants 
and two undergraduate teaching assistants were assigned to 
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each section. Course instructors met weekly with the teach-
ing assistants to go over the module activities for the upcom-
ing week and to discuss ways to facilitate student learning 
in the discussion sessions. These meetings were also used to 
discuss how well the students did on different aspects of the 
modules after they had been implemented the prior week 
and to field suggestions on improving module activities/
clarifying questions for the future.

Each group of students in the class had access to computer 
terminals, although not all modules require their use. Stu-
dents were asked to complete the premodule exercises be-
fore attending the discussion section, and also to carefully 
read the module, which was enforced with three-question 
reading quizzes administered either online before class or 
at the start of each session. Each student submitted a com-
pleted worksheet at the end of the discussion session. The 
modules constituted 20% of the overall course grade.

Contents of the Four Modules
A summary of the contents of each module is provided be-
low in the order in which the modules were delivered each 
semester.

Mendelian Genetics.  This module allows students to calcu-
late and predict the genotype and phenotype frequencies of 
a Mendelian trait resulting from monohybrid and dihybrid 
crosses. Students also learn how to calculate and interpret 
the results of a chi-squared statistical analysis to test hy-
potheses about the independent assortment of traits. This 
module addresses the following general learning goals from 
the AAMC/HHMI report: students will demonstrate quan-
titative numeracy (skill E1.1) and make statistical inferences 
from data sets. The module includes application of basic 
mathematics to Mendelian patterns of inheritance, including 
simple calculations of proportions (frequencies), calculations 
of chi-squared statistics, and a single question on probabili-
ty. Students also use their data to calculate and interpret the 
results of a chi-squared statistical analysis to test hypotheses 
about independent assortment of traits.

Introduction to Mathematical Modeling.  This module is de-
signed to introduce students to a simple linear mathematical 
model in the context of negative frequency-dependent selec-
tion. This module addresses the following general learning 
goals from the AAMC/HHMI report: students will demon-
strate quantitative numeracy (skill E1.1), interpret data sets, 
and communicate those interpretations using visual tools 
(skill E1.2); make statistical inferences from data sets (eval-
uating best-fit linear relationships based on calculating error 
sums of squares); and make inferences about natural phe-
nomena using mathematical models (skill E1.5). The mod-
ule includes data on the frequency of red-finned cichlid fish 
within a population and the number of offspring produced 
by red-finned adults as a function of their frequency in the 
population. The students are asked to graph the data by 
hand and in Excel, draw a line of best fit through the points 
on the handwritten graph (by eye), and provide an algebraic 
formula for this best-fit line. They are then walked through 
the basics of regression to demonstrate how the best-fit line 
is determined statistically, by finding the line through the 
data that minimizes the sum of the squared errors between 
the actual data points and the line (this is done using calcu-

lations in Excel). Students are then asked to interpret the re-
lationship between variables. They are also asked how their 
interpretation might differ if certain characteristics such as 
slope and intercept of the line changed. The prelaboratory 
exercises require students to create a mathematical model in 
a nonscientific application. For example, one problem states, 
“On her way to her volleyball game, Joanne stops by the gro-
cery store for a healthy snack that will give her energy for 
the game. She decides to get a jar of peanut butter and some 
bananas. She notices that the peanut butter costs $3.99 for a 
jar and that the bananas cost $0.49 per pound of bananas. 1. 
How much will one pound of bananas and a jar of peanut 
butter cost? 2. Joanne decides to bring a snack for each of the 
6 girls on the volleyball team. How much will it cost for six 
pounds of bananas and a jar of peanut butter? 3. On the grid 
provided below, draw a Cartesian coordinate system with 
number of pounds of bananas on the x-axis and the total cost 
of the peanut butter and bananas on the y-axis. Plot the two 
points that you found for the previous two questions. Plot 
the line on the grid above through the two points that you 
found. Now compute the slope of the line that goes through 
these two points (remember, “rise over run”: (y2 − y1) = m(x2 
− x1), where m is the slope of the line). Now write the equa-
tion of the line in slope-intercept form, y = mx + b, where b is 
the y-intercept (the place where the line crosses the y-axis). 
Congratulations! You have just made a mathematical model 
of the cost you will pay to provide peanut butter and ba-
nanas to your teammates!” The idea is to allow students to 
practice the type of mathematical thinking they will be using 
in the module, but to use examples more relevant to their 
daily lives. After this, the students are given a more biolog-
ically oriented example in the prelab using data on conifer 
density that students are asked to graph and draw a best-fit 
line through. Similar questions regarding characteristics of 
the line are asked as in the worksheet itself.

Population Genetics I—Breeding Bunnies and Natural Se-
lection.  This module explores the effect of natural selection 
on allele frequencies, and it also allows students to use calcu-
lations of expected and observed allele frequencies to deter-
mine whether populations are in Hardy-Weinberg equilibri-
um. This module addresses the following general learning 
goals from the AAMC/HHMI report: students will demon-
strate quantitative numeracy (skill E1.1), interpret data sets, 
and communicate those interpretations using visual tools 
(skill E1.2); make statistical inferences from data sets; and 
explain how evolutionary mechanisms contribute to change 
in gene frequencies in populations. This module uses as an 
example a hypothetical recessive trait (furlessness) in a small 
population of wild rabbits. A collection of red and white kid-
ney beans are used to simulate the genotypes in the popu-
lation of rabbits, with the red beans representing the alleles 
conferring the dominant trait (fur), and the white beans rep-
resenting the recessive alleles (homozygotes are furless). The 
rabbits are bred by randomly picking two alleles (or beans). 
The number of rabbits with the recessive allele is recorded 
(to estimate allele frequency), and the rabbits with two re-
cessive alleles (two white beans) are discarded (reflecting 
strong truncating selection against these rabbits). The stu-
dents are asked to repeat the above steps, imposing selection 
across several generations, and record and plot their data 
(allele and genotype frequencies). The students then draw 
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the Summer of 2013. In addition, two questions did not ap-
pear on all exams every semester (see Appendix 2 in the Sup-
plemental Material for details).

