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National efforts to transform undergraduate biology education call for research experiences to be an 
integral component of learning for all students. Course-based undergraduate research experiences, 
or CUREs, have been championed for engaging students in research at a scale that is not possible 
through apprenticeships in faculty research laboratories. Yet there are few if any studies that exam-
ine the long-term effects of participating in CUREs on desired student outcomes, such as graduating 
from college and completing a science, technology, engineering, and mathematics (STEM) major. One 
CURE program, the Freshman Research Initiative (FRI), has engaged thousands of first-year under-
graduates over the past decade. Using propensity score–matching to control for student-level differ-
ences, we tested the effect of participating in FRI on students’ probability of graduating with a STEM 
degree, probability of graduating within 6 years, and grade point average (GPA) at graduation. Stu-
dents who completed all three semesters of FRI were significantly more likely than their non-FRI peers 
to earn a STEM degree and graduate within 6 years. FRI had no significant effect on students’ GPAs at 
graduation. The effects were similar for diverse students. These results provide the most robust and 
best-controlled evidence to date to support calls for early involvement of undergraduates in research.

Article

of Advisors on Science and Technology [PCAST], 2012). A 
growing body of research documents the positive outcomes 
of UREs. Undergraduates who conduct research in science, 
technology, engineering, or math (STEM) report cognitive 
gains such as learning to “think and work like a scientist,” 
affective gains such as finding research enjoyable and excit-
ing, and behavioral outcomes such as increased intentions 
to pursue further education or careers in science (Seymour 
et al., 2004; Laursen et al., 2010; Lopatto and Tobias, 2010). An 
increasing number of well-controlled, large-scale, and longi-
tudinal studies indicate that UREs can attract, retain, and im-
prove the success of undergraduates in STEM (Estrada et al., 
2011; Eagan et al., 2013; Hernandez et al., 2013). These results 
have been the impetus for calls for widespread involvement 
of undergraduate students in research (AAAS, 2011).

The apprenticeship structure of UREs, in which an un-
dergraduate works one-on-one with a more experienced 
researcher, such as a faculty member, postdoctoral scientist, 
or graduate student, limits the number of undergraduates 
who can participate in research. This limitation, coupled 
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INTRODUCTION

Undergraduate research experiences (UREs) are seen as in-
tegral to training the next generation of scientists, driving 
governmental and philanthropic agencies to invest millions 
of dollars annually to support undergraduate research in-
ternships (Sadler et  al., 2010; American Association for the 
Advancement of Science [AAAS], 2011; President’s Council 
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with interest in expanding the availability and accessibility 
of research experiences and the high cost associated with 
apprenticeships, has driven the development of courses 
that engage students in doing research, also called discov-
ery-based research courses or course-based undergradu-
ate research experiences (CUREs; Wei and Woodin, 2011; 
PCAST, 2012; Auchincloss et al., 2014; National Academies of 
Sciences, Engineering, and Medicine, 2015). CUREs involve 
students in addressing a research question or problem that 
is of interest to the scientific community in the context of a 
class (Auchincloss et al., 2014). When compared with tradi-
tional lab courses, CUREs afford opportunities for students 
to make discoveries that are relevant to stakeholders outside 
the classroom, including practicing scientists, and to engage 
in iterative work such as troubleshooting, problem solving, 
and building off one another’s progress in a way that more 
closely resembles the practice of STEM (Auchincloss et  al., 
2014; Corwin et al., 2015b).

One example of a national-level, upper-division, single-se-
mester CURE is the Genomics Education Partnership, in 
which students enrolled in a genomics-related course finish 
raw Drosophila genome sequence data and annotate genes 
and other genome features as part of addressing a larger 
research question related to Drosophila genome evolution 
(Lopatto et  al., 2008; Leung et  al., 2010). The Science Edu-
cation Alliance–Phage Hunters program is an example of a 
national-level, introductory, two-semester CURE in which 
students identify and characterize novel soil bacteriophages 
in the context of a two-semester introductory biology course 
series (Hatfull et al., 2006; Jordan et al., 2014). Other CURE 
models involve addressing a range of research questions 
using a common, centrally supported technology, such as 
high-throughput sequencing (Buonaccorsi et al., 2011, 2014), 
and local CUREs, in which faculty members integrate an as-
pect of their research into courses they teach at their own col-
leges or universities (Bascom-Slack et al., 2012; Kloser et al., 
2013; Harvey et al., 2014).

