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Recent reform efforts in undergraduate biology have recommended transforming course exams to 
test at more cognitively challenging levels, which may mean including more cognitively challenging 
and more constructed-response questions on assessments. However, changing the characteristics 
of exams could result in bias against historically underserved groups. In this study, we examined 
whether and to what extent the characteristics of instructor-generated tests impact the exam perfor-
mance of male and female and middle/high- and low-socioeconomic status (SES) students enrolled 
in introductory biology courses. We collected exam scores for 4810 students from 87 unique exams 
taken across 3 yr of the introductory biology series at a large research university. We determined the 
median Bloom’s level and the percentage of constructed-response questions for each exam. Despite 
controlling for prior academic ability in our models, we found that males and middle/high-SES 
students were disproportionately favored as the Bloom’s level of exams increased. Additionally, 
middle/high-SES students were favored as the proportion of constructed-response questions on 
exams increased. Given that we controlled for prior academic ability, our findings do not likely re-
flect differences in academic ability level. We discuss possible explanations for our findings and how 
they might impact how we assess our students.

Article

impacts a student’s ability to pass a course, overall science 
grade point average (GPA), and, ultimately, persistence as 
a biology major. Although we expect to see a range of stu-
dent performance based on academic ability, systematic dif-
ferences in how different populations of students perform 
on exams potentially contributes to the unequal retention of 
different demographic groups in biology.

For most introductory biology courses, instructors write 
their own course exams and decide the format of the exam 
(e.g., multiple choice or short answers), the topics assessed 
(e.g., photosynthesis or phylogenies), and the level to test 
student understanding (e.g., memorization of a definition 
or interpretation of an experiment). Although exams can be 
characterized in many different dimensions, in this paper, 
we will focus on cognitive level (Bloom et al., 1956; Anderson 
et  al., 2001) and the format of exam questions. Although 
there are few studies exploring biology instructor decision 
making on developing course exams, there is evidence that 
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INTRODUCTION

Student performance on course exams is one of the primary 
ways that introductory biology instructors evaluate student 
understanding and determine course grades, which in turn 
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instructors are not using cognitively challenging exam ques-
tions (Momsen et  al., 2010, 2013) and that a large number 
of college instructors report they are using multiple-choice 
tests (DeAngelo et al., 2009).

In an effort to promote deeper student conceptual under-
standing, recent reform efforts in undergraduate biology 
have recommended transforming our exams to test at more 
cognitively challenging levels (e.g., American Association 
for the Advancement of Science, 2011). One way of evalu-
ating the cognitive level of exams and their questions is to 
categorize each question according to Bloom’s taxonomy of 
cognitive domains (Bloom et al., 1956; Anderson et al., 2001; 
Crowe et  al., 2008). There is evidence that higher Bloom’s-
level exams have the potential to move students from super-
ficial to deep conceptual understanding (Black and Wiliam, 
1998; Stanger-Hall, 2012; Jensen et  al., 2014). For example, 
Jensen and colleagues (2014) found that college biology stu-
dents adapt their learning to the level of their exams. When 
students were tested at only the memorization level on 
high-stakes assessments, even when given the opportunity 
to practice cognitively more challenging questions in class, 
they did not develop higher-order cognitive skills. Students 
developed these higher-order skills only when they com-
pleted high-stakes assessments that reinforced the high cog-
nitive level of classroom practice. Similarly, McDaniel and 
colleagues (2013) found that middle school science students 
scored higher on more cognitively challenging exam ques-
tions when previously quizzed with this level of questions 
compared with when they were either quizzed with low-
level questions or not quizzed at all.

Further, the format of exam questions also influences how 
students engage with course material. When students ex-
pect a test to contain constructed-response questions (e.g., 
questions for which students must generate the response: 
short answer, essay, graphing/drawing), they tend to take 
a deeper approach to learning and take notes that concen-
trate more on main ideas and core concepts (Rickards and 
Friedman, 1978; Thomas and Bain, 1984; Entwistle and 
Entwistle, 1991). Conversely, students tend to approach 
learning superficially when they expect tests to have restrict-
ed-response questions (e.g., questions for which students 
choose from a set of answers: multiple choice, true/false) or 
questions that test lower-order thinking.

Thus, it appears that more cognitively challenging ques-
tions on exams and more constructed-response questions on 
exams have the potential to move students toward develop-
ing deeper conceptual understanding. However, incorporat-
ing more cognitively challenging and constructed-response 
questions may have unintended consequences for histori-
cally underserved groups in science, technology, engineer-
ing, and mathematics classrooms. A number of K–12 studies 
have documented that, even after controlling for a measure 
of academic ability, changing the characteristics of exams dif-
ferentially impacted the achievement of students of different 
genders and races/ethnicities. Increasing the cognitive com-
plexity of assessments favored the performance of male over 
female students at the middle and high school level (Carlton 
and Harris, 1992; Harris and Carlton, 1993; Lindberg et al., 
2010; but see Bastick, 2002). Increasing the cognitive level 
of exams also favored white high school students over stu-
dents of other racial/ethnic/nationality identities (Carlton 
and Harris, 1992). Exam format can also have a differential 

impact on students, as many studies have demonstrated that 
males tend to perform better on restricted-response ques-
tions and women tend to perform better on constructed-re-
sponse questions on general science and math assessments 
administered at the K–12 level (Mazzeo et al., 1993; DeMars, 
1998, 2000; Beller and Gafni, 2000; Lindberg et al., 2010; but 
see DeMars, 1998; Beller and Gafni, 2000; Neuschmidt et al., 
2008; Le, 2009; Lindberg et  al., 2010). Additionally, restrict-
ed-response questions tend to favor the performance of 
white students, while constructed-response questions tend 
to favor the performance of students of other racial/ethnic/
national identities at the K–12 level (Taylor and Lee, 2011; 
but see DeMars, 2000).

There have also been college-level studies exploring the 
impact of exam characteristics on student performance 
in mathematics (Ryan and Chiu, 2001; Lindberg et  al., 
2010), atmospheric and oceanic sciences (Weaver and 
Raptis, 2001), and biology (Migliaccio and Sheikh, 2009; 
Stanger-Hall, 2012). Generally, these studies have shown 
somewhat inconsistent patterns regarding the impact of the 
cognitive level of questions on the performance of males 
and females. Some studies have found that the perfor-
mance of male students on math and biology assessments 
was favored only on questions testing higher cognitive 
thinking (Ryan and Chiu, 2001; Migliaccio and Sheikh, 
2009), whereas Stanger-Hall (2012) found that male stu-
dents are favored on biology questions testing both lower 
and higher levels of cognitive thinking. However, Lindberg 
et al. (2010) showed that the performance of male students 
was favored on less cognitively challenging questions in 
math, but that there was a slight performance gap that fa-
vored females on more cognitively challenging questions. 
Similar inconsistencies have been observed with respect 
to format. Ryan and Chiu (2001) found that math word 
problems differentially favored male students. Conversely, 
Weaver and Raptis (2001) showed that, on atmospheric and 
oceanic sciences exams, male students performed better on 
restricted-response questions, with females doing better 
on constructed-response questions. Stanger-Hall (2012) ob-
served no differences in performance between males and 
females on constructed-response questions in biology, but 
males were favored on restricted-response questions. These 
inconsistencies may be due to small sample sizes, and they 
reflect the need for more large-scale studies. Further, to our 
knowledge, no studies have documented how the format 
and cognitive-challenge level of assessment questions im-
pacts the performance of students from different socioeco-
nomic backgrounds.

To address this gap in the literature, we take the first step 
of conducting a large-scale analysis of multiple introductory 
biology courses to see whether and to what extent charac-
teristics of instructor-generated summative assessments ad-
ministered in introductory biology classrooms differentially 
impact students of different genders and different socioeco-
nomic backgrounds.

Prediction 1: We predict that increasing the Bloom’s level 
of instructor-generated undergraduate biology exams will 
disproportionately favor the performance of males and 
students from middle/high-socioeconomic status (SES) 
backgrounds over females and students from low-SES 
backgrounds, respectively.
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Prediction 2: Increasing the percentage of constructed- 
response questions on instructor-generated undergradu-
ate biology exams will disproportionately favor the per-
formance of female and low-SES students over male and 
middle/high-SES students, respectively.

METHODS

We collected data from 26 instructors teaching intro-
ductory biology classes across a time span of 3 yr. We 
then characterized the Bloom’s level, difficulty, and for-
mat of each exam (described in more detail below in 
the section titled The Exams). Our study has a quasi- 
random design, as students select the classes they attend. 
The lack of truly random study design means that there is 
the potential for student exam performance to be influenced 
by factors that we have not measured and/or that are out-
side our variables of interest. To minimize the confounding 
variables in our study, we included variables to account for 
the differences between 1) the 25 classes in our sample due to 
instructors and content and 2) the students in our sample. We 
included these variables as fixed and random effect variables 
in a linear mixed-effects model. Below in the sections titled 
The Classes, The Students, The Exams, and General Description 
of Statistical Analyses, we outline the variation seen at each of 
these levels and the variables we used to control for varia-
tion at these levels.

The Classes
We examined 25 individual classes of the three-course intro-
ductory biology sequence for majors over a 3-yr period at 
a large public R1 university on the quarter system. Fifteen 
of these classes (60%) were cotaught by different instructors, 
each teaching for a 5-wk period. Therefore, we were able to 
collect exams from 26 different instructors. The three courses 
are intended to introduce students to the breadth of biology: 
the first course in the series introduces ecology and evolution, 
the second course focuses on molecular and cellular biology, 
and the third course explores plant and animal physiology. 
The introductory biology series must be completed in the 
aforementioned order, with enrollment in each subsequent 
course contingent on completing the previous course(s) in 
the introductory biology series. The individual classes in our 
data set ranged in size from 159 to more than 900 students. A 
study that recently investigated the teaching strategies of the 
classrooms used in our study documented that instructional 
practices varied between instructors, ranging from almost 
entirely traditional lecture to more student-centered interac-
tive methods (Eddy et al., 2015).