The actual content of the test consisted of questions to as-
sess the level at which students have achieved the desired 
competencies, one attitude assessment question, and other 
questions about concepts in the course that were not quanti-
tative in nature.

The postassessment exam was given on the final day of 
discussion. Student motivation was stimulated in two ways. 
First, we told students that some of the questions or alterna-
tive versions of them would appear on the final exam and so 
this exam was good practice. Second, students were awarded 
one participation point for a valid attempt at the exam (the 
exams were curated after they were given, and there was no 
evidence of any inauthentic attempts [e.g., filling in the same 
letter for every answer or leaving half the questions blank]).

To see whether individual characteristics of students were 
associated with changes in student performance, we also 
asked a series of questions designed to gather demographic 
and educational history data for each student (Appendix 
1 in the Supplemental Material). These demographic sur-
veys were administered immediately after students took 
the posttest exam in Spring 2013, Summer 2013, and Spring 
2014 to minimize the influence of stereotype threat on exam 
performance (Steele and Aronson, 1995; Spencer et al., 1999). 
Further, a qualitative study involving individual interviews 
with seven students in the freshman-level ecology and evo-
lution class was undertaken in Spring 2015 to investigate 
how the interviewees understood the pre/posttest questions 
and what forms of reasoning they used in answering them. 
We received institutional review board approval for the en-
tire study (UMBC IRB Y13WL04051).

Statistical Analyses
We used a nested logistic regression analysis (using SAS, 
version 9.3) to test for changes in performance in the skills 
of quantitative numeracy (skill E1.1), data interpretation 
(skill E1.2), and mathematical modeling (skill E1.5) based on 
pre–post questions associated with each skill. We used the 
statistical model y = trt + question(trt) + e, where y = 0 if the 
question was answered incorrectly, or 1 if correct; trt = pre- 
or posttest; question is the multiple-choice question nested 
within either the pre- or posttest; and e is the error term. 
Instead of analyzing the total test score, we partitioned the 
quantitative questions into three subgroups, with one set of 
questions for each quantitative skill (to see how questions 
were partitioned among skills, see Appendix 2 in the Sup-
plemental Material). We then analyzed the data separately 
for each of the three subgroups, with one analysis for each 
skill each semester.

We used Cohen’s d to estimate the magnitude of change in 
the proportion that answered correctly in each skill from the 
pre-exam to the postexam (Cohen, 1992). Because multiple 
questions in the pre/postexam addressed each skill, we used 
the proportion correct for each question associated with a 
particular skill to calculate Cohen’s d. We used the formula 
(M1 − M2)/SDpooled, where M1 was the mean proportion of 
correct answers on questions addressing a particular skill 
in the posttest, and M2 was the mean proportion of correct 
answers on questions addressing that skill in the pretest. 

conclusions regarding the Hardy-Weinberg principle based 
on allele and genotype frequencies in the data they collected. 
Finally, the students perform a chi-squared test on the data 
to test the null hypothesis that the population experiencing 
selection is in Hardy-Weinberg equilibrium. The prelab ex-
ercises present a similar experiment with gumballs, and the 
students are asked basic probability questions.

Population Genetics II—Gene Flow and Genetic Drift.  This 
module is designed to immediately follow the previous 
module on natural selection of furless rabbits. The learning 
goals of this module are the same as the other population 
genetic module discussed above. In this module, again using 
the furless rabbits example, students explore how gene flow 
and genetic drift can act to influence the response to natural 
selection. Two groups of three students each work together, 
forming a population of rabbits on an island, separated by 
a river. One side of the river has a mild climate favorable to 
furless rabbits, and the other side of the island has a harsh-
er climate less favorable to furless rabbits. The students go 
through the natural selection process described in the pre-
vious module for several generations, then the groups ex-
change three individuals from each population, representing 
gene flow between the populations on both sides of the river. 
The students then go through the natural selection process 
and record the allele frequency in each population. Once the 
data have been collected, students are asked to draw con-
clusions about the effect of gene flow and genetic drift on 
natural selection.

Assessment Tool
We developed a pre/posttest for summative assessment of 
competency in the focal quantitative skills and reasoning. 
Beginning in the Fall of 2011 and continuing every semes-
ter thereafter until Spring 2013, we calculated the discrim-
ination and difficulty of pre–post questions and modified 
questions to develop a valid pre/postassessment exam. For 
discrimination, we wanted to determine whether questions 
were discriminating between high-performing students and 
low-performing students. Items that had a point-biserial 
correlation coefficient (Kornbrot, 2014) <0.20 were classified 
as “low discrimination” and were revised for subsequent 
semesters. A point-biserial correlation coefficient measures 
the correlation between a continuous variable (in our case, 
the student score on the posttest) and an ordinal or nomi-
nal variable (in our case, whether the student answered an 
individual question correctly or not). Higher coefficients in-
dicate both a strong correlation between score on the assess-
ment and answering an item correctly and a high level of 
discrimination.