CUREs have the potential to make research experi-
ences available at scale, rather than to a select few who 
seek out research internships or are handpicked by faculty 
(Auchincloss et al., 2014). Because CUREs can be offered at 
the introductory level, they have greater potential to change 
students’ educational and career trajectories than research 
internships, which are mostly available to students later in 
their undergraduate careers, in junior or senior year. This 
enormous potential has led to rapid growth in the number 
of CUREs and recommendations for their widespread adop-
tion (AAAS, 2011; PCAST, 2012), despite critiques that point 
out the dearth of evidence of their effectiveness and impact 
(Linn et al., 2015). Most studies of CURE effectiveness or im-
pact rely on student self-report of knowledge and skill gains 
or intentions to pursue graduate education in STEM or sci-
ence-research related careers, rather than more direct mea-
sures of achievement and retention in STEM. However, sev-
eral CUREs have been in operation long enough to examine 
longer-term effects for students—especially whether CURE 
participation influences students’ persistence and success in 
STEM and in college in general.

The Freshman Research Initiative (FRI) at the University of 
Texas at Austin (UT Austin) is a CURE program that was es-
tablished to improve the learning experiences of undergrad-
uates in the College of Natural Sciences (CNS), about half of 

whom are life science majors. The program is described in 
greater detail elsewhere (Beckham et al., 2015) and summa-
rized here as context for this study. The full FRI program is 
a three-course series, which we refer to here as Courses 1, 2, 
and 3 for simplicity. FRI students first complete a research 
methods course (Course 1), followed by up to two semes-
ters of course-based research (CUREs) in one of 25+ different 
areas, called “research streams” (Courses 2 and 3). Current 
research streams are offered in a range of science disciplines, 
including biology, biochemistry, bioinformatics, chemistry, 
computer science, physics, and astronomy (see https://
cns.utexas.edu/fri for a complete list). Students earn three 
credit hours for each course, which translates to roughly 9 h 
of lab-related work per week. In addition, each course helps 
students make progress toward completing their degrees: 
Course 1 counts toward university requirements, Course 2 
counts as an introductory lab credit, and Course 3 counts as 
an upper-division lab or research credit.

In Course 1, students learn to search and read scientific 
literature, and they design and execute one or more scien-
tific investigations, called inquiries, which they summarize 
in written and oral reports. During this semester, they also 
participate in a matching process through which they are 
assigned to a stream. In Course 2, students learn about the 
overarching research goals for their stream, complete in-
structional modules to learn concepts and skills specific to 
the research, and begin to contribute to the stream’s research. 
In Course 3, students become more independent, often pro-
posing and carrying out their own independent subproject 
using the skills and understanding they developed in Course 
2. Depending on the research, students may either work side 
by side on parallel projects or as a member of a team on a 
component of the research. As an example, after completing 
Course 1, students might join the Supramolecular Sensors 
Stream, and make use of spectroscopy, chromatography, or-
ganic synthesis, and biochemical techniques to create and 
utilize peptide-based sensors to differentiate wine varietals. 
These students can choose to earn either a general biology 
or general chemistry lab credit for Course 2 and either inde-
pendent biology or chemistry research credit for Course 3. 
Courses 1 and 3 are writing intensive; students who complete 
these courses also complete a university writing requirement.

Each section of Course 1 enrolls 25 students and is taught 
by a PhD-level lecturer. Each stream (Courses 2 and 3) en-
rolls up to 40 students. These courses are led by a PhD-level 
research educator (RE), who is a hybrid of an instructor and 
a research scientist hired as a non–tenure-track faculty mem-
ber or postdoctoral associate, and an individual or team of 
tenure-track or tenured principal investigators (PIs). A small 
number of streams enroll only 15 students per semester and 
are led by graduate students who serve in the role of RE. 
The RE role is unique and essential to FRI, because each 
RE mentors a team of up to 40 undergraduate researchers, 
which would not be practical in a more traditional research 
group structure. In all semesters of FRI, additional instruc-
tional support is provided by undergraduate peer mentors 
who previously participated in FRI and who help to create 
an environment that reflects the tiered expertise typical of 
a research group or community of practice (Wenger, 1999; 
Lave and Wenger, 1991). In Courses 1 and 2, a graduate or 
undergraduate teaching assistant provides additional re-
search mentorship and instructional support.
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FRI was launched with 40 students in 2005 and now serves 
∼900 students per year, which is ∼40% of the incoming class 
in the CNS. A sufficient number of students have partici-
pated in FRI to examine its effectiveness in terms of direct, 
long-term student outcomes. Specifically, this analysis as-
sessed the degree to which participation in FRI influenced 
students’ probability of graduating with a STEM degree, 
probability of graduating within 6 years regardless of major, 
and educational performance in terms of cumulative grade 
point average (GPA) at graduation when compared with a 
matched sample of their peers.