Accounting for Differences among Instructors and Courses.  
Variation in the course environment due to differences 
among instructors in our data set has the potential to influ-
ence student performance. For example, differences in the 
gender of the instructor can impact the achievement gap be-
tween male and female students in a course (Carrell et  al., 
2010; Eddy et al., 2014). In addition, differences in the instruc-
tional practices that instructors use have also been demon-
strated to impact achievement (Wenglinsky, 2002; Freeman 
et al., 2011, 2014; Haak et al., 2011; Eddy and Hogan, 2014 ). To 
account for variation in the course environment due to dif-

ferences among instructors that are not accounted for by the 
exam characteristics, we included a random-effect term for 
individual instructors in our model. We also included course 
as a fixed effect in our model to account for differences in the 
topics taught in each of the courses.

The Students
Students who enrolled in the introductory series were pre-
dominantly sophomore biology majors. Across students in 
our sample, 58% (n = 2790) were female, while 42% were 
male (n = 2020), but the proportion of females to males var-
ied among classes. Only students who identified their gender 
were included in the analyses. In addition, 44% (n = 2094) of 
the students identified as white/Caucasian, 37% (n = 1765) as 
Asian, 2% (n = 120) as black/African American, 1% (n = 43) 
as Hawaiian/Pacific Islander, 5% (n = 255) as Hispanic/ 
Latin@, 7% (n = 327) as international students, and 1% 
(n = 56) as Native American. Approximately 3% (n = 150) in 
our sample did not list a racial/ethnic/national identity. We 
should note that the gender and racial/ethnic/national cat-
egories represent university-designated groups and do not 
fully reflect the spectrum and complexities of social identi-
ties. The institution also identified students who came from 
educationally or economically disadvantaged backgrounds, 
and these students were eligible to participate in the Educa-
tional Opportunity Program (EOP). The impact(s) of family 
income, level of parental education, and or social/environ-
mental barriers on academic success were taken into consid-
eration when the institution determined whether a student 
qualified for the program. In our study, 17% (n = 817) of stu-
dents were classified as eligible for the program, while 83% 
(n = 3993) of students were classified as not eligible for the 
program. For our analyses, eligibility for the EOP program 
served as a proxy for SES, and we will refer to students eli-
gible for the EOP program as students from a low-SES back-
ground (similar to Freeman et al., 2007).

In addition to demographic variables, we also collected 
a measure of general ability in college: cumulative GPA at 
time of entry into the introductory biology series. Before en-
tering the introductory biology series, most of the students 
took ∼45 total credits during their freshman year. Sophomore 
biology majors in our study were required to complete the 
following courses before entering into the three-course in-
troductory biology series: three courses of general chemis-
try, three courses of calculus, and one English composition 
course, with the remaining credits being filled by general 
education credits (e.g., sociology, drama, geography, art). 
Cumulative GPA has been shown to strongly predict the 
grade of students at the end of introductory courses for this 
population (Freeman et al., 2007, 2011). The mean cumulative 
GPA for students in the series was 3.21 (on a 4.0 scale), the 
median cumulative GPA was 3.27, and the GPA of all stu-
dents included in this study ranged from 0.55 to 4.0.

Accounting for Differences among Students.  To determine 
which demographic variables to include in our models, we 
examined our data to determine whether and to what ex-
tent our demographic variables of interest (gender, SES sta-
tus, and race/ethnicity/nationality) were correlated with 
one another. We found that students who were from low-
SES backgrounds also tended to be underserved minori-
ties (3% of all white/Caucasian students, 19% of all Asian 
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Determining Exam Characteristics: Weighted Bloom’s Index.  
Using the technique described by Crowe et al. (2008), two rat-
ers, each of whom had a bachelor’s degree in biology and 
had served as a teaching assistant in introductory biology 
classes at the college level, independently determined the 
Bloom’s level of all of the exam questions. This process be-
gan with a third person collecting exams from all the instruc-
tors and creating a randomized list of all the exam questions. 
This guaranteed that the raters were blind to which instruc-
tor wrote each question. Raters normed on a set of 50 ques-
tions and received expert feedback and advice on Blooming 
from two of the authors of Crowe et  al. (2008). Observers 
then individually assigned a Bloom’s level of knowledge, 
comprehension, application, analysis, synthesis, or evalu-
ation to each question. On completion of their individual 
scoring, they discussed the scores, and when they disagreed, 
they came to consensus on the Bloom’s level of each ques-
tion. After consensus was reached, the categories for Bloom’s 
level were collapsed from six to three levels: high (synthe-
sis and evaluation), medium (application and analysis), and 
low (knowledge and comprehension). For any question with 
multiple subparts (e.g., a question with part a and part b), we 
assigned the median Bloom’s level across all the subparts.

To create an aggregate Bloom’s score for each exam, we 
followed the methods for creating a weighted Bloom’s in-
dex, described in Freeman et al. (2011):

∑ ×
×













× =
p B

T 3
100 weighted Bloom’s median

n

1

where n is the number of questions, p is points per question, 
B = Bloom’s rank (1, 2, or 3 for low, medium, and high Bloom’s 
level, respectively) for that question, T is the total points pos-
sible, and 3 is the maximum possible Bloom’s score. Ulti-
mately, for each exam, the weighted Bloom’s level for each 
test was converted to a score on a scale of 0.33–1, with 0.33 
being the lowest possible weighted Bloom’s level (i.e., what 
an exam with only low-level questions would earn) and 1 be-
ing the highest Bloom’s level possible (i.e., what an exam that 
had all high-level questions would earn). We then calculated 
the median weighted Bloom’s level for each exam.

Determining Exam Characteristics: Constructed-Response 
versus Restricted-Response Questions.  Two raters recorded 
the format of each item, identifying each question as con-
structed-response (e.g. short answer, fill in the blank, es-
say, graphing, or drawing questions) or restricted-response 
(e.g. multiple choice, true/false, multiple true/false, or 
matching). Observers came to consensus on question format. 
Percent of questions that were constructed-response (percent 
CR) on each exam was then determined. Ultimately, for each 
exam, the percentage of questions on each test that were 
constructed-response was converted to a scale of 0–1, with 0 
being a test that consists of entirely restricted-response ques-
tions and 1 being a test that consists entirely of construct-
ed-response questions.

Controlling for Additional Exam Characteristics: Weight-
ed Difficulty Index.  Although we were primarily inter-
ested in Bloom’s level and exam format, we needed to 
control for additional exam characteristics that might be 

students, 0% of all international students, 90% of all black/ 
African-American students, 84% of all Hawaiian/Pacific 
Islander students, 88% of all Hispanic/Latin@ students, and 
79% of all Native American students were identified as low-
SES students; Table A, Supplemental Material). Furthermore, 
19% of all females and 14% of all males were identified as 
low-SES students (Table A, Supplemental Material). Because 
underserved minorities tended to be low-SES students and 
because the sample size for students identifying as certain 
racial/ethnic/national identities was small, we chose not to 
test for the impact of race/ethnicity/nationality in our study. 
Rather, we included interaction terms for both gender and 
SES status with exam characteristics in our models.

To account for differences in student preparedness and aca-
demic ability among students in our models, we included two 
covariates: a fixed-effect term for cumulative college GPA as a 
proxy for differences in academic ability and a random-effect 
term for student identity to account for overall differences 
among students not accounted for by cumulative GPA or 
other variables in our models. We chose to use cumulative 
incoming GPA to control for prior academic ability in our 
models, because previous work (Freeman et al., 2007) and our 
own preliminary analyses indicate that cumulative incoming 
GPA is the strongest predictor of performance in these biol-
ogy courses. In addition, including student identity as a ran-
dom effect in our model allowed us to account for repeated 
measures on the same students (each student is represented 
at least four times in the data set: once for each of the four 
exams they took in a term, although some students took mul-
tiple courses in the introductory series), avoiding potential 
issues of pseudoreplication. Additionally, including student 
as a random-effects term in our models allowed us to account 
for differences in students’ prior experiences not included in 
our models. For example, work has shown that first-year un-
dergraduate biology students who completed first-year biol-
ogy courses taught using learner-centered teaching strategies 
showed higher performance on content knowledge assess-
ments taken their senior year compared with students who 
completed more traditional, unrevised courses (Derting and 
Ebert-May, 2010). A random-effects term for student allowed 
us to account for these and other differences in students’ 
prior experiences not included in our analyses.

Given the covariates included in our model, our model 
outputs are describing the differences between men and 
women or between students from lower- or middle/high-
SES backgrounds who entered the biology series with equal 
academic ability based on their prior courses and who are 
experiencing the same course environment (i.e., enrolled in 
the same course with the same instructor).

The Exams
For each question on each exam, we determined the Bloom’s 
level, the format, and the difficulty of the question. Because 
the exam score data for students were at the level of the whole 
exam rather than individual questions, we pooled the exam 
characteristic data across exam questions for each exam to 
produce an exam-level measure of each of these three vari-
ables. Below in the sections titled Determining Exam Charac-
teristics and Controlling for Additional Exam Characteristics, we 
outline the specific methods used to determine each exam 
characteristic.



Exam Characteristics Impact Performance

Vol. 15, Summer 2016� 15:ar23, 5

that had been teaching assistants for multiple iterations of 
the classes they were scoring. They had graded multiple ex-
ams and had a strong contextual background to make infer-
ences about the types of questions that are challenging for 
students. As with Bloom’s levels, raters scored question dif-
ficulty using a randomized list of all of the questions so they 
were blind to the instructor who wrote each question. Raters 
came to consensus on the difficulty level for each question. If 
a question had multiple subparts, then the median difficulty 
of the subparts was used.

To create an aggregate difficulty measure for each exam, 
we determined a weighted difficulty index by using meth-
ods similar to Freeman et  al. (2011) and the equation de-
scribed above, with difficulty level replacing Bloom’s rank. 
Ultimately, for each exam, the weighted difficulty for each 
test was converted to a score on a scale of 0.33–1, with 0.33 
being the lowest possible difficulty (i.e., the raters predicted 
80% or more of students would get it correct) and 1 being the 
highest difficulty possible (i.e., the raters predicted < 60% of 
students would get it correct). We then calculated the me-
dian weighted difficulty for each exam.