For difficulty, items that were answered correctly by ≥ 90% 
of the students who took the exam were deemed too easy, 
and items answered correctly by <20% of students were 
deemed too difficult. These items were also revised before 
the first formal use of this instrument to obtain data for this 
study (Spring 2013). The validated pre/posttest was given 
across four semesters, Spring 2013, Summer 2013, Fall 2013, 
and Spring 2014 (Appendix 2 in the Supplemental Material). 
We continued the discrimination and difficulty analyses of 
the questions on the pre/postexam each semester and made 
minor changes in two questions (changed distractors) after 
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participated (three with “A’s,” two with “B’s,” and two with 
“C’s” at the time of the interview). Each interview lasted 
∼20 min and involved an interviewer engaging each student 
in a semistructured review of their answers to all four test 
questions after they had read and answered them. The in-
terview questions were designed to elicit and probe the stu-
dents’ thought processes by having them explain how they 
came to their answers. (See the Interview Protocol in Appen-
dix 3 in the Supplemental Material.) All of the interviews 
were audio recorded, and an observer listened and took 
notes. The interviews were transcribed from the observer’s 
notes and the audio recordings.

A grounded theory approach (Corbin and Strauss, 2014) 
was used to code the interview transcripts for the types of 
reasoning students used in their explanation of their an-
swers for the test questions. This approach allowed us to 
derive the categories of reasoning the students were using 
directly from their utterances, rather than to predict and ap-
ply a priori certain forms of reasoning to our analysis of the 
interview data. Such a methodological stance is common in 
qualitative research, in which the experiences of the partici-
pants in the research are considered to be fundamental to the 
development of theory.

RESULTS

Assessment of Student Learning Outcomes from Pre/
Postexam
The first question on the pre/postexamination asked stu-
dents how useful they thought quantitative approaches 
(e.g., mathematical modeling, statistical analyses) are to the 
study of biology. In all four semesters, students came in with 
a fairly strong opinion that quantitative approaches were 
important for studies in biology (Table 1). In every semes-
ter, greater than 90% of the students thought that quantita-
tive approaches were, at a minimum, “very important” for 
studying modern biological problems (summing the top 
three rows of Table 1). This attitude was little changed (a 1% 
or less increase) at semester’s end.

The remaining portion of the pre/postexamination was 
designed to assess students in the three focus skills de-
scribed above: quantitative numeracy, data interpretation, 
and mathematical modeling, aligning with AAMC/HHMI 
(2009) skills E1.1, E1.2, and E1.5, respectively. While these 
skills are not mutually exclusive, an effort was made to test 
each skill separately in the pre/postexam (see Appendix 2 in 
the Supplemental Material for categorization of questions). 
All modules required students to use quantitative numeracy 
and data interpretation skills; however, only one explicitly 
required students to develop, use, and interpret mathemati-
cal models. Although there was slight variation from semes-
ter to semester (two of the validated questions did not ap-
pear each semester), the pre/postexam used approximately 
five questions to assess quantitative numeracy, six questions 
to assess data interpretation, and three questions to assess 
mathematical modeling.

Proficiency of Students in Quantitative Numeracy
Students improved their quantitative numeracy from the 
pre- to posttest, although the magnitude of the effect varied 

SDpooled was calculated as √(SD1
2 + SD2

2)/2, where SD1 and 
SD2 are the standard deviations in the proportion correct 
among questions in the pre- and posttest, respectively. Data 
were analyzed separately for each semester. All analyses 
used only the data from students who completed both the 
pre- and posttest.

Multiple regression (Theobald and Freeman, 2014) was 
used to determine the relationships between the background 
characteristics and performance on the three skills. Three 
models were run, one for each skill (quantitative numer-
acy, data interpretation, and mathematical modeling). Each 
model included the following independent variables:

Score on the preassessment
Transfer status (transfer student or nontransfer student)
Took algebra 1 in high school
Took algebra 2 in high school
Took precalculus in high school
Took calculus in high school
Earned advanced placement (AP) credit for calculus or 
currently taking calculus 1 at UMBC
Earned AP credit or currently taking calculus 2 at UMBC
Took Stat 350 (introductory statistics for biology majors) 
at UMBC

Student Interviews
Individual interviews were conducted with seven under-
graduate students enrolled in the ecology and evolution 
course to inquire into their reasoning processes in answer-
ing four questions (questions 2–5) excerpted from the pre/
posttest (see Appendix 2 in the Supplemental Material). The 
interviews were conducted during the 11th and 12th weeks 
of the semester, after students had already participated in a 
subset of the quantitative modules (Appendix 4 in the Sup-
plemental Material). The purpose of the interviews was to 
provide data about the nature and quality of students’ rea-
soning on questions related to the quantitative thinking por-
tions of the modules. Our research questions for this portion 
of the study were

1.	 What types of reasoning did students use to answer these 
questions?

2.	 For questions that students answered incorrectly, which 
forms of reasoning were they using and which aspects of 
the concepts did they struggle with?