METHODS

Participants
A sample of 4898 students was drawn from the population 
of students enrolling at UT Austin between 2006 and 2013 
(N = 75,767). This study was designed to test the intermedi-
ate- and long-term impacts of the FRI on academic perfor-
mance and persistence in a STEM major. This study primar-
ily compared students who completed all three semesters of 
the FRI program with a group of propensity score–matched 
control students. In this paper, we report data from students 
first year, junior year, and graduation year (typically fourth 
or fifth year of enrollment at UT Austin). We restricted the 
sample to students with complete information for the vari-
ables used in the propensity score analysis (N = 53,603; see 
FRI Program Variables). Students enrolled in programs that 
guaranteed FRI enrollment were also omitted (i.e., Biology 
Scholars program, Emerging Scholars program, Women in 
Science program, Dean’s Scholars Honors program, and 
Public Health Honors program; N = 52,619). A propensity 
score–matching procedure was conducted on the resulting 
sample of FRI (n = 2648) and non-FRI students (n = 49,971). 
Finally, the analytical sample used in data analysis was re-
stricted to propensity score–matched FRI and non-FRI stu-
dents (N = 4898; nFRI = 2449 and nnon-FRI = 2449). About 93% 
of FRI students had a close propensity score–matched non-
FRI student and were thus included in the final analytical 
sample.

FRI Program Variables
The following variables measured “participation” in the FRI 
program. FRI is a three-course CURE program. Participation 
in each of the three courses was measured by enrollment 
data collected from the registrar’s office after the add/drop 
period ended on the 12th class day of the semester. Partici-
pation in Course 1, which students complete in the Fall of 
their freshman year, was dummy coded (0 = matched con-
trol group, 1 = FRI group) for all analyses. Courses 2 and 3 
represent the lower- and upper-division research courses of 
FRI, which students complete in the Spring of their fresh-
man year and Fall of their sophomore year, respectively. 
Participation in each semester was measured by enrollment 
data collected from the registrar’s office after the add/drop 
period ended on the 12th class day of the semester. Spring 
participation (Course 2) and Fall participation (Course 3) 
were each dummy coded (Course 2: 0 = did not participate, 
1 = participated; Course 3: 0 = did not participate, 1 = partic-
ipated) for all analyses.

Identification of Matched Samples of FRI 
and Non-FRI Participants
To conduct an analysis of the effect of FRI participation, we 
first had to identify an appropriate control group of nonpar-
ticipating students. We used a propensity score–matching 
procedure to calculate the probability that a student would 
be in FRI based on a set of observed covariates in order to 
correct for selection bias when creating a matched control 
group (West et al., 2008). The propensity score model (i.e., 
logistic regression) included 13 variables used in the FRI 
admissions process to generate a propensity score (from 0 
to 1) for each student in the MatchIT software program (Ho 
et al., 2007, 2011; Thoemmes, 2011). Regarding the variables 
that influence admissions into FRI, the minimum require-
ment for entry is a passing score (70%) on a math compe-
tency test. Students in several specialty programs in the 
CNS, such as the Women in Natural Sciences program, are 
automatically admitted to FRI. These account for ∼30% of 
the FRI population. Students from groups underrepresent-
ed in the sciences, such as those with family income less 
than $40,000 per year, those who are first in their families 
to go to college, women majoring in physical sciences, com-
puter science, or math, and students with low SAT scores, 
are also selected for admission. These students account for 
∼40% of the FRI population. The remaining ∼30% of FRI 
students apply to the program. Applicants are given priori-
ty based on their membership in one of the underrepresent-
ed groups described above. Finally, there is some attrition 
from FRI after each semester. Seats that become available in 
Courses 2 and 3 are filled with students from the applicant 
waiting list.

We used the following sociodemographic characteristics 
as matching variables, because they are associated with ad-
mission into FRI and persistence in STEM: gender, race/eth-
nicity, parental education levels, parental income level, and 
Pell grant eligibility (Schneider et  al., 1997; Riegle-Crumb 
et al., 2012; Supplemental Table S1). We also included vari-
ables that have been shown to be associated with enrollment 
in FRI and students’ choice to major in STEM: SAT total score 
or ACT equivalent as a measure of prior academic achieve-
ment, number of high school science credits earned as a mea-
sure of science preparation, and number of high school math 
credits earned as a measure of math preparation (Wang, 
2013). We included the following additional variables in the 
matching procedure, because they affected students’ likeli-
hood of enrolling in FRI and thus may have resulted in a 
selection bias: whether students graduated from a Texas or 
out-of-state high school, the first year students enrolled at 
UT Austin (e.g., 2006), the first semester students enrolled 
at UT Austin (entry in Fall is on cycle with FRI admissions), 
the first college students entered at UT Austin (CNS students 
are prioritized), and enrollment in the Texas Interdisciplin-
ary Program, a community-building program in the college.