Determining Which Exam Characteristics to Include in Our 
Model.  To develop the fixed effects of our baseline models, 
we first examined the correlation matrix between the three 
exam characteristic measures to determine which variables, 
if any, were correlated with one another (Table C, Supple-
mental Material). We found that the percent CR of an exam 
was moderately to strongly (0.47) correlated with the medi-
an weighted Bloom’s level of an exam. Given the level of cor-
relation between Bloom’s level and percent CR, we chose to 
run separate regression analyses on these two exam charac-
teristics. However, we found only small correlations between 
Bloom’s level and exam difficulty as well as between percent 
CR and exam difficulty. We therefore chose to include diffi-
culty as a covariate in our baseline models. Thus, when we 
describe our model outputs, we are describing differences 
between males and females or between students from lower 
or middle/high-SES backgrounds who took exams with the 
same level of difficulty.

In addition to difficulty, we also accounted for when an 
exam was given during a particular course. We used exam 
number as a proxy for time in the course, as student per-
formance on an exam may be influenced by the duration of 
their learning in a course, and thus was included as a fixed 
effect in our analyses.

General Description of Statistical Analyses
Response Variable.  The response variable for our analyses 
was overall student performance on each exam, which was 
measured as a percent of exam points earned. Because our 
percentage score data were not continuous (scores were 
limited to 0–100%, or 0–1 when converted to proportional 
data), we transformed our data using an arcsine transfor-
mation, which consists of taking the arcsine of the square 
root of the exam scores. Percentage data, like proportions, 
have a binomial distribution rather than a normal distri-
bution, with the largest deviations of normality occurring 
for scores less than 30% or greater than 70%. Arcsine trans-
formations, which are commonly applied to percentage 
and proportional data, produce data that have a nearly 
normal underlying distribution (Zar, 2010), thus meeting 

correlated with these variables of interest. One such vari-
able could be question difficulty. Question difficulty is a 
gauge of how easy or hard a question may be. In general, 
both low- and high-performing students tend to correctly 
answer questions that are considered to be “easy,” while 
“harder” questions are defined as those questions that only 
high-performing individuals tend to answer correctly (de 
Ayala, 2009). Increased difficulty can be positively correlat-
ed with questions that test higher Bloom’s level of think-
ing, although it is possible to require students to memorize 
an obscure fact that makes a question difficult (e.g., Free-
man et  al., 2011; but see Momsen et  al., 2013). Given the 
potential correlation between difficulty and Bloom’s level, 
we determined the difficulty of each of the exams used in 
our analysis.

To determine the characteristics related to item difficulty, 
we consulted the research literature as well as instructors 
(n = 3) and teaching assistants (n = 6) who had multiple terms 
of experience teaching in the introductory biology series. In 
these intro courses, teaching assistants grade the exams and 
have a strong contextual background to make inferences 
about the types of questions that are challenging for stu-
dents. In consultation with these sources, we developed a list 
of item characteristics that, in the experience of instructors 
and teaching assistants, generally lead to lower student per-
formance on exam items in the introductory biology series 
at our institution. The intent of the difficulty measure was 
to capture elements of a question not included in Bloom’s 
level that could impact performance, including features like 
the reading load of a question and how challenging the topic 
was for students in general. Thus, we eliminated any charac-
teristics that seemed related to cognitive processes captured 
by Bloom’s taxonomy. The final list can be found in Table B 
in the Supplemental Material.

In addition to compiling a list of characteristics for raters 
to consider as they looked at the exam questions, we adapted 
the methods of Freeman et al. (2011) for scoring the difficulty 
of an item: we asked teaching assistants to determine the 
percent of the class who would get the item correct (for ques-
tions scored as right/wrong) or the number of points the av-
erage student would score on an item. We modified this to 
a three-point scale (easy, medium, hard) by looking at the 
distribution of student performance on one term of exams 
for which we had item-level performance data. We divided 
the distribution of item scores into thirds. The hardest third 
of items (a score of 3) were those items that 60% or fewer 
students correctly answered or, for items scored with par-
tial credit, items for which students earned less than half the 
total possible points. The easiest third of the items (a score 
of 1) were considered those items that 80% or more of the 
students correctly answered or, for items scored with partial 
credit, items for which students earned 75% or more of the 
total possible points. See Table B in the Supplemental Mate-
rial for the final difficulty tool.

We recognize that this difficulty metric is not a validated 
instrument. It was not intended to be used across institutions 
but instead was developed from experiences in these partic-
ular class contexts using methods used in other studies with 
our specific students.

Four raters determined the difficulty of exam questions 
across the three courses in the introductory series. Following 
the suggestions of Freeman et  al. (2011), we selected raters 
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(Barton, 2015) to determine the best-fitting model for each 
exam characteristic. Multilevel models were analyzed in R 
using the lme4 package (Bates et al., 2014).

Model-Selection Procedure.  We identified the fixed-effect 
variables that best explain student exam scores using a 
widely accepted multimodel inference approach called 
Akaike’s information criterion (AIC; Akaike, 1973), specif-
ically using AIC corrected for small sample sizes (AICc). 
AICc values were used to determine which model best 
fit our data given our sample size. AICc values were also 
used to rank models, with the lowest AICc values repre-
senting the best-fitting models. Using AICc values, we 
calculated differences in AICc values relative to the best 
model (ΔAICc) and Akaike weights (ωi). Large ΔAICc values 
indicate that models are less likely to explain differences 
in the response variable, with models that have ΔAICc > 10 
considered poor models (Burnham and Anderson, 2004). 
ωi are used to compare models, as they are an approxima-
tion of the probability that a given model is the best-fitting 
model given the observed data (Burnham and Anderson, 
2004). Thus, larger ωi are indicative of better-fitting mod-
els. AICc analyses were performed in R using the MuMIn 
package (Barton, 2015).

In addition to providing AICc values, ΔAICc, and ωi for 
model selection, the MuMIn package also generates mod-
el-averaged regression coefficients from all of the mod-
els included in the selection procedure. The calculation of 
model-averaged regression coefficients takes into account 

the assumptions of the linear regression analyses that we 
performed.

Regression Analyses.  We used a hierarchical modeling ap-
proach, because students who experienced courses taught by 
the same instructor and took exams constructed by the same 
instructor likely had scores that were more comparable to the 
scores of other students whose courses were taught by and 
whose exams were constructed by the same instructor than 
to exam scores of students whose courses were taught by 
and whose exams were constructed by a different instructor, 
even within the same course. Additionally, we have fixed-ef-
fect terms at both the student level (gender identity, SES, and 
cumulative college GPA coming into the course) and the in-
structor/course/exam level (course, exam characteristics, 
exam number). Because of the hierarchical nature of the data 
set, we used multilevel modeling for our statistical analyses, 
which is a common approach used in a wide array of fields 
(e.g., Paterson and Goldstein, 1991; Kreft and de Leeuw, 2002; 
Raudenbush and Bryk, 2002; Zuur et  al., 2009; Eddy et  al., 
2014). See Zuur et al. (2009) for a detailed description of mul-
tilevel modeling to account for hierarchally nested data sets.

We then performed preliminary analyses on the impact of 
each of the fixed effects and potential interactions on students’ 
arcsine-transformed exam scores. Fixed-effect terms that inde-
pendently had a significant impact on our response variable 
were included in our baseline models. Using the information 
from the correlation matrices and our preliminary analyses, 
we generated the following full model for our analyses:

Exam Performance Course Time Cum.GPA Gender SES W.Diff Exam Characteristic Gender * Exam Characteristic

SES * Exam Characteristic (1|Stu.ID) (1|Instr)

= + + + + + + +
+ + +

where 1) “Course” represents the three different introducto-
ry courses (a categorical variable with three levels) used in 
this analyses, 2) “Time” is the exam number (a categorical 
variable with four levels), 3) “Cum.GPA” is the cumulative 
college GPA upon entering the introductory biology se-
quence (a continuous variable ranging from 0 to 4), 4) “Gen-
der” is the student’s gender identity (constrained to a binary: 
male, female), 5) “SES” is represented by proxy for student 
SES: eligibility for the Educational Opportunities Program 
(constrained to a binary: middle/high-SES and low-SES), 
6) “W.Diff” is the weighted median difficulty of an exam (a 
continuous variable ranging from 0.33 to 1), 7) “Exam Char-
acteristics” represent either a) the weighted median Bloom’s 
level of an exam (W.Blooms; a continuous variable ranging 
from 0.33 to 1) or b) the percentage of constructed-response 
questions on an exam (percent CR; a continuous variable 
ranging from 0 to 1). We also included interaction terms for 
both gender and SES with W.Blooms and percent CR. Final-
ly, our models included the random-effects terms for student 
identity (1|Stu.ID) and instructor (1|Instr) to account for the 
nested nature of our data set, specifically the repeated mea-
sures on students and the fact that students are nested with-
in instructors’ courses.

We included only students who had a complete set of all 
of the aforementioned variables. We generated two sepa-
rate full models incorporating each of the exam character-
istics of interest (W.Blooms and percent CR) and separately 
ran a model-selection procedure using the MuMIn package 

uncertainty associated with determining the best-fitting 
model (Anderson, 2008; Garamszegi, 2011). We report the 
model-averaged coefficient outputs provided by the MuMIn 
package in our tables. Finally, the MuMIn package also cal-
culates the relative importance of each of the fixed-effect 
variables included in our models using ωi. The relative vari-
able importance represents the likelihood that a given term 
is in the best model.

Important Points to Consider.  It is important to note that 
our study has a retrospective design. Given that, we cannot 
use survey data or student interviews to untangle the in-
fluence of differences in ability from the influence of prior 
experiences and psychological factors on student exam per-
formance. We attempt to statistically control for differences 
in academic ability between students by using regression 
models with a control variable for a student’s performance 
in their prior college classes. Including this variable match-
es students in our different groups of interest (socioeco-
nomic background and gender) by a proxy for demonstrat-
ed ability in college-level courses. Thus, any gaps observed 
in this paper are between students who were theoretically 
equally competent in their prior college classes, assuming 
those classes were of equal difficulty. This implies that, by 
at least one measure, these students have equal academic 
ability, and if they have differential outcomes on exams, 
then factors other than ability are likely influencing their 
performance.