3.	 Was there a discernible pattern in reasoning processes 
among students who answered the same questions 
incorrectly?

4.	 Was there a discernible pattern in reasoning processes 
among students who performed similarly in terms of 
their final course grades?

Students were selected for interviews by their instructor 
based on their average grades on the first two exams. (The 
interviewers did not know the performance level of any of 
the students at the time of the interview.) Initially, nine stu-
dents were chosen to participate in the interview process 
(three who had “A’s” at the time of the interviews, three 
who had “B’s,” and three who had “C’s,” all of whom were 
chosen randomly from within each letter grade). Of the nine 
who originally agreed to the interview, only seven actually 
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The Ability of Students to Make Inferences from 
Mathematical Models in Biology
Gains in the ability of students to make inferences about 
natural phenomena using mathematical models were highly 
variable across semesters, but on average were slightly low-
er than in the other two skills (Table 2 and Figure 1C). As was 
the case for quantitative numeracy, there was a broad range 
in pretest scores from semester to semester (range: 51% in 
Fall 2013 to 65% in Summer 2013), but unlike the results 
for quantitative numeracy, there was also a broad range of 
scores across semesters in posttest results (from 58% in Fall 
2013 to 69% in Spring 2013).

Student Demographics and Background 
Characteristics on Gains
We gathered demographic and background data on stu-
dents to examine their potential influence on the posttest 
scores in the different quantitative skills. In the three se-
mesters for which we had demographic data, just more 
than half the students were female. Greater than 70% were 
either white or Asian. In Spring 2013 and Spring 2014, 
most students had a grade point average (GPA) of 3.1–4.0 
(65 and 59%, respectively). Fewer students had a GPA of 
3.1–4.0 in Summer 2013 (48%). Students in Summer 2013 
were less likely to have completed math and physics cours-
es in high school than students in either Spring 2013 or 
Spring 2014. They were also less likely to have taken cal-
culus 1 or 2 at UMBC. Summer 2013 had the most transfer 
students (33% compared with 16% in Spring 2013 and 27% 
in Spring 2014).

widely among semesters, and the gain was not significant 
in the Fall 2013 session (Table 2 and Figure 1A). There was 
considerable variation in the pretest scores from semester to 
semester, ranging from a low of 41% (Spring 2014) to a high 
of 68% (Fall 2013). While the difference among semesters in 
the range of scores on the pretest was 27%, on the posttest 
the range was much smaller (from a low of 61% to a high 
of 68%). Note that the effect size was strongest in those se-
mesters in which students came in with lower pretest scores 
(Spring 2013 and Spring 2014; Table 2). This suggests that, 
regardless of initial student ability, students obtained com-
parable levels of proficiency in this skill by the end of the 
semester. However, this also indicates that students with a 
high level of proficiency at the start of the course did not 
improve much during the semester.

Proficiency of Students in Interpreting Data
Students showed significant improvement every semester 
in their ability to interpret data sets and communicate those 
interpretations using visual tools, although the magnitude 
of improvement varied among semesters (Table 2 and Fig-
ure 1B). The effect sizes of the gains were generally more 
modest compared with those associated with quantitative 
numeracy (average d: quantitative numeracy = 0.54, data in-
terpretation = 0.29). The range of scores on the pretest across 
semesters was much smaller than that for quantitative nu-
meracy above (low of 49% in Spring 2013 to a high of 52% in 
Spring 2014). The skill level both initially and on the posttest 
was generally lower than that for quantitative numeracy 
(posttest scores ranged from 52 to 59%).

Table 1.  Results of student attitude assessment from pre- and postexam. The question was “How useful do you think that quantitative 
approaches (e.g., mathematical modeling, statistical analyses) are to the study of biology?”

Spring 2013 Summer 2013 Fall 2013 Spring 2014

Opinion % Pre % Post % Pre % Post % Pre % Post % Pre % Post

It’s impossible to study modern biological prob-
lems without such approaches.

41 32 43 32 36 37 25 28

Such approaches are extremely important for 
studying modern biological problems.

40 48 41 48 45 36 47 51

Such approaches are very important for studying 
modern biological problems.

15 19 14 19 17 23 23 18

Such approaches are somewhat important for 
studying modern biological problems.

3 1 3 1 3 4 3 2

Such approaches are not important for studying 
modern biological problems.

0 0 0 0 0 0 0 0

Table 2.  Results from the nested logistic regression analysis of student performance in pre/postexam scores (p values are those associated 
with the overall treatment effect in the model) in quantitative numeracy, data interpretation, and mathematical modelinga