We used FRI students’ propensity scores to identify com-
parable non-FRI control students (see Supplemental Mate-
rial for details). The propensity score–matching procedure 
resulted in two groups of equal size (FRI group n = 2449 and 
matched control group n = 2449). The percent bias reduction 
on the matching covariates was 98% in the matched sample 
(Supplemental Figure S1 and Supplemental Table S2). The 
following analysis was restricted to matched pairs in which 
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graduation (i.e., had not yet graduated by Summer 2015), 
41.6% were missing data on their major at graduation and 
time to degree completion (i.e., had not yet graduated by 
Summer 2015). Our matched sample included both those who 
had time to graduate (i.e., 4 years for traditional students or 
2 years for transfer students) and a smaller number of those 
who did not (i.e., their first year enrolled was 2012 or 2013). 
Although those who did not have time to graduate (and their 
matched control) did not contribute to analyses related to 
any of the graduation outcomes (i.e., cumulative GPA, STEM 
degree, 6-year graduation rate), they were retained because 
they contributed to the analysis of the FRI effect on midpoint 
GPA, which was a suspected mediator of the FRI effect on 
cumulative GPA (see Supplemental Material for details).

To ensure unbiased estimates of the effect of FRI, we only 
used whole linked pairs of participants in which both the 
FRI and matched control participant provided data for the 
analysis. This approach restricted our analytical sample of 
the STEM degree and cumulative GPA outcomes to cases in 
which both members of the matched pair (i.e., both the FRI 
student and the matched counterpart) graduated in or before 
Summer 2015 (regardless of the number of years to degree). 
This approach also restricted our analytical sample of the 
6-year graduation outcome to cases in which both the FRI 
student and the matched counterpart started at UT Austin 
on or before 2009 and thus had the opportunity to graduate 
within 6 years (e.g., for those starting in Fall 2006, gradua-
tion by Summer 2013; for those starting in Fall 2009, gradua-
tion by Summer 2015). To account for missing data and to ac-
count for chance imbalances on covariates used to estimate 
the propensity scores, we controlled for all covariates used 
in the propensity score matching in our regression models 
of the FRI treatment effect (Enders, 2010; Pan and Bai, 2015). 
Finally, it is important to note that, even with missingness, 
all of our analyses were more than adequately powered to 
detect small effects. An a priori power analysis indicated that 
the sample size required to detect a small effect (i.e., odds 
ratio = 1.50) of FRI on STEM degree and 6-year graduation 
was N = 778, while the sample size required to detect a small 
effect (i.e., R2 = 0.02) on cumulative GPA was N = 476 (Faul 
et al., 2007; Chen et al., 2010).

RESULTS

Graduation with STEM Degree
We assessed students’ attainment of a STEM degree based 
on descriptive statistics (Table 1) and bivariate correlations 
(Table 2) and found a raw difference favoring the FRI group. 
However, raw differences between FRI and non-FRI groups 
may be untrustworthy, as they do not control for chance 
imbalances on the matching covariates and they use data 
from unlinked members of matched pairs (e.g., one member 
of the matched pair graduated with a STEM degree [STEM 
degree = 1], but the other member of the matched pair had 
not yet graduated [STEM degree = missing]). Therefore, 
we conducted a logistic regression analysis on all matched 
pairs with graduation data (both pairs graduated; STEM 
degree: 0 = non-STEM college; 1 = STEM-related college) 
to determine the effect of FRI participation on students’ 
probability of graduating with a STEM degree. We used a 
hierarchical approach in the logistic regression analysis (not 

the FRI student participated in Course 1 alone (n = 416), both 
Courses 1 and 2 (n = 882), or the complete FRI program (i.e., 
Courses 1, 2, and 3; n = 1151), and the non-FRI student partic-
ipated in no FRI courses. In addition, analysis was restricted 
to matched pairs in which both students had scores on the 
outcome and complete data on all predictors.

Outcomes
The following variables measured outcomes relevant to par-
ticipation in FRI.

Earned Baccalaureate Degree in STEM. Students who had 
graduated earned degrees in a variety of colleges (e.g., natu-
ral sciences, engineering). The college of earned degree vari-
able was recoded into a STEM degree dummy-coded vari-
able (0 = non-STEM college, 1 = STEM college), with only 
the colleges of natural sciences and engineering coded as 
STEM colleges. Mathematics and computer science degrees 
are earned from the CNS.

Earned Any Degree within 6 years of Entry. Student gradu-
ation from UT Austin within 6 years of entry was measured 
by coding graduation versus nongraduation by Spring of 
2015. This variable was dummy coded to represent gradua-
tion or nongraduation (0 = had not graduated within 6 years 
of entry, 1 = graduated with a degree within 6 years of entry). 
Because our focus was on students who had the opportuni-
ty to graduate within 6 years, this analysis was restricted to 
students in our data set entering UT Austin on or before 2009 
(i.e., we had graduation data for students up to Spring 2015).