Exam Characteristics Impact Performance

Vol. 15, Summer 2016� 15:ar23, 7

Model-Averaged Regression Coefficients: Effect of Weighted 
Bloom’s Index on Exam Performance 
Weighted Bloom’s Index.  Because of the strong support for the 
inclusion of the interaction terms between gender or SES and 
the weighted Bloom’s index, we cannot provide a univer-
sal effect for Bloom’s index. Instead, we see that groups of 
students respond in different ways to exams with different 
Bloom’s levels. The main effect of Bloom’s level in the mod-
el describes the condition for middle/high-SES males after 
statistically controlling for their performance in their prior 
college courses, the time in the term they took the exam, the 
difficulty of the exam they took (median overall difficulty of 
all exams: 0.63), the instructor they had, and any differences 
among students not accounted for specifically in the model. 
For these students, increasing the weighted Bloom’s index 
of an exam is predicted to decrease their exam performance 
(β = −0.168 ± 0.0173 [SE], p value < 0.0001; Table 2). Framing 
this in terms of impact on a student’s exam scores: a middle/
high-SES male student with the sample median cumulative 
GPA of 3.27 will score 11.53% lower on an exam with the 
weighted Bloom’s index of 0.71 (the exam in our sample 
with the highest Bloom’s index) relative to his score on an 
exam with a weighted Bloom’s index of 0.36 (the exam in our 
sample with the lowest Bloom’s index).

Gender × Weighted Bloom’s Index.  Based on these models, the 
impact of weighted Bloom’s index on performance is predict-
ed to be more extreme for women than for men. The main ef-
fect of gender averaged across the model set was not signif-
icant (β = −0.00295 ± 0.0115 [SE], p value = 0.798; Table 2 and 
Figure 1a), but the interaction between gender and weight-
ed Bloom’s index was significant (β = −0.0418 ± 0.0205 [SE],  
p value = 0.0416; Table 2 and Figure 1a). Taken together, these 
terms indicate that, on exams with only low-level questions, 
there is no performance difference between males and fe-
males with the same demonstrated prior academic ability. 
However, as the weighted Bloom’s index of exams increas-
es (e.g., moving from predominantly lower Bloom’s-level to 
higher Bloom’s-level questions), the performance of female 
students declines more rapidly than male students of equal 
ability level, causing a gender-based achievement gap (Figure 
1a). Specifically, the model predicts that the difference in  

RESULTS

Weighted Bloom’s Index
Descriptive Information.  The 87 exams collected from 26 
different instructors teaching introductory courses taught 
over a 3-yr period had substantial variation in their median 
weighted Bloom’s level but generally tested more moderate 
levels of cognitive thinking (e.g., application and analysis 
questions) than low levels of cognitive thinking (0.53 ± 0.085 
[SD]). The sample ranged from exams that tested almost ex-
clusively low-level thinking (0.36) to exams that tested high-
er-order thinking (0.71).

Model Selection.  Using model selection, we found six mod-
els with reasonable support (ΔAICc < 10) that explained the 
impact of median weighted Bloom’s level of an exam on the 
exam performance of male and female students. The top two 
models had the majority of the support (summed ωi = 0.88; 
Table 1). The best model included all of the fixed-effect 
terms, except course. The second-best model included all of 
the fixed-effects terms.

The median weighted Bloom’s level of an exam had 
a relative variable importance of 1.0 (Table 2) and was 
present in all of the six best models, indicating that the 
weighted Bloom’s index of an exam had a consistent and 
reliable impact on students’ exam scores. Both the gender 
of a student and the interaction term between students’ 
gender and the weighted Bloom’s index of an exam were 
well supported in our models, as they were present in the 
top model (Table 1) and had very high relative variable 
importance (Table 2). The same was true for SES status of 
a student and the interaction term between students’ SES 
status and the median weighted Bloom’s level of an exam 
(Tables 1 and 2).

The cumulative incoming college GPA of students was 
present in all of the six top models (summed ωi = 1.0; Table 
1) and had a relative variable importance of 1.0 (Table 2), 
indicating that the cumulative incoming college GPA had 
a consistent and reliable impact on students’ exam scores. 
The incoming GPA of a student significantly and positively 
impacted student’s exam performance (β = 0.164 ± 0.00311 
[SE], p value < 0.0001; Table 2).

Table 1.  Best models include the interaction between student gender identity and the median weighted Bloom’s level of an exam and the 
interaction between SES status and the median weighted Bloom’s level of an exama

Rank Modelb AICc ΔAICc ωi

1 Cum.GPA + Time + Gender + SES + W.Diff + W.Blooms + SES*W.Blooms + Gender*W.Blooms −41429.42 0.00 0.59
2 Cum.GPA + Time + Gender + SES + W.Diff + W.Blooms + SES*W.Blooms + Gender*W.Blooms + Course −41427.96 1.46 0.29
3 Cum.GPA + Time + Gender + SES + W.Diff + W.Blooms + SES*W.Blooms −41424.51 4.90 0.05
4 Cum.GPA + Time + Gender + SES + W.Diff + W.Blooms + Gender*W.Blooms −41423.36 6.06 0.03
5 Cum.GPA + Time + Gender + SES + W.Diff + W.Blooms + SES*W.Blooms + Course −41423.05 6.36 0.02
6 Cum.GPA + Time + Gender + SES + W.Diff + W.Blooms + Gender*W.Blooms + Course −41421.90 7.51 0.02
7 Cum.GPA + Time + Gender + SES + W.Diff + W.Blooms −41417.46 11.96 0.00

aRelative ranking (from most support to least) of the six best models for predicting student exam performance using AICc model selection. 
Models that are informative (ΔAICc < 10) are shown, plus the next best model that had a ΔAICc > 10. The table shows only fixed-effect terms, 
but all models also include two random-effect terms: student and the instructor whose classes students were enrolled in.
bTime = exam number in a course; Cum.GPA = cumulative college GPA at start of introductory biology series; Gender = student’s gender 
identity; SES = students’ socioeconomic status; W.Diff = median weighted difficulty of an exam; W.Blooms = the median weighted Bloom’s 
level of an exam; Course = the three courses that are part of the introductory biology sequence.
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than that of students from middle/high-SES backgrounds, 
causing a SES-based achievement gap (Figure 1b) despite 
matched academic ability. Specifically, the difference in per-
formance between a low- and middle/high-SES student, 
both of whom are male, have the same GPA (3.27) entering 
the same class, and took the same exam (median difficulty 
= 0.63), was 1.27% when students took the exam with the 
lowest weighted Bloom’s index in our data set. The model 
predicts that increasing the weighted Bloom’s index of an 
exam to 0.50 will increase the performance gap to 2.17%, 
and increasing the weighted Bloom’s index to 0.70 would 
increase the SES-based gap to 3.46%. As 70% of our exams 
had a weighted Bloom’s index greater than or equal to 0.50, 
our model predicts a significant achievement gap based on 
SES for the majority of the exams in our data set (Figure 1b).

Constructed-Response versus Restricted-Response 
Questions
Descriptive Information.  The 87 exams collected from 26 
different instructors teaching the introductory courses taught 
over a 3-yr period had substantial variation in their format 
but generally had more constructed-response questions than 
restricted-response questions. The average percent CR on the 
exams in our analysis was 0.66 ± 0.29 (SD). The exams in our 
sample ranged from 0% (entirely restricted-response ques-
tions) to 100% (entirely constructed-response questions).

Model Selection.  We found four models with reasonable 
support (ΔAICc < 10) that explained the impact of percent CR 

performance between a male and female student, both of 
whom are middle/high-SES students, have the same GPA 
(3.27, the median incoming GPA for all students in our 
study), and took the same exam (median difficulty = 0.63), 
would be 1.73% on the exam with the lowest weighted 
Bloom’s index in our data set. Increasing weighted Bloom’s 
index of an exam to 0.50, the performance gap is predicted to 
increase to 2.34%, and on an exam with a weighted Bloom’s 
index of 0.70, the gap would be in a 3.22%. Considering that 
70% of our exams had a median weighted Bloom’s level 
greater than or equal to 0.50, this results in a gender-based 
achievement gap across a majority of the exams that were 
administered to students in our data set (Figure 1a).

SES × Weighted Bloom’s Index.  The impact of weighted 
Bloom’s index on students from low-SES backgrounds is 
more extreme than the impact on students from middle/
high-SES backgrounds. As with the gender terms, the main 
effect of SES was not significant (β = 0.00931 ± 0.0149 [SE], 
p value = 0.531; Table 2 and Figure 1b); however, there was 
a significant interaction between SES status and the median 
weighted Bloom’s level of an exam (β = −0.0628 ± 0.0263 [SE], 
p value = 0.0171; Table 2 and Figure 1b). Taken together, these 
terms tell us that, on exams with only low-level questions, 
there is no performance difference between low-SES and 
middle/high-SES students of equal prior academic ability. 
However, as the weighted Bloom’s index of exams increas-
es (e.g., moving from predominantly lower-order questions 
to moderate/higher-order questions), the performance of 
students from low-SES backgrounds declines more rapidly 

Table 2.  Increasing the median weighted Bloom’s level of an exam disproportionately favors male students and middle/high-SES students 
relative to female or low-SES students, respectivelya

Parameter
Relative variable 

importance
Model averaged regression 

coefficient ± SE p Valueb

Intercept NA 0.647 ± 0.0199 <0.0001
Cum.GPA 1.00 0.164 ± 0.00311 <0.0001

Course (reference level: course 1)
Course 2 0.33 0.00945 ± 0.0199 0.634
Course 3 0.33 −0.00416 ± 0.0148 0.779

Time (reference level: time 1 (exam 1)
Time 2 (exam 2) 1.00 0.0131 ± 0.00182 <0.0001
Time 3 (exam 3) 1.00 0.0388 ± 0.00255 <0.0001
Time 4 (exam 4) 1.00 0.0821 ± 0.00270 <0.0001

Student gender (reference level: male)
Female 1.00 −0.00295 ± 0.0115 0.798

Student SES status (reference level: middle/high-SES)
Low-SES 1.00 0.00931 ± 0.0149 0.531

Exam characteristics
W.Diff 1.00 −0.197 ± 0.0113 <0.0001
W.Blooms 1.00 −0.168 ± 0.0173 <0.0001

Student identity × exam characteristics (reference level: male or middle/
high-SES)
Female × W.Blooms 0.92 −0.0418 ± 0.0205 0.0416
Low-SES × W.Blooms 0.96 −0.0628 ± 0.0263 0.0171

aThe outputs were produced via model averaging of all possible models using the MuMIn package in the program R. Although not shown, 
the models include two random-effects terms: (1|Stu.ID) + (1|Instr).
bBolded p values are significant.
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the interaction between SES and percent CR were also very 
well supported in our models (present in all of the top mod-
els and with a relative variable importance of 1.0; Tables 3 
and 4). Although gender had strong support (Table 4), the in-
teraction term between gender and percent CR was not well 
supported (this term was present in only two of the four best 
models and had a low relative variable importance of 0.29; 
Table 4). These results suggest that different levels of percent 
CR on exams differentially impact students from different 
SES backgrounds but not male or female students.