Spring 2013 Summer 2013 Fall 2013 Spring 2014

Skill p d p d p d p d

Quantitative numeracy <0.0001 0.4 0.03 0.2 NS – 0.001 1.5

Data interpretation 0.001 0.4 0.01 0.1 <0.0001 0.2 0.001 0.5

Mathematical modeling 0.001 0.9 NS – 0.02 1.1 0.001 0.2

a p Values reported are for Wald’s chi-squared values. d Values are Cohen’s d effect sizes. All significant changes from the pre- to posttest 
scores represent positive gains in student skills.
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posttest exam. We included the pretest score of each student 
in this model as well (as suggested by Theobald and Free-
man, 2014). Results are shown in Appendix 5 (Tables A–C) 
in the Supplemental Material. For quantitative numeracy 
(Appendix 5A), in Spring 2013, three characteristics were 
significant predictors of postassessment performance: the 
pretest score, student transfer status, and whether the stu-
dents had taken precalculus in high school. On the basis of 
the regression coefficients of each significant effect for each 
additional point a student scores on the preassessment, we 
expect a student’s score on the postassessment to increase by 
0.273 points (β = 0.273, p < 0.0001). Transfer students were 
expected to score 8.072 points lower on the postassessment 
than nontransfer students (p < 0.05). Students who took pre-
calculus in high school were expected to score 9.853 points 
lower on the postassessment than students who did not take 
precalculus in high school (p < 0.05). In the Summer of 2013, 
only the preassessment score was related to postassessment 
performance in quantitative numeracy; a student’s score on 
the postassessment is expected to increase by 0.444 points for 
each additional point scored on the preassessment (p < 0.01). 
In Spring 2014, four variables predicted student scores on the 
posttest: student pretest scores, transfer status, whether stu-
dents had taken high school algebra, and whether students 
had AP credit for calculus or were taking calculus one at the 
same time as they were enrolled in the course. A student’s 
score on the postassessment was expected to increase by 
0.384 points for each additional point the student scored on 
the preassessment (p < 0.0001). Transfer students were ex-
pected to score 11.493 points lower on the postassessment 
than nontransfer students (p < 0.0001). Students who took 
algebra 1 in high school were expected to score 5.708 points 
lower on the postassessment than students who did not take 
algebra 1 in high school (p < 0.05). Students who received AP 
credit for calculus 1 or who already took or were currently 
taking calculus 1 at UMBC were expected to score 8.736 
points higher on the postassessment than their counterparts 
(p < 0.01).

Results for data interpretation are shown in Appendix 5B 
in the Supplemental Material. In Spring 2013 and Summer 
2013, the only variable related to postassessment perfor-
mance was the score on the preassessment. In Spring 2013, 
for each additional point scored on the preassessment, a stu-
dent’s score on the postassessment was expected to increase 
by 0.390 points (p < 0.0001). In Summer 2013, for each ad-
ditional point scored on the preassessment, a student’ score 
on the postassessment was expected to increase by 0.754 
points (p < 0.0001). In Spring 2014, two variables were signif-
icant, the score on the pretest and whether the student had 
AP credit for calculus or was taking calculus at UMBC at 
the time. In this case, for each additional point scored on the 
preassessment, a student’s score on the postassessment was 
expected to increase by 0.356 points (p < 0.0001). In addition, 
students who received AP credit for calculus 1 or who al-
ready were currently taking calculus 1 at UMBC were ex-
pected to score 14.520 points higher on the postassessment 
than their counterparts (p < 0.0001).

Results for mathematical modeling are shown in Appen-
dix 5C in the Supplemental Material. In Spring 2013, two 
variables were significant, the pretest score and whether 
students received AP credit for calculus 1 or already were 
currently taking calculus 1 at UMBC. For each additional 

Figure 1.  Results of pre/posttest for (A) quantitative numeracy, 
(B) data interpretation, and (C) mathematical modeling. Data reflect 
the average percent of students (±1 SE) who provided the correct 
answer on the pre- and posttest on questions that addressed each 
skill. Significant differences from the nested logistic regression be-
tween the pre- and posttest scores are indicated above the bars for 
each semester: ****, p < 0.0001; *, p < 0.05. 

We used multiple regression analysis to determine 
whether any of these demographic or student background 
variables were significant predictors of student scores in the 
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prising, given that the questions each referenced a graph that 
preceded the question and each of the questions and their 
answer options referred to quantitative reasoning concepts. 
For example, one high-performing student reasoned his way 
to the correct answer on question 5 (see Appendix 2 in the 
Supplemental Material), saying, “I decided that [the most 
reasonable hypothesis is] c. [Student reads the answer from 
the test sheet aloud:] When density is between 20–30 plants, 
we would expect no more than 20 seeds per plant. [Inter-
viewer: You mean 200?] 200, yeah. Because between 20 and 
30 for the plant density, we definitely see that there’s no data 
points above that, so we shouldn’t expect, if it were to follow 
this trend, to be like that. And I just decided that the other 
answers were either too specific or incorrect.” We coded this 
part of his explanation as quantitative reasoning, because 
the student refers to information that is provided only in the 
graph, and he correctly interprets the graph to say that there 
are no data points above 200 seeds per plant in the plant den-
sity range of 20–30 plants.

It is notable, however, that the interviewed students did not 
always apply quantitative reasoning concepts accurately, and 
at times, they used other forms of reasoning as well as quan-
titative reasoning, including approaches commonly taught as 
test-taking strategies (coded as general logic) and knowledge 
of how field biologists conduct research (coded as disciplinary 
knowledge). A lower-performing student answered question 
5 correctly also, but his thinking was based less on reasoning 
around his reading of the graph and more on the wording 
of the answers and which one sounded, in his words, “most 
reasonable.” He did use some quantitative reasoning in elimi-
nating answer “a,” noting: “There’s a wide range of seeds but 
they all look higher than as soon as you have more density, 
so I guess that’s an effect.” Likewise, to eliminate answer “b,” 
he looked at the graph, “If you look at the chart, after 30 it’s 
not the highest. Ten to 20 is a much higher rate of chance than 
30–40.” But in choosing answer “c,” his rationale was based 
more on the way it sounded: “The way that one is worded it 
just seems to me like it could actually be something that you 
could use as a hypothesis to apply to something else … It’s 
using this information to explain to you that if you have this 
range of plants based on this information we shouldn’t see 
any more than this number of seeds. Because it’s between this 
range, correlated with this information from this other place.” 
He drew on all three types of reasoning—quantitative, logi-
cal, and disciplinary—to eliminate answer “e.” Reading from 
the answer, he said: “When plants get to a density of 50, we 
expect none of them to produce seeds. This chart doesn’t say 
that at all, and it doesn’t really make any sense. If there’s any 
plants at all you would expect some of them to have seeds. I 
didn’t think that was right.”