Cumulative GPA at Graduation. Cumulative college GPA 
was measured at graduation. Cumulative GPA was mea-
sured on a scale from 0 to 4.

Cumulative GPA at Midpoint of College Tenure. Cumula-
tive college GPA was measured at the midpoint of the under-
graduate college tenure (i.e., Fall of junior year). Cumulative 
GPA was measured on a scale from 0 to 4.

Control Variables. All covariates used in the propensity 
score–matching process were also used as variables in the 
regression analyses to control for chance imbalances across 
groups (Schafer and Kang, 2008). Control variables includ-
ed: gender (female, male), race/ethnicity (Asian, Hispanic, 
white, or other), enrollment in Texas Interdisciplinary Pro-
gram (yes, no), SAT total score (or ACT equivalent), Pell grant 
eligibility (yes, no), number of units of science on high school 
transcript, number of units of math on high school transcript, 
how students were initially accepted into UT Austin (Texas 
high school, other), first year enrolled at UT Austin (2006, 
2007, 2008, 2009, 2010, 2011, 2012, or 2013), maternal and 
paternal education levels (less than college degree, college 
degree [2 or 4 years], or advanced degree), parental income 
level (≤ $39,999, $40,000 to $79,999, $80,000 to $99,999, or 
≥ $100,000 per year), and first college entered at UT Austin 
(STEM-related college = natural sciences or engineering, or 
non–STEM-related college such as education or business).

Treatment of Missing Data
For the sample of 4898 participants, 12.7% of participants 
were missing data on their midcollege cumulative GPA, 
43.0% were missing data for their cumulative GPA at 
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To make these findings more concrete, we calculated the pre-
dicted probability of earning a STEM degree for students in 
the non-FRI control and FRI groups. After controlling for 
other factors in the model, non-FRI students had a 71% pre-
dicted probability of graduating with a STEM degree com-
pared with 94% for FRI students who completed all three 
courses (47% of FRI students completed all three courses; 
Figure 1A). Students who only participated in Course 1 (17% 
of FRI students completed only Course 1) or Courses 1 and 2 
(36% of FRI students completed Courses 1 and 2) were just as 
likely to graduate with a STEM degree as non-FRI students 
(O.R.Course1 = 0.69; O.R.Courses12 = 1.37).

Graduation within 6 years
Descriptive statistics and bivariate correlations indicated a 
slight raw difference in students’ 6-year graduation rate fa-
voring the FRI group (Tables 1 and 2). To assess an unbiased 
effect of FRI participation on students’ probability of grad-
uating within 6 years of entering college regardless of ma-
jor, we conducted a logistic regression analysis on matched 
pairs in which both had the opportunity to graduate with-
in 6 years: FRI students and matched controls who both 
enrolled at UT Austin on or before 2009. We used the same 

to be confused with hierarchical linear models or multilevel 
models), such that matching variables were entered in step 1 
and FRI variables were entered in step 2. This approach also 
allowed us to identify whether students experienced differ-
ent outcomes as a result of participating in one, two, or all 
three FRI courses.

First, we regressed STEM graduation on all variables used 
to estimate propensity scores to control for chance imbalances 
on any of the matching covariates (step 1), followed by three 
dummy-coded variables indicating level participation in 
FRI (step 2; Course 1 only, Course 1 and 2, Course 1, 2, and 
3 [reference category was the non-FRI group]). The results 
indicated that FRI membership has a statistically significant 
effect on the probability of graduating with a STEM degree 
over and above control variables (Table 3). Because our anal-
ysis focused on a set of three related outcomes, we adopted a 
Bonferroni-corrected alpha level (α = 0.05/3 = 0.017) to control 
type I error rate inflation in assessing statistical significance.

Parameter estimates in the final step of the logistic regres-
sion model revealed that students who participated in all 
three semesters of FRI (Courses 1, 2, and 3) were significantly 
more likely to graduate with a STEM degree compared with 
the non-FRI control group (O.R.Courses123 = 6.08, 98.3% CI 
[3.66, 10.12]; see Supplemental Table S3 for complete details). 

Table 1. Summary of descriptive statistics of outcomes and key predictors as a function of FRI status

FRI Matched control

Variablea N % M SD N % M SD

STEM degree 1482 81 1377 68
6-year graduationb 1082 79 1104 75
Cumulative GPA 1482 3.39 0.45 1374 3.34 0.43
FRI course work 2449 100 2449 100

Course 1 onlyc 416 17 0 0
Courses 1 and 2c 882 36 0 0
Courses 1, 2, and 3c 1151 47 0 0

Midpoint GPA 2188 3.28 0.55 2086 3.20 0.56

STEM degree codes: 0 = non-STEM, 1 = STEM; 6-year graduation codes: 0 = did not graduate, 1 = graduated within 6 years. Course variables 
(e.g., Course 1 only) were dummy coded to indicate level of participation in FRI = 1 versus otherwise = 0 (reference group was the non-FRI 
matched control group).
aFor dichotomous variables (e.g., STEM degree: 0 = non-STEM degree, 1 = STEM degree).
bSix-year graduation represents graduation rate of those who started at UT Austin on/before 2009.
cSample size for FRI course work (e.g., FRI group N = 2449) broken down by subgroup (e.g., Course 1 only, n = 416).