The cumulative incoming college GPA of students was 
present in all of the four top models (summed ωi = 1.0; Table 3) 
and had a relative variable importance of 1.0 (Table 4), in-
dicating that the cumulative incoming college GPA had a 
consistent and reliable impact on students’ exam scores. The 
incoming GPA of a student significantly and positively im-
pacted student’s exam performance (β = 0.165 ± 0.00311 [SE], 
p value < 0.0001; Table 4).

Model-Averaged Regression Coefficients: Effect of Percent of 
Constructed-Response Questions on Exam Performance
Percent CR.  As with our other analysis, the strong support 
for the interaction term between SES and percent CR means 
we cannot report a universal effect of percent CR on stu-
dent performance. Instead, we see that students from low-
SES backgrounds respond differently to percent CR than 
students from middle/high-SES backgrounds. The main 
effect of percent CR in the models describes the condition 
for male students from middle/high-SES backgrounds after 
statistically controlling for their performance in prior col-
lege courses, the time in the term they took the exam, the 
difficulty of the exam (median difficulty = 0.63), the instruc-
tor, and other unmeasured differences between students. 
For middle/high-SES male students, there is predicted to be 
a positive effect of increasing the percentage of construct-
ed-response questions on exams (β = 0.0789 ± 0.00668 [SE], 
p value < 0.0001; Table 4). Put in terms of the impact on a 
student’s exam scores, a male student from a middle/high-
SES background with a cumulative GPA of 3.27 will score 
14.54% lower on an exam that is purely restricted-response 
questions than he will on an exam that is purely construct-
ed-response questions.

Gender × Percent CR.  The significant main effect term of 
gender indicates that there is an achievement gap between 
male and female students in this model, with males outper-
forming females of the same academic ability (β = −0.0252 ± 
0.00341 [SE], p value < 0.0001; Table 4 and Figure 2a). The 
lack of a significant interaction term between gender and 
percent CR (β = −0.000607 ± 0.00273 [SE], p value = 0.824; 
Table 4 and Figure 2a) indicates that the format of the exam 
questions does not differentially influence the performance 
of males and females of equal ability on these exams. Thus, 
as the percentage of constructed-response questions on an 
exam increases, male and female students with equivalent 
incoming cumulative GPAs are equally positively impacted.

SES × Percent CR.  For students from low-SES backgrounds, 
the positive effect on performance of more constructed-re-
sponse questions on an exam is less than it is for students 
from middle/high-SES backgrounds. The main effect of 
SES averaged across the model set was not significant 
(β = −0.00503 ± 0.00589 [SE], p value = 0.393; Table 4 and 

on the exam performance of male and female students and 
students from low- and middle/high-SES backgrounds. The 
top two models had a majority of the support (summed ωi 
= 0.86; Table 3). The best model included all fixed-effects 
terms, excluding the gender × percent CR interaction. The 
second-best model included all fixed-effects terms.

Percent CR had a very high relative variable importance 
(1.0; Table 4) and was present in all of the best models (Table 3), 
indicating this variable had a reliable effect across all of the 
models and was very likely to be in the best model. SES and 

Figure 1.  Increasing the median weighted Bloom’s level of an exam 
negatively impacts all students’ scores, but it disproportionately 
favors men more so than women and middle/high-SES students 
over low-SES students. The figure shows a point estimate for exam 
performance (percentage score) for (a) male and female students 
and (b) middle/high-SES and low-SES students based on the mod-
el-averaged regression coefficients. The bars are the regression-mod-
el predictors of performance for two hypothetical students with an 
incoming GPA of 3.27 (the median GPA for all students in our data 
set) who are either (a) middle/high-SES students that identify as 
male or female or (b) male students who are classified as middle/
high-SES or low-SES students, both of whom took a moderately dif-
ficult exam with a median difficulty of 0.63 (on a scale of 0.33–1). 
Thus, these students differ from each other in only two ways: the 
median weighted Bloom’s level of the exam and either (a) their gen-
der (male, unfilled bars; females, filled bars) or (b) their SES status 
(middle/high-SES, unfilled bars; low-SES, filled bars). The median 
weighted Bloom’s levels, on a scale of 0.33–1, used to calculate the 
low, medium, and high Bloom’s-level exams were 0.36, 0.53, and 
0.71, respectively. An asterisk indicates a significant differences 
between groups of students on a given test. Brackets with percent 
scores indicate the magnitude of the difference in exam scores for 
the two students.
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same GPA (3.27), entering the same class, and taking the 
same exam (median difficulty = 0.63) was only 0.49% when 
students took an exam that consisted entirely of restricted-re-
sponse questions. The performance gap increases to 1.76% 
when the exam contains an equal mix of restricted-response 
and constructed-response questions and to 2.86% when the 
exam contained exclusively constructed-response questions. 
As 77% of our exams had a percent CR score greater than or 
equal to 0.50, this results in a consistent SES-based achieve-
ment gap due to exam question format across a majority of 
the exams administered to students in our data set, even 
though overall all students perform better on constructed-re-
sponse questions (Figure 2b).

Figure 2b), indicating that students of low- and middle/
high-SES backgrounds perform equally well on exclusively 
restricted-response exams. As the percent CR increases on 
an exam, all students are predicted to benefit, but students 
from low-SES backgrounds benefit less from this changing 
format, despite having demonstrated similar academic abil-
ity (β = −0.0278 ± 0.00645 [SE], p value < 0.0001; Table 4 and 
Figure 2b). This differential benefit with increasing percent 
CR on exams produces an achievement gap with students 
from low-SES backgrounds performing worse relative to 
their peers from middle/high-SES backgrounds. Specifically, 
the difference in performance between a low- and middle/ 
high-SES student, both of whom identify as male, with the 

Table 4.  Increasing the number of constructed-response questions on an exam disproportionately benefits middle/high-SES students, but 
not male students, relative to low-SES and female students, respectivelya

Parameter
Relative variable 

importance
Model averaged regression 

coefficient ± SE p Valueb

Intercept NA 0.515 ± 0.0238 <0.0001
Cum.GPA 1.00 0.165 ± 0.00311 <0.0001

Course (reference level: course 1)
Course 2 0.85 0.0677 ± 0.0381 0.0759
Course 3 0.85 0.0159 ± 0.0247 0.521

Exam (reference level: time 1 (exam 1)
Time 2 (exam 2) 1.00 0.0116 ± 0.00183 <0.0001
Time 3 (exam 3) 1.00 0.0257 ± 0.00250 <0.0001
Time 4 (exam 4) 1.00 0.0745 ± 0.00269 <0.0001

Student gender (reference level: male)
Female 1.00 −0.0252 ± 0.00341 <0.0001

Student SES status (reference level: middle/high-SES)
Low-SES 1.00 −0.00503 ± 0.00589 0.393

Exam characteristics
W.Diff 1.00 −0.243 ± 0.0114 <0.0001
Percent CR 1.00 0.0789 ± 0.00668 <0.0001

Student identity × exam characteristics (reference level: male or middle/high-SES)
Female × percent CR 0.29 −0.000607 ± 0.00273 0.824
Low-SES × percent CR 1.00 −0.0278 ± 0.00645 <0.0001

aThe outputs were produced via model averaging of all possible models using the MuMIn package in the program R. Although not shown, 
the models include two random-effects terms: (1|Stu.ID) + (1|Instr).
bBolded p values are significant.

Table 3.  Best model includes the interaction between SES status and the percentage of constructed-response questions on an exama

Rank Modelb AICc ΔAICc ωi

1 Cum.GPA + Time + Gender + SES + W.Diff + Percent CR + SES*Percent CR + Course −41285.44 0.00 0.61
2 Cum.GPA + Time + Gender + SES + W.Diff + Percent CR + SES*Percent CR + Gender*Percent CR + Course −41283.64 1.81 0.25
3 Cum.GPA + Time + Gender + SES + W.Diff + Percent CR + SES*Percent CR −41281.96 3.49 0.11
4 Cum.GPA + Time + Gender + SES + W.Diff + Percent CR + SES*Percent CR + Gender*Percent CR −41280.15 5.29 0.03
5 Cum.GPA + Time + Gender + SES + W.Diff + Percent CR + Course −41268.62 16.82 0.00

aRelative ranking (from most support to least) of the four best models for predicting student exam performance using AICc model selection. 
Models that are informative (ΔAICc < 10) are shown, plus the next best model that had a ΔAICc > 10. The table shows only fixed-effect terms, 
but all models also include two random-effect terms: student and the instructor whose classes’ students were enrolled in.
bTime = exam number in a course; Cum.GPA = cumulative college GPA at start of introductory biology series; Gender = student’s gender 
identity; SES = students’ socioeconomic status; W.Diff = median weighted difficulty of an exam; Percent CR = percentage of constructed-re-
sponse question on an exam; Course = the three courses that are part of the introductory biology sequence.
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of students. In this paper, we took the first step of explor-
ing whether and to what extent Bloom’s level and question 
format of instructor-generated assessments differentially 
impact students’ exam performance using a data set that 
includes 25 classes, 26 instructors, 87 unique exams, and 
4810 students across three introductory biology courses for 
majors at a large research institution. Even after controlling 
for a measure of student academic ability, we found that the 
performance of male students was favored over females as 
exams tested at increasingly higher levels of Bloom’s taxon-
omy but not when there were more constructed-response 
questions. Additionally, the performance of middle/high-
SES students was favored over low-SES students as exams 
tested at increasingly higher levels of Bloom’s taxonomy 
and when exams contained increasingly more construct-
ed-response questions.

Males Outperform Females at Higher Bloom’s Levels
Our results show that males and females perform equally 
well on exams containing mostly low Bloom’s-level ques-
tions (a difference of 1.73%) but that males outperform fe-
males on exams with increasingly higher levels of Bloom’s, 
even after controlling for prior academic ability (a difference 
as high as 3.26%; Figure 1a). The differences in performance 
we observed in our study were fairly small, but even small 
performance gaps are important. Small performance gaps on 
any single test may accrue within a single course and across 
multiple courses, potentially generating GPA gaps between 
students who are otherwise of equal academic ability.