The question that posed the most difficulty for the stu-
dents interviewed was question 2. Three of the seven in-
terviewees answered this question incorrectly, and each of 
their incorrect responses was different. One of these stu-
dents relied on quantitative reasoning to choose answer “e” 
(40 plants). Although he was able to use the key to focus cor-
rectly on the red marks on the graph for Assateague Island, 
he seemed to have confused the notions of plant density and 
plant sampling.

Another student who answered this question incorrectly, 
chose “d” (20 plants), noting in his explanation that he first 
read the background information, then looked at the chart, 

point scored on the preassessment, a student’s score on the 
postassessment was expected to increase by 0.257 points 
(p < 0.0001). Students who received AP credit for calculus 
1 or who already took or were currently taking calculus 1 
at UMBC were expected to score 16.447 points higher on 
the postassessment than their counterparts (p < 0.001). In 
Summer 2013, no variables were related to performance 
on the postassessment for this skill. In Spring 2014, three 
variables were significant: the score on the preassessment, 
transfer status, and whether students received AP credit 
for calculus 1 or had already taken or were currently taking 
calculus 1 at UMBC. For each additional point scored on 
the preassessment, a student’s score on the postassessment 
was expected to increase by 0.240 points (p < 0.0001). Trans-
fer students were expected to score 12.648 points lower on 
the postassessment than nontransfer students (p < 0.05). 
Students who received AP credit for calculus 1 or who had 
already taken or were currently taking calculus 1 at UMBC 
were expected to score 12.081 points higher on the postas-
sessment than their counterparts (p < 0.05).

Investigation of Students’ Reasoning on Selected Pre/
Posttest Questions
Three main categories of reasoning were discerned in these 
interviews: quantitative, disciplinary (biology), and gen-
eral logic. To distinguish these categories of reasoning, we 
read and reread the transcripts several times, looking for 
instances in which students explicated their reasoning pro-
cesses and analyzing them for similarities and connections. 
Initially, we detected six types of reasoning that students 
applied in their explanations: 1) reasoning in which stu-
dents referred to the graph provided in the test questions or 
other graphic knowledge (quantitative reasoning: graphic); 
2) quantitative forms of reasoning that did not specifically 
mention the graph (quantitative reasoning: general); 3) rea-
soning through use of biology concepts (biology knowledge: 
conceptual); 4) reasoning through appeal to how research 
in biology is conducted (biology knowledge: process); 5) 
rationales based on how tests are constructed and/or how 
they should be taken (test-taking knowledge); and 6) gener-
al, nonquantitative, non–disciplinary-specific knowledge or 
logic (general knowledge).

While each of these six types of reasoning seemed to be 
distinct, and each occurred in more than one interview, dis-
tinguishing between, for example, quantitative reasoning that 
specifically referred to the graph and that which made no ref-
erence to the graph or graphic knowledge was not relevant to 
our purposes. Thus, we combined these two categories into 
one category of quantitative reasoning. Likewise, it was not 
necessary to distinguish reasoning that appealed to knowledge 
of biological concepts from that which appealed to knowledge 
of how biological research was conducted, so those two cate-
gories were combined into one type of reasoning we refer to 
as disciplinary knowledge. And, finally, distinctions between 
reasoning that appealed to knowledge of best practices in test 
writing or test taking and other more general forms of logic 
were not relevant to our purposes, so we combined those two 
categories into one general logic category.

Of the three main categories of reasoning, by far the one 
used most prevalently was quantitative reasoning. The fact 
that quantitative reasoning was used so widely is not sur-
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average gains in performance, students improved the most 
in skills reflecting quantitative numeracy. Their ability to 
make biological inferences from mathematical models and to 
interpret data in biological contexts (primarily interpreting 
graphical results) showed smaller gains. To the extent that 
the module activities contributed to this skill development, 
we hypothesize that the prelaboratory activities, which re-
viewed key skills needed before students came to class, and 
the repeated application of similar skills to different biologi-
cal settings were important aspects of the modules that con-
tributed to the learning gains of students. We feel that it is 
also important to allow students to practice using quantita-
tive skills in the lecture portion of the course (in small groups 
or through clicker questions). This emphasizes to students 
the importance of quantitative skill development and inte-
grates the lecture and module activity components of the 
course. Further research is necessary to tease out the contri-
butions of each aspect of the design and implementation of 
the modules toward enhancing students’ performance.

The fact that students improved most in quantitative 
numeracy is not surprising, given that they used this skill 
in each module during the semester. The other skills were 
used less often (in particular mathematical modeling, which 
was only formally used in one module), and students may 
need additional practice to achieve greater gains in these 
competencies. Of course, the smaller gains could also be at-
tributable to other factors, such as the fact that interpreting 
data and using mathematical modeling are difficult skills 
to master, the modules were perhaps not very effective in 
improving these skills, there may have been poor alignment 
between modules and assessment, or our assessments may 
not have been sensitive enough to measure improvements 
that were made.