Table 2. Summary of bivariate correlations among outcomes and key predictors

Variable 1 2 3 4 5 6 7

1 STEM degree 1 0.13** 0.08** −0.09** 0.01 0.21** 0.10**
2 6-year graduation 1 0.09** −0.10** −0.01 0.14** 0.45**
3 Cumulative GPA 1 −0.09** −0.01 0.12** 0.98**
4 Course 1 only 1 −0.14** −0.17** −0.11**
5 Courses 1 and 2 1 −0.26** −0.01
6 Courses 1, 2, and 3 1 0.15**
7 Midpoint GPA 1

STEM degree codes: 0 = non-STEM, 1 = STEM; 6-year graduation codes: 0 = did not graduate, 1 = graduated within 6 years. Course 1 codes: 
0 = matched control, 1 = FRI; Courses 2 and 3 codes: 0 = did not participate, 1 = participated.
**p < 0.01.
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The results indicated that completing the full FRI program 
has a statistically significant effect on students’ probability of 
graduating within 6 years, over and above control variables 
(Table 3). Parameter estimates in the final step of the logis-
tic regression model revealed that students who participated 
in all three semesters of FRI were significantly more likely to 
graduate within 6 years (O.R.Courses123 = 2.43, 98.3% CI [1.34, 
4.43]; Supplemental Table S4). To make these findings more 
concrete, we calculated the predicted probability of gradu-
ating within 6 years for students in the non-FRI control and 
FRI groups. After controlling for other factors in the model, 
non-FRI students had a 66% predicted probability of grad-
uating with any degree within 6 years compared with 83% 
for FRI students (Figure 1B). FRI students who only partic-
ipated in Course 1 or Courses 1 and 2 were just as likely to 
graduate within 6 years as non-FRI students (O.R.Course1 = 0.63; 
O.R.Courses12 = 1.07).

Cumulative GPA
Again, descriptive statistics and bivariate correlations indi-
cated a slight raw difference in cumulative graduation GPA, 
favoring the FRI group (Tables 1 and 2). To assess an unbi-
ased effect of FRI participation on educational performance 
at graduation, we conducted a regression analysis on all 
matched pairs with cumulative graduation GPA scores. Pre-
liminary analysis indicated an FRI effect on midpoint GPA 
(Supplemental Table S5). Thus, midpoint GPA was entered 
in step 3 as potential mediator of the effect of participating 
in FRI. As above, the results indicated that FRI membership 
(step 2) had a statistically significant effect on cumulative GPA 
at graduation, over and above control variables (Table 3). FRI 
students who completed Courses 1 and 2 or all three cours-
es exhibited statistically significantly higher graduation GPA 
compared with the non-FRI control group (step 2; bCourses12 = 
0.07 and bCourses123 = 0.12), but students who completed only 
FRI Course 1 (step 2; bCourse1 = 0.01) were not significantly 
different from the non-FRI control group. We suspected that 
grades in FRI courses themselves could be influencing cu-
mulative graduation GPA. Thus, we controlled for midpoint 
GPA and found that the positive effects of participating in FRI 
were nullified (Figure 1C and Supplemental Table S6).

Potential Race, Gender, and First-Generation 
Moderation Effects
We explored whether students from different backgrounds 
differed in their outcomes as a result of participating in FRI. 

Table 3. Regression analysis (logistics or OLS) with graduation with a STEM degree, graduation within 6 years with any degree, and 
graduation cumulative GPA as outcomes

Graduation with STEM degree (n = 1624) Graduation within 6 years (n = 990) Graduation cumulative GPA (n = 1510)

Step Predicator –2LL Pseudo-R2 Δχ2(df) –2LL Pseudo-R2 Δχ2(df) R2 ΔR2 ΔF(df)

1. Controlsa 1653.38 0.183 217.79 (24)*** 1012.38 0.113 77.37 (21)*** 0.216 0.216 17.00 (24)***
2. FRI courses 1545.68 0.266 107.70 (3)*** 990.18 0.143 22.20 (3)*** 0.228 0.013 8.02 (3)***
3. Midpoint GPA 0.951 0.723 21,705.91 (1)***

–2LL = –2*log likelihood; pseudo-R2 = Nagelkerke R2 estimate of effect size; Δχ2 = change in overall chi-square from the previous model.
aThe list of control variables is described in the Methods section.
***p ≤ 0.001.