Previous studies examining gender differences on dif-
ferent Bloom’s-level questions in undergraduate biology 
show mixed results. One study found males outperforming 
females on higher Bloom’s-level questions in biochemis-
try but found that females outperformed males on knowl-
edge-specific type (low Bloom’s-level) questions (Migliaccio 
and Sheikh, 2009). However, another study in introductory 
biology classrooms found that male students outperformed 
female students on both low and high Bloom’s-level ques-
tions (Stanger-Hall, 2012). These differences between our 
results and these results may be due to smaller sample sizes 
for these studies or different classroom and/or institutional 
contexts.

Additionally, our findings may provide insights into why 
achievement gaps between male and female students in 
undergraduate biology classrooms have been observed in 
some studies (Rauschenberger and Sweeder, 2010; Creech 
and Sweeder, 2012; Stanger-Hall, 2012; Eddy et al., 2014) but 
not others (Migliaccio and Sheikh, 2009; Willoughby and 
Metz, 2009; Creech and Sweeder, 2012; Lauer et  al., 2013); 
perhaps the presence of achievement gaps is dependent on 
the characteristics of the exams used in the classes. If under-
graduate biology assessments are composed mostly of “low-
level” questions (Momsen et al., 2010, 2013), then one might 
not observe a performance gap between students, whereas 
in exams comprising more higher-order-thinking questions 
(i.e., our study; Haak et  al., 2011; Stanger-Hall, 2012; Eddy 
et  al., 2014), a performance gap may emerge. If instructors 
vary in the degree to which their exams test high Bloom’s 
levels of thinking, then it is not surprising that there are dif-
ferences among studies regarding whether a performance 
gap exists between males and females.

DISCUSSION

As biology instructors continue to develop courses and as-
sessments that promote deeper conceptual understanding in 
their students, it will be important to understand how the 
characteristics of exams may impact different populations 

Figure 2.  Increasing the number of constructed-response questions 
on an exam positively impacts all students’ exam scores, equally 
benefiting male and female students yet disproportionately favor-
ing middle/high-SES students over low-SES students. The figure 
shows a point estimate for exam performance (percentage score) for 
(a) male and female students and (b) middle/high-SES and low-SES 
students based on the model-averaged regression coefficients. The 
bars are the regression-model predictors of performance for two hy-
pothetical students with an incoming GPA of 3.27 (the median GPA 
for all students in our data set) who are either (a) middle/high-SES 
students who identify as male or female or (b) male students who 
are classified as middle- to high-SES or low-SES students, both of 
whom took a moderately difficult exam with a median difficulty of 
0.63 (on a scale of 0.33–1). Thus, these students differ from each other 
in only two ways: the percentage of constructed-response questions 
on the exam and either (a) their gender (male, unfilled bars; females, 
filled bars) or (b) their SES status (middle/high-SES, unfilled bars; 
low-SES, filled bars). The percentage of constructed-response ques-
tions, on a scale of 0–1, used to calculate the all restricted-response 
(RR), mixture of restricted-response and constructed-response (CR), 
and all constructed-response exams were 0.00, 0.50, and 1.00, respec-
tively. The + indicates a significant overall difference between two 
groups of students. An asterisk indicates a significant differences 
between groups of students on a given test. Brackets with percent 
scores indicate the magnitude of the difference in exam scores for 
the two students.
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Stereotype Threat.  Stereotype threat is a well-documented 
psychological phenomenon wherein an individual’s con-
cern of conforming to a stereotype about a group he or she 
is associated with can negatively impact his or her perfor-
mance on a particular task related to that stereotype (Steele 
and Aronson, 1995). One of the key findings of stereotype 
threat is that it is most likely experienced when individu-
als encounter challenging situations and/or experience high 
frustration (Steele, 1997). Thus, stereotype threat would be 
more likely to be triggered on questions requiring more 
challenging cognitive tasks like transferring conceptual un-
derstandings to solve new, application-level or higher cogni-
tive questions (i.e., higher Bloom’s-level questions; Spencer 
et  al., 1999; Keller, 2007). Thus, the research on stereotype 
threat aligns with our findings for gender and SES: women 
and low-SES students as well as men and middle/high-SES 
students perform equally on low Bloom’s-level exam items 
(low challenge, low frustration), but stereotype threat could 
be triggered for women and low-SES students when dealing 
with more cognitively challenging questions, leading to our 
observed disproportionate decrease in performance.

Currently, there are insufficient data to determine whether 
students are under threat in introductory biology class-
rooms. One study exploring stereotype threat for women 
in biology, Lauer et  al. (2013) did not find support for the 
presence of stereotype threat. However, their method of 
documenting stereotype threat was to test one intervention 
to mitigate threat. This test does not rule out the possibility 
that students are under threat. It could mean that this inter-
vention may not have addressed the right kind of stereotype 
threat for this population of women (Shapiro et al., 2013). A 
second study surveyed female students about their expe-
rience with stereotype threat and found women in biology 
experience less stereotype threat than women in physics, 
but did not explicitly test whether women in biology experi-
ence more threat than men, as no men were surveyed in the 
study (Smith et al., 2015). Only one study has tested whether 
stereotype threat is present for low-SES students in intro-
ductory biology classrooms. Harackiewicz and colleagues 
(2014) successfully used a values-affirmation intervention to 
alleviate the impact of stereotype threat on the performance 
of first-generation students, who are often low-SES students 
as well. It is possible that female and low-SES students are 
under threat and that this psychological phenomena could 
explain our findings, but further work needs to be done to 
assess this phenomenon in biology.

Implicit Theories of Intelligence.  People tend to hold one of 
two beliefs about intelligence: 1) intelligence is innate and 
fixed at a certain level or 2) intelligence is effort-based and 
can grow (Dweck, 1999). The fixed mind-set tends to be more 
prevalent in high-achieving students and in students who 
are aware of stereotypes about their group in a particular 
field (i.e., women in math; Dweck, 2006). Students with fixed 
mind-sets tend to underperform relative to students with a 
growth mind-set, especially in the face of challenging tasks 
(Grant and Dweck, 2003; Blackwell et al., 2007). Furthermore, 
it has been shown that students with a fixed mind-set are un-
able to recover from initially poor grades in college science 
classes, whereas students with growth mind-sets are able to 
recover from this setback (Grant and Dweck, 2003). Among 
students who hold a fixed mind-set, there is evidence that 

No Gender Differences for Exams with More 
Constructed-Response Questions
Our finding that increasing the percentage of construct-
ed-response questions on exams has no impact on the exam 
performance of male and female students (Figure 2a) is in 
contrast to what has previously been published. Previous 
studies examining the impact of exam format on students’ 
performance showed that males outperformed females on 
restricted-response questions in an undergraduate biology 
classroom (Stanger-Hall, 2012), an introductory atmospheric 
science class (Weaver and Raptis, 2001), and an oceanic sur-
vey course (Weaver and Raptis, 2001). However, only Stan-
ger-Hall (2012) controlled for a measure of prior academic 
ability. The variation in the findings between these studies 
and ours may again be attributed to differences in sample 
size. Another explanation is that perhaps other exam char-
acteristics are correlated with constructed-response formats 
in some studies but not others. If these are not disaggregat-
ed, then this may explain some of the variation in observed 
patterns.

Middle/High-SES Students Outperform Low-SES 
Students at Higher Bloom’s Levels and with More 
Constructed-Response Questions
Our results demonstrate that, as the average Bloom’s level on 
an exam increases, the gap between students from middle/
high-SES backgrounds and low-SES backgrounds increases 
from 1.27 to 3.52% (Figure 1b). A similar pattern was ob-
served when the number of constructed response questions 
increased on exams (Figure 2b). Our study is the first to our 
knowledge to examine how question format (constructed 
response vs. restricted response) differentially impacts low- 
and middle/high-SES students. Given the lack of research 
done in this area, there is clearly a need to further explore 
how the performance of low- and middle/high-SES students 
is mediated by the Bloom’s level of questions and question 
format across a wider array of institutions and student 
populations. Such studies are necessary before any broad 
generalizations can be made regarding the performance of 
low- and middle/high-SES students on biology assessments 
testing varying degrees of cognitive difficulty.

If Not Differences in Ability, Then What May 
Contribute to These Gaps?
We controlled for a measurement of prior academic abili-
ty; therefore, the differential impact of exam characteristics 
on students of different genders and SES backgrounds was 
not due to differences in ability levels. As our study was 
observational and retrospective, we are unable to explicit-
ly identify the underlying mechanism(s) that may lead to 
the observed gaps between students. However, there is a 
large body of literature that suggests that student perfor-
mance can be impacted by environmental factors. The en-
vironment can be broadly defined to include factors such 
as the social environment of the classroom, the experience 
of students in previous academic environments, an instruc-
tor’s classroom practices, and/or how questions on exams 
are contextualized. In the following subsections, we outline 
candidate factors that could lead to the performance gaps 
that we observed in our study.
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whether and in what ways these various mechanisms may 
explain the trends observed in this study.

What Are Next Steps?
This study is not suggesting that we as instructors make our 
exams less cognitively difficult or only restricted-response 
format to reduce performance gaps on assessments among 
groups of students. Rather, we suggest instructors modify 
their instructional practices in ways that help to give stu-
dents opportunities to practice these types of questions in a 
low-stakes environment before they are asked to do so on a 
high-stakes summative exam. For example, this may mean 
assigning practice exams outside of class or incorporating 
exam-like questions into lectures as clicker questions, similar 
to Freeman et al. (2011).

These practices may be helpful, because they may reduce 
the level of frustration and anxiety triggered on high-stakes 
exams, potentially mitigating factors such as threat and thus 
improving performance. Furthermore, they may provide 
students from disadvantaged backgrounds with the prac-
tice that may help them catch up with their middle/high-
SES colleagues, again reducing performance gaps on assess-
ments. The heavy emphasis on practice in active-learning 
classrooms may therefore be contributing to the reduction in 
achievement gaps seen between low- and middle/high-SES 
students (Haak et al., 2011) as well as between first-genera-
tion and continuing-generation students (Eddy and Hogan, 
2014) in these classes. Clearly, more work is needed to inves-
tigate the underlying reasons why active learning reduces 
performance gaps between groups of students.