 The variability in gain also seems to be based on how 
much scope for improvement students had coming into the 
course; gains were typically higher in semesters when the 
pretest scores were lowest. Despite the fact that the course 
was taught by four different instructors in different semes-
ters, the degree of competency attained in each skill (at least 
as reflected by the posttest scores) was similar in each semes-
ter, regardless of the level of proficiency that students had 
coming into the course.

The degree of improvement was greater for some pop-
ulations of students than others. Aside from the predicted 
case, in which students who did well on the pretest did well 
on the posttest, the most general finding was that transfer 
students showed lower gains during the semester in skills 
associated with quantitative numeracy and mathemati-
cal modeling compared with their classmates who were 
nontransfer students. Many other studies have also noted  
poorer performance of transfer students (e.g., Graunke and 
Woosley, 2005; Duggan and Pickering, 2008), especially those 
majoring in mathematics and the sciences (Cejda et al., 1998; 
D’Amico et al., 2014). There could be many reasons for this, 
including poorer academic preparation, differences in de-
mands on their time (e.g., jobs, family obligations), and dif-
ferences between transfer and nontransfer students in their 
sense of community on campus (Townley et al., 2013). Un-
derstanding the reasons for the disparity of gains between 
transfer and nontransfer students will require further study. 
The only other fairly consistent demographic that predicted 
enhanced student performance was having received AP 

and then looked at the question. He said, “None of [these 
sources of information] told me a specific number where it 
said how many populations were selected. So I counted the 
individual observations and that was my answer … I assume 
that these [pointing to dots on the graph] are each individ-
ual plants.” This student seems to have drawn on general 
test-taking strategies (an approach that we coded as logic 
based) at first to see whether the answer was explicitly stated 
in either the background information or on the graph. When 
it was not, he then made an assumption (correctly) that each 
of the points on the graph represents a sample. His error was 
in not realizing, or perhaps not reading carefully enough to 
notice, that the question specifically asked for the number of 
samples of plants on Assateague, not both islands.

The third student who answered question 2 incorrectly 
selected “a” (100 plants) as her answer. She indicated that 
she had multiplied each plot point on the graph by the cor-
responding plant density on the x-axis and then added them 
together to arrive at an estimate that roughly corresponded 
to 100. She said: “I kind of tried to add them up, but I didn’t 
really add them all up. I just gave a rough estimate. I mean, 
adding up plant density for Assateague Island because it 
says that plant density is based on counts of the number of 
individual plants. So I just added up x values of the square 
ones, and 1000 is too large of a number. But it was much 
more greater than 40, so it must be around 100.” So, although 
she was using quantitative reasoning, like the other two stu-
dents who answered this question incorrectly, she seems to 
have confused plant density with the sampling of plants, not 
realizing that each plot point represents a sample.

In general, the students who ended the course with higher 
grades were more likely to use quantitative reasoning as their 
major or sole source of reasoning in answering the questions. 
Lower-performing students also used quantitative reasoning, 
but often poorly or incorrectly, and often supplemented with 
general logic or disciplinary knowledge when their quantita-
tive reasoning skills were not sufficient to the task of answer-
ing the question. For example, lower-performing students 
chose answers that reversed the causal relationships from 
what was displayed in the figure, were unable to recognize 
whether a figure displayed a positive or negative correla-
tion between variables, did not understand what a change 
in slope of a regression line would represent for the relation-
ship between two variables, and had difficulty understand-
ing the concept of individual points on a figure representing 
data samples taken at different time points. However, these 
students sometimes reached the correct answer to a question 
using appropriate biological logic, for example, “Well, if there 
are more plants in this area, they must be more crowded, so it 
doesn’t make sense that each one would make more seeds.”

For some questions, nearly all students struggled to apply 
quantitative reasoning appropriately, due to lack of familiar-
ity with the quantitative concept or term. For example, their 
explanations suggested that few of the students interviewed 
understood what it meant for one variable to be “sensitive” 
to changes in another (question 4, answers “b” and “c”).

DISCUSSION

We saw significant improvement in all skill areas tested in 
most semesters, though the effect sizes were often modest 
and varied from semester to semester. On the basis of the 
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skills one semester removed from the experience. Speth et al. 
(2010) found that infusing quantitative concepts using mod-
ules throughout an undergraduate biology course, includ-
ing on the assessments, led to a significant improvement in 
their students’ ability to interpret graphically represented 
data and to create graphical representations of numerical 
data. They did find, however, that students still had diffi-
culty in constructing scientific arguments based on data, and 
they note that this is a difficult skill to master in only one 
semester.