Figure 1. Participation in all three FRI courses significantly im-
proves students’ predicted probability of graduating with a STEM 
major (A) and graduating in 6 years (B), but does not affect students’ 
probability of earning a higher cumulative GPA at graduation (C). 
Error bars represent 98.3% confidence intervals; p < 0.017.

hierarchical procedure described above, but with graduation 
within 6 years as the outcome (0 = did not graduate within 
6 years; 1 = graduated within 6 years).
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a STEM degree can simply be attributed to longer exposure 
to a learning environment that is more motivating than tra-
ditional lab course experiences (Graham et al., 2013).

The distinct, significant effects of Courses 2 and 3 on stu-
dents’ likelihood of graduating in 6 years and graduating 
with a STEM degree indicate that the duration of students’ 
involvement in CUREs is important for their outcomes. 
Specifically, the data indicate that a one-semester research 
course is sufficient to achieve these outcomes to some extent 
but that participation in additional semesters is important 
for maximally realizing these outcomes. This finding adds 
to those from Shaffer and colleagues (2014), who found that 
students who spent more time on their CURE work reported 
increased learning and greater interest in STEM courses 
and in STEM in general. These results are likely to be con-
servative estimates of the effect of participating in CUREs, 
because the bivariate correlations show that participation in 
Courses 1, 2, and 3 are all fairly highly correlated. It is likely 
that collinearity between participating in each course sup-
presses the independent effects of each course. Larger sam-
ples of students who participate in Course 1 only or Courses 
1 and 2 only are needed to confirm this.

These analyses were conducted with data from a CURE 
program that has involved enough students for a sufficient 
length of time to examine long-term outcomes such as grad-
uation rates and majors. The extent to which these results 
will apply to other CUREs, especially CUREs that enroll 
students later in their undergraduate degrees, needs to be 
determined by conducting similar, carefully controlled stud-
ies. Given that many CUREs are small in scale or have more 
finite life spans, this may prove difficult. An alternative ap-
proach would be for studies of CUREs to report long-term 
outcomes of participating and nonparticipating students 
such that meta-analyses can be done in the future to identify 
effects across research course experiences.

These findings are arguably the most robust evidence to 
date that CUREs improve the outcomes of undergraduate 
STEM students. We have statistically controlled for back-
ground variables related to academic motivation and prepa-
ration (e.g., prior achievement, math and science prepara-
tion, parental education) and controlled for initial entry into 
FRI. This lends confidence that the outcomes reported here 
can be attributed to CURE participation. However, there are 
likely to be other variables not included in our analysis that 
may predict FRI participation and cause the outcomes of 
interest. We are currently collecting data on psychological 
variables that may predict students’ participation in FRI and 
their persistence in college and in STEM (e.g., motivation, 
interest in research; Hernandez et al., 2013) in order to more 
fully understand the effects of CURE participation per se.

These results do not yield insights into the features of 
CUREs that lead to these outcomes. There are many struc-
tural differences between FRI and traditional lab courses that 
could be leading to the outcomes reported here (Auchincloss 
et al., 2014). For example, Courses 2 and 3 meet in dedicated 
lab spaces that become a sort of scientific home for students. 
Typically, two wet-lab FRI groups meet in a single large lab 
space, such that up to 80 students are cycling in and out of 
the space over the course of the week. Students working on 
computational projects meet in regularly scheduled confer-
ence-style classrooms or a robotics lab and also work online 
at a distance. The lab spaces are open to students and staffed 

Specifically, we tested whether students’ race/ethnicity,  
gender, or first-generation college status moderated the ef-
fect of FRI on the outcomes. Exploratory moderated regres-
sion analyses (logistic and OLS) indicated that students’ 
sociodemographic characteristics did not moderate the ef-
fects of FRI on outcomes. Given the analytical sample sizes, 
number of predictors in our models, and the adjusted alpha 
level, our exploratory analyses were more than adequately 
powered to detect small moderating effects (i.e., O.R. = 1.50 
or R2 = 0.02; power > 0.99).

DISCUSSION

To the best of our knowledge, this is the largest and most 
carefully controlled analysis to date of the effects of par-
ticipating in a CUREs on long-term student outcomes that 
are of high interest to students and institutions alike. Spe-
cifically, the data reported here indicate that participation 
in early CUREs significantly increases students’ likelihood 
of graduating with a STEM degree and graduating within 
6 years. After controlling for other variables, the outcomes of 
participating in the full FRI program were the same regard-
less of students’ gender, race/ethnicity, and first-generation 
in college status, showing that these effects were robust for 
diverse students. Results from these analyses demonstrate 
the importance of using quasi-experimental techniques for 
controlling for selection bias in determining the effects of 
research experiences, since the data show that the variables 
that influenced entry into FRI had statistically significant ef-
fects on all of the outcomes we examined.

The effects of FRI differed depending on whether stu-
dents completed Courses 1, 2, and 3, which could be due to 
the nature of the courses or to time spent in the program. 
In Course 1, students have total freedom to define their 
own investigations, from posing questions to investigate to 
designing studies to collecting and analyzing data to con-
structing and evaluating scientific arguments. Courses 2 
and 3 are more similar to UREs, because students engage 
in conducting novel studies that build on and contribute to 
a faculty member’s ongoing research, with the potential to 
yield publishable results as well as methods, data, and other 
products (e.g., inventions, companies) that are of interest 
to communities outside the classroom. Thus, the problem 
space has been defined to some extent. Students carve out 
their own aspect of the research to pursue and must collect 
and analyze data and construct and evaluate arguments 
but may not have complete latitude to select their research 
questions or methods. This study provides a preliminary test 
of whether having full intellectual responsibility posing re-
search questions is important for students to achieve desired 
outcomes (National Academies of Sciences, Engineering, 
and Medicine, 2015). The parameter estimates from our re-
gression models (Supplemental Tables S4–S6) indicated that 
Course 1 alone did not have a significant effect on any of the 
outcomes we examined, yet model fit was improved by in-
cluding Course 1 in all three models (Table 3). These results 
suggest that investigatory courses like Course 1 may have 
distinct positive effects on graduating with a STEM degree 
when compared with research courses (i.e., Courses 2 and 
3). Alternatively, it may be that the independent effects of 
each FRI course on students’ probability of graduating with 
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The effects of FRI on graduation rates and STEM retention 
have been and continue to be an important factor in driv-
ing institutional investment in the program. Currently, ∼65% 
of the costs are borne jointly by the university instructional 
budget and college-level administrative funds, and 35% are 
covered by funds from grants, gifts, and endowment. Based 
on the results presented here, the CNS aspires for all first-
year undergraduates in the college to participate if they are 
interested. About 200 students per year are on the waiting 
list, a number that has remained steady even as the program 
has grown. There is also a waiting list of faculty who would 
like to lead streams. The main limiting factors are space to 
accommodate the open lab structure of the program and 
funds to support the unique instructional staffing model, 
mainly the inclusion of the PhD-level RE and undergraduate 
peer mentors.

In his letter to the U.S. president, John P. Holdren noted,

Economic forecasts point to a need for producing, over the 
next decade, approximately 1 million more college gradu-
ates in STEM fields than expected under current assump-
tions. Fewer than 40% of students who enter college in-
tending to major in a STEM field complete a STEM degree. 
Merely increasing the retention of STEM majors from 
40% to 50% would generate three-quarters of the targeted 
1 million additional STEM degrees over the next decade. 
(PCAST, 2012)

FRI represents a scalable, affordable way to meet this de-
mand. According to predicted probabilities in this study, 
out of every 100 students who enter college, 17 more will 
complete an undergraduate degree if they complete FRI. 
For every 100 students who graduate, 23 more will stay 
in a STEM major if they complete FRI. A rough estimate 
of the total per-student cost of FRI is ∼$500 for Course 1 
and ∼$1000 each for Courses 2 and 3. Although this cost 
is higher than the typical ∼$500 per-student cost of a stan-
dard introductory lab course at UT Austin, the cost is low 
compared with the typical ∼$5000 per student for 8–10 wk 
Summer research internships and to the tuition dollars lost 
when students leave college. Costs could be lowered fur-
ther by scaling up some of the cost-saving measures that 
we have implemented at UT Austin, such as offering peer 
mentors relevant course credit instead of pay, hiring senior 
undergraduates instead of graduate students as teaching 
assistants, or hiring graduate students as REs. Other mod-
els should also be tested, such as tenure-track or tenured 
faculty serving as the RE as part of their standard teaching 
responsibilities.

Given that FRI boosted retention among students re-
gardless of their background, the diversity of students 
enrolled in the program provides the additional benefit 
of diversifying to the STEM workforce. In the long term, 
growing a more diverse STEM workforce has the potential 
to produce more creative, effective, and feasible ideas than 
would be accomplished by homogenous groups (McLeod 
et al., 1996). In the near term, FRI can be a model for ad-
dressing the massive attrition of undergraduate students 
from STEM disciplines and ensuring that all students have 
the potential to earn higher wages and experience lower 
unemployment rates associated with STEM-related jobs 
(U.S. General Accounting Office, 2005; Langdon et al., 2011; 
PCAST, 2012).

by REs, graduate or undergraduate teaching