However, these strategies may not be enough, particularly 
if students are experiencing something like stereotype threat. 
Instructors may need to use psychological interventions to 
help ameliorate these phenomena in an effort to promote 
equity on challenging exams. These interventions can in-
clude 1) reframing the assessment to address the “fairness” 
of the test by stating the test is not biased against a particular 
group (e.g., Spencer et al., 1999; Good et al., 2008) or that the 
assessment is meant to document mastery rather than com-
pare individuals (Croizet and Dutrevis, 2004; Smeding et al., 
2013); 2) using values affirmation (e.g., Cohen et  al., 2006; 
Miyake et al., 2010; Sherman et al., 2013; Harackiewicz et al., 
2014) to mitigate stereotype threat; and 3) emphasizing that 
intelligence is fluid and malleable, can change over time, and 
is driven by effort rather than innate ability (e.g., Aronson 
et al., 2002; Good et al., 2003; Blackwell et al., 2007). Exploring 
these interventions in the context of undergraduate biology 
exams are important areas of future research.

Study Limitations
This study was done in a particular context with a specific 
set of students and may not reflect conditions at other insti-
tutions or institution types. Specifically, this study was con-
ducted at a selective R1 institution, and we encourage other 
instructors to look for the existence of similar patterns in 
their classrooms at their institutions. Additionally, our obser-
vation that increasing the number of constructed-response 
questions on an exam results in an increase in student’s 
overall performance may have occurred because graders 
evaluating constructed-response questions may have been 
more lenient in their allocation of points compared with 

males tend to outperform female students in a college sci-
ence course, despite controlling for ability level (Grant and 
Dweck, 2003). These patterns may occur because, when 
faced with difficult tasks, students with fixed mind-sets tend 
to withdraw and denigrate their ability, whereas students 
with growth-based mind-sets embrace the challenge by put-
ting in greater effort and/or trying new strategies.

If a significant number of women and low-SES students in 
our study population held a fixed view of intelligence, they 
may have become frustrated and avoided embracing the 
challenges of answering more cognitively challenging ques-
tions, potentially hindering their performance on exams that 
assess higher levels of Bloom’s taxonomy. Given Grant and 
Dweck’s (2003) findings, we would also expect an emerging 
gender performance gap on assessments that test increas-
ingly higher levels of Bloom’s, which is what we observed. 
Thus, like stereotype threat, implicit theories of intelligence 
could contribute to an achievement gap between groups of 
students as the cognitive challenge of an exam increases. 
This may be an interesting avenue for future research.

Students’ Prior Experiences.  Inequitable access to resources 
during students’ K–12 experiences may explain our findings. 
Students from lower-SES backgrounds tend to come from 
schools with fewer resources (Oakes, 1990). These schools 
tend to have less experienced and/or qualified instructors 
(Oakes, 1990; Ingersoll, 1999) and fewer advanced and AP 
classes (Oakes, 1990; Handwerk et al., 2008), potentially re-
sulting in fewer opportunities for low-SES students as com-
pared with middle/high-SES students to practice answering 
higher-order questions. This lack of prior practice may ex-
plain why students from lower-SES backgrounds may not 
perform as well on higher Bloom’s-level or constructed-re-
sponse questions. Interestingly, performance on the writing 
portion of the SAT has also been shown to correlate with 
students’ SES (Mattern et al., 2008), further supporting our 
assertion.

Question Context.  Question context can elicit bias against 
students, producing achievement gaps. McCullough (2004) 
found that replacing questions containing stereotypically 
male-oriented contexts with stereotypically female-oriented 
contexts reduced the gender gap in performance on a physics 
concept inventory. Given that higher-order questions require 
applying conceptual understanding to a novel context, these 
questions are more likely than lower-order questions to con-
tain novel scenarios. Although biology instructors might not 
be using sports examples to contextualize their questions to 
the extent that physics instructors might, it is still possible 
for biology instructors to construct questions that elicit bias.

In summary, these factors are but a few of the potential 
mechanisms that could explain why women and low-SES 
students perform below their male and middle/high-SES 
peers, even when they have demonstrated equal achieve-
ment in prior classes. These mechanisms produce the same 
patterns observed in our data: no achievement gap when 
students are exposed to low Bloom’s-level questions or 
tests that contained only restricted-response questions but 
an appearance of an achievement gap when students are 
challenged by higher Bloom’s-level or constructed-response 
questions. However, the degree to which these various 
mechanisms contribute to the gaps observed in this study 
is unknown, and future research should focus on examining 
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restricted-response questions, which are binary in their point 
allocation.

CONCLUSIONS

Our findings illustrated that, even after controlling for aca-
demic ability, males and middle/high-SES students outper-
form females and low-SES students on assessments testing 
higher Bloom’s levels of thinking and constructed-response 
questions favor middle/high-SES students. Simply put, 
these inequities are ones that, no matter how small, should 
not be present in our classrooms, as inequities in individual 
classrooms can accrue over time, potentially resulting in two 
students with truly equal academic abilities having different 
GPAs upon graduation. It is important to continue to explore 
the extent to which these achievement gaps exist across mul-
tiple types of institutions and identify instructional practices 
that can close these gaps while maintaining the rigor of our 
assessments.

ACKNOWLEDGMENTS

We thank Scott Freeman, Alison Crowe, Erin Shortlidge, and the 
members of the Brownell Lab Biology Education Research Group at 
Arizona State University for their feedback and comments on earlier 
versions of the manuscript. We thank Josh Kessack, Jack Cerchiara, 
Mercedes Converse, and Jennifer Mae-White Day for helping us 
determine the characteristics of each item; and Ben Wiggens, John 
Parks, and Chessa Goss for helping us with accessing course exams. 
Additionally, we thank Michael Angilletta and Stephen Pratt for 
their insights into the statistical analyses. Support for this study was 
provided by National Science Foundation (NSF) TUES 1118890 and 
NSF TUES 1322556. This research was done under approved IRB 
38945, University of Washington.

REFERENCES

Akaike H (1973). Information theory as an extension of the maxi-
mum likelihood principle. In: Second International Symposium on 
Information Theory, ed. BN Petrov and F Csaki, Budapest, Hungary: 
Akademiai Kiado, 267–281.

American Association for the Advancement of Science (2011). Vision 
and Change in Undergraduate Biology Education: A Call to Action, 
Washington, DC.

Anderson DR (2008). Model Based Inference in the Life Sciences: A 
Primer on Evidence, New York: Springer.

Anderson LW, Krathwohl DR, Bloom BS (2001). A Taxonomy for 
Learning, Teaching, and Assessing: A Revision of Bloom’s Taxono-
my of Educational Objectives, New York: Longman.

Aronson J, Fried CB, Good C (2002). Reducing the effects of stereo-
type threat on African American college students by shaping theo-
ries of intelligence. J Exp Soc Psych 38, 113–125.

Barton K (2015). MuMIn: Multi-model Inference, R package, Version 
1.13.5. http://CRAN.R-project.org/package=MuMIn (accessed 21 
April 2015).

Bastick T (2002). Gender differences for 6–12th grade students over 
Bloom’s cognitive domain. Paper presented at the Western Psycho-
logical Association, WPA Convention, Irvine, CA, April 14 – 17, 2002.

Bates D, Maechler M, Bolker B, Walker S (2014). lme4: Linear 
Mixed-Effects Models Using “Eigen” and S4, R Package, Version 
1.1–7. http://cran.r-project.org/web/packages/lme4/index.html 
(accessed 21 April 2015).

Beller M, Gafni N (2000). Can item format (multiple choice vs. 
open-ended) account for gender differences in mathematics achieve-
ment? Sex Roles 42, 1–21.

Black P, Wiliam D (1998). Inside the black box: raising standards 
through classroom assessment. Phi Delta Kappan 80, 139–144, 146–
148.

Blackwell LS, Trzesniewski KH, Dweck CS (2007). Implicit theories 
of intelligence predict achievement across an adolescent transition: a 
longitudinal study and an intervention. Child Dev 78, 246–263.

Bloom BS, Krathwohl DR, Masia BB (1956). Taxonomy of Educational 
Objectives: The Classification of Educational Goals, New York: 
McKay.

Burnham KP, Anderson DR (2004). Multimodel inference: under-
standing AIC and BIC in model selection. Sociol Method Res 33, 
261–304.

Carlton ST, Harris AM (1992). Characteristics Associated with Dif-
ferential Item Functioning on the Scholastic Aptitude Test: Gender 
and Majority/Minority Group Comparisons, Princeton, NJ: Educa-
tional Testing Service.

Carrell SE, Page ME, West JW (2010). Sex and science: how professor 
gender perpetuates the gender gap. Q J Econ 125, 1101–1144.

Cohen GL, Garcia J, Apfel N, Master A (2006). Reducing the racial 
achievement gap: a social-psychological intervention. Science 313, 
1307–1310.

Creech LR, Sweeder RD (2012). Analysis of student performance in 
large-enrollment life science courses. CBE Life Sci Educ 11, 386–391.

Croizet JC, Dutrevis M (2004). Socioeconomic status and intelli-
gence: why test scores do not equal merit. J Poverty 8, 91–107.

Crowe A, Dirks C, Wenderoth MP (2008). Biology in Bloom: imple-
menting Bloom’s taxonomy to enhance student learning in biology. 
CBE Life Sci Educ 7, 368–381.

DeAngelo L, Hurtado S, Pryor JH, Kelly KR, Santos JL, Korn WS 
(2009). The American College Teacher: National Norms for the 2007–
2008 HERI Faculty Survey, Los Angeles: Higher Education Research 
Institution, UCLA.

de Ayala RJ (2009). The Theory and Practice of Item Response 
Theory, New York: Guilford.

DeMars CE (1998). Gender differences in mathematics and science 
on a high school proficiency exam: The role of response format. Appl 
Meas Educ 11, 279–299.

DeMars CE (2000). Test stakes and item format interactions. Appl 
Meas Educ 13, 55–77.

Derting TL, Ebert-May D (2010). Learner-centered inquiry in un-
dergraduate biology: positive relationships with long-term student 
achievement. CBE Life Sci Educ 9, 462–472.