In our case, the gains in student skills were fairly mod-
est, which could be explained by two major factors. First, 
students are often attracted to biology because they per-
ceive it as the least quantitative of STEM disciplines. As a 
result, they may be less academically (and even emotion-
ally) prepared to integrate quantitative reasoning in bio-
logical settings. Second, the changes we imposed occurred 
in a single course, with only four modules implemented 
across the semester. Many authors, as noted above, have 
emphasized that short-term exposure is unlikely to make 
a lasting difference in students’ skills and attitudes (e.g., 
Barsoum et al., 2013; van Vliet et al., 2015). The findings of 
our small qualitative study of students’ reasoning seem to 
offer further support for this notion. Although all the stu-
dents we interviewed demonstrated their ability to apply 
quantitative reasoning to problems that clearly called for 
it, their application of such reasoning was uneven and at 
times incorrect, which may suggest that it takes further 
exposure and practice for these skills to be well integrated 
into students’ thought processes. Thus, we believe that it 
is likely that greater and longer-lasting improvements in 
quantitative competencies will only be possible through 
broader curricular reform, including consistent integration 
of mathematics and statistics (ramping up the sophistica-
tion of each across the levels) throughout the biology cur-
riculum. Even within a course, stand-alone modules may 
not be the best way to promote our goals; Hester et al. (2014, 
p. 55) report, “We found that stand-alone modules, done 
on the students’ own time, perpetuated the perception that 
math was an ‘add-on’ that was not representative of the 
core content in biology.” Some have even argued that biol-
ogy, mathematics, physics, and chemistry should be taught 
in a fully integrated manner (Bialek and Botstein, 2004), and 
there appears to be some movement in this direction (e.g., 
Depelteau et al., 2010). Because the barriers to this integra-
tion are so high and so many, we continue to see value in 
our approach. Alternatively, our approach may be seen as 
the first step toward a truly interdisciplinary curriculum for 
life sciences students.

The question to which we must always return in pedagogy 
is: What is the very best use of the very limited time we have 
in the classroom with our students? Fortunately, this is an 
empirical question. Though still promulgated, the view that 
employing deeper learning techniques such as our modules 
requires reduction in the number of topics discussed or re-
sults in students attaining lower degrees of content knowl-
edge has been empirically overturned (e.g., Fatmi et al., 2013; 
Freeman et al., 2013; Nanes, 2014). Courses and curricula or-
ganized as if our role is to pour our knowledge into students’ 
brains, a school of thought that is still prevalent, harm those 
students by focusing on lower-level cognitive skills to the ex-
clusion of analysis and critical thinking (Momsen et al., 2010). 

credit for calculus or taking calculus concurrently with the 
introductory biology course in ecology and evolution. None 
of the modules required calculus, however, and the only pre/
corequisite for our course is precalculus. As such, we suspect 
that the explanation has less to do with preparation in calcu-
lus than it does with general student academic preparation. 
There is also the possibility that prior experience with cal-
culus develops higher-order problem-solving skills. Again, 
more research is needed in this area to see whether this is 
a general pattern for other courses (particularly in science, 
technology, engineering, and mathematics [STEM] areas) 
and to understand the reasons for this, if so.

There was one curious finding from our demographic 
analysis related to posttest performance on questions related 
to quantitative numeracy: students who took algebra 1 in 
high school scored significantly lower on the postassessment 
than students who did not take algebra 1 in high school. Al-
though this relationship was only formally significant in one 
of the semesters (Spring 2014), the sign and magnitude of the 
regression coefficient was negative and similar in magnitude 
every semester, suggesting that this is a consistent relation-
ship. While we do not know the exact cause of this relation-
ship, we note that the sign of the regression coefficients asso-
ciated with students who had taken algebra 2 in high school 
was fairly large and positive in two of the three semesters 
measured (indicating a positive influence of completing al-
gebra 2 on quantitative numeracy, although this effect was 
not significant in our analysis). This would indicate that, 
if algebra 1 is the highest level of mathematics completed 
in high school, this has a negative effect on student perfor-
mance in tasks related to quantitative numeracy as freshman 
college students.

A number of efforts to infuse more quantitative reasoning 
into biology courses have been described in the literature, 
and many of these have seen positive effects on both stu-
dent attitudes (Matthews et al., 2010; Thompson et al., 2010; 
Goldstein and Flynn, 2011; Barsoum et  al., 2013) and skill 
development (e.g., Thompson et  al., 2010; Colon-Berlingeri 
and Burrowes, 2011; Goldstein and Flynn, 2011; Madlung 
et  al., 2011; Hester et  al., 2014). For example, Hester et  al. 
(2014) designed a new course in molecular and cell biology 
that required greater reliance on mathematical skills and rea-
soning to understand biological concepts. They found that 
students initially had poor ability to apply their quantitative 
skills to biological contexts but improved when quantitative 
reasoning was integrated throughout the course, including 
in in-class exercises and on exams. Another course redesign 
was implemented with development of a new textbook that 
integrated more quantitative reasoning into introductory 
biology courses (Barsoum et al., 2013). The new course and 
accompanying text focused more on the process of science 
and less on biological content knowledge. Data interpreta-
tion by students taking the new course was significantly bet-
ter than those taking the traditional course. In addition, de-
spite the decrease in content focus, students taking the new 
course did just as well on tests of biology content knowledge 
as did those in the traditional course. Thus, the improved 
quantitative skills did not come at the expense of biological 
knowledge, a finding consistent with at least one other study 
(Madlung et al., 2011). Interestingly, the difference in quan-
titative skills between students in the new and traditional 
course disappeared when students were tested on similar 
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Our goal should be to equip students with the cognitive tools 
they need to investigate questions of interest to them (Gross, 
2004), and the evidence is clear that students can only acquire 
such tools via active application of course concepts to realis-
tic and significant problems. To be effective, these pedagog-
ical reforms must escape single courses of individual moti-
vated faculty and become part of the fabric of undergraduate 
science education.
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