Dweck CS (1999). Self-Theories: Their Role in Motivation, Personali-
ty, and Development, Philadelphia, PA: Psychology Press.

Dweck CS (2006). Mindset: The New Psychology of Success, New 
York: Ballantine.

Eddy SL, Brownell SE, Wenderoth MP (2014). Gender gaps in 
achievement and participation in multiple introductory biology 
classrooms. CBE Life Sci Educ 13, 478–492.

Eddy SL, Converse M, Wenderoth MP (2015). PORTAAL: a class-
room observation tool assessing evidence-based teaching practices 
for active learning in large science, technology, engineering, and 
mathematics classes. CBE Life Sci Educ 14, ar23.

Eddy SL, Hogan KA (2014). Getting under the hood: how and for 
whom does increasing course structure work? CBE Life Sci Educ 13, 
453–468.

Entwistle NJ, Entwistle A (1991). Contrasting forms of understand-
ing for degree examinations: the student experience and its implica-
tions. High Educ 22, 205–227.



Exam Characteristics Impact Performance

Vol. 15, Summer 2016� 15:ar23, 15

Mazzeo J, Schmitt AP, Bleistein CA (1993). Sex-Related Perfor-
mance Differences on Constructed-Response and Multiple-Choice 
Sections of Advanced Placement Examinations (CB Rep. No. 92-7; 
ETS RR No. 93-5), New York: College Entrance Examination Board. 
http://research.collegeboard.org/publications/content/2012/05/ 
sex-related-performance-differences-constructed-response-and 
-multiple (accessed 25 April 2015).

McCullough L (2004). Gender, context, and physics assessment. J Int 
Womens Stud 5, 20–30.

McDaniel MA, Thomas RC, Agarwal PK, McDermott KB, Roediger 
HL (2013). Quizzing in middle-school science: successful transfer 
performance on classroom exams. Appl Cognit Psychol 27, 360–
372.

Migliaccio B, Sheikh O (2009). Gender differences in performance in 
Principles of Biochemistry based on Bloom’s taxonomy of question 
difficulty and study habits. NCSU Undergrad Res J 5, 76–83.

Miyake A, Kost-Smith LE, Finkelstein ND, Pollock SJ, Cohen GL, 
Ito TA (2010). Reducing the gender achievement gap in college sci-
ence: a classroom study of values affirmation. Science 330, 1234–
1237.

Momsen JL, Long TM, Wyse SA, Ebert-May D (2010). Just the facts? 
Introductory undergraduate biology courses focus on low-level cog-
nitive skills. CBE Life Sci Educ 9, 435– 440.

Momsen J, Offerdahl E, Kryjevskaia M, Montplaisir L, Anderson E, 
Grosz N (2013). Using assessments to investigate and compare the 
nature of learning in undergraduate science courses. CBE Life Sci 
Educ 12, 239–249.

Neuschmidt O, Barth J, Hastedt D (2008). Trends in gender differ-
ences in mathematics and science (TIMSS 1995–2003). Stud Educ 
Eval 34, 56–72.

Oakes J (1990). Multiplying Inequalities: The Effects of Race, Social 
Class, and Tracking on Opportunities to Learn Mathematics and Sci-
ence, Santa Monica, CA: Rand Corporation.

Paterson L, Goldstein H (1991). New statistical methods for analys-
ing social structures: an introduction to multilevel models. Br Educ 
Res J 17, 387–393.

Raudenbush SW, Bryk AS (2002). Hierarchical Linear Models: Ap-
plications and Data Analysis Methods, 2nd ed., Thousand Oaks, CA: 
Sage.

Rauschenberger MM, Sweeder RD (2010). Gender performance dif-
ferences in biochemistry. Biochem Mol Biol Educ 38, 380–384.

Rickards JP, Friedman F (1978). The encoding versus the external 
storage hypothesis in note taking. Contemp Educ Psychol 3, 136–
143.

Ryan KE, Chiu S (2001). An examination of item context effects, DIF, 
and gender DIF. Appl Meas Educ 14, 73–90.

Shapiro JR, Williams AM, Hambarchyan M (2013). Are all interven-
tions equal? A multi-threat approach to tailoring stereotype threat 
interventions. J Pers Soc Psychol 104, 277–288.

Sherman DK, Hartson KA, Binning KR, Purdie-Vaughns V, Garcia 
J, Taborsky-Barba S, Tomassetti S, Nussbaum AD, Cohen GL (2013). 
Deflecting the trajectory and changing the narrative: how self-affir-
mation affects academic performance and motivation under identity 
threat. J Pers Soc Psychol 104, 591–618.

Smeding A, Darnon C, Souchal C, Toczek-Capelle MC, Butera F 
(2013). Reducing the socio-economic status achievement gap at 
university by promoting mastery-oriented assessment. PLoS One 8, 
e71678.

Smith JL, Brown ER, Thoman DB, Deemer ED (2015). Losing its ex-
pected communal value: how stereotype threat undermines wom-
en’s identity as research scientists. Soc Psychol Educ 18, 443–466.

Spencer SJ, Steele CM, Quinn DM (1999). Stereotype threat and 
women’s math performance. J Exp Soc Psychol 35, 4–28.

Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt 
H, Wenderoth MP (2014). Active learning increases student perfor-
mance in science, engineering, and mathematics. Proc Natl Acad Sci 
USA 111, 8410–8415.

Freeman S, Haak D, Wenderoth MP (2011). Increased course struc-
ture improves performance in introductory biology. CBE Life Sci 
Educ 10, 175–186.

Freeman S, O’Conner E, Parks JW, Cunningham M, Hurley D, Haak 
D, Dirks C, Wenderoth MP (2007). Prescribed active learning in-
creases performance in introductory biology. CBE Life Sci Educ 6, 
132–139.

Garamszegi LZ (2011). Information-theoretic approaches to statis-
tical analysis in behavioral ecology: an introduction. Behav Ecol 
Sociobiol 65, 1–11.

Good C, Aronson J, Harder JA (2008). Problems in the pipeline: 
stereotype threat and women’s achievement in high-level math 
courses. J Appl Dev Psychol 29, 17–28.

Good C, Aronson J, Inzlicht M (2003). Improving adolescents’ stan-
dardized test performance: an intervention to reduce the effects of 
stereotype threat. J Appl Dev Psychol 24, 645–662.

Grant H, Dweck CS (2003). Clarifying achievement goals and their 
impact. J Pers Soc Psychol 85, 541–553.

Haak DC, HilleRisLambers J, Pitre E, Freeman S (2011). Increased 
structure and active learning reduce the achievement gap in intro-
ductory biology. Science 332, 1213–1216.

Handwerk P, Tognatta N, Coley RJ, Gitomer DH (2008). Access to 
Success: Patterns of Advanced Placement Participation in U.S. High 
Schools, Princeton, NJ: Educational Testing Service.

Harackiewicz JM, Canning EA, Tibbetts Y, Giffen CJ, Blair SS, Rouse 
DI, Hyde JS (2014). Closing the social class achievement gap for 
first-generation students in undergraduate biology. J Educ Psychol 
106, 375–389.

Harris AM, Carlton ST (1993). Patterns of gender differences on 
mathematics items on the Scholastic Aptitude Test. Appl Meas Educ 
6, 137–151.

Ingersoll RM (1999). The problem of underqualified teachers in 
American secondary schools. Educ Res 28, 26–37.

Jensen JL, McDaniel MA, Woodard SM, Kummer TA (2014). Teach-
ing to the test … or testing to teach: exams requiring higher order 
thinking skills encourage greater conceptual understanding. Educ 
Psychol Rev 26, 307–329.

Keller J (2007). Stereotype threat in classroom settings: the interac-
tive effect of domain identification, task difficulty and stereotype 
threat on female students’ math performance. Br J Educ Psychol 77, 
323–338.

Kreft IGG, de Leeuw J (2002). Introducing Multilevel Modeling, 
Thousand Oaks, CA: Sage.

Lauer S, Momsen J, Offerdahl E, Kryjevskaia M, Christensen W, 
Montplaisir L (2013). Stereotyped: investigating gender in introduc-
tory science courses. CBE Life Sci Educ 12, 30–38.

Le LT (2009). Investigating gender differential item functioning 
across countries and test languages for PISA science items. Int J Test 
9, 122–133.

Lindberg SM, Hyde JS, Petersen JL, Linn MC (2010). New trends in 
gender and mathematics performance: a meta-analysis. Psychol Bull 
136, 1123–1135.

Mattern KD, Shaw EJ, Williams FE (2008). Examining the Relationship 
between the SAT, High School Measures of Academic Performance, 
and Socioeconomic Status: Turning Our Attention to the Unit of Anal-
ysis (RN-36), New York: College Board. http://research.collegeboard 
.org/publications/content/2012/05/examining-relationship 
-between-sat-high-school-measures-academic (accessed 27 April 
2015).



C. D. Wright, S. L. Eddy, et al.

15:ar23, 16� CBE—Life Sciences Education

Stanger-Hall KF (2012). Multiple-choice exams: an obstacle for high-
er-level thinking in introductory science classes. CBE Life Sci Educ 
11, 294–306.

Steele CM (1997). A threat in the air: how stereotypes shape intellec-
tual identity and performance. Am Psychol 52, 613–629.

Steele CM, Aronson J (1995). Stereotype threat and the intellectual 
test performance of African Americans. J Pers Soc Psychol 69, 797–
811.

Taylor CS, Lee Y (2011). Ethnic DIF in reading tests with mixed item 
formats. Educ Assess 16, 35–68.

Thomas PR, Bain JD (1984). Contextual dependence of learning ap-
proaches: the effects of assessments. Hum Learn 3, 227–240.

Weaver AJ, Raptis H (2001). Gender differences in introductory at-
mospheric and oceanic science exams: multiple choice versus con-
structed response questions. J Sci Educ Technol 10, 115–126.

Wenglinsky H (2002). How schools matter: the link between teacher 
classroom practices and student academic performance. Educ Policy 
Anal Arch 10, 12–32.

Willoughby SD, Metz A (2009). Exploring gender differences with dif-
ferent gain calculators in astronomy and biology. Am J Phys 77, 651–657.

Zar JH (2010). Biostatistical Analysis, 5th ed., Upper Saddle River, 
NJ: Pearson.

Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009). Mixed 
Effect Models and Extensions in Ecology in R, New York: Springer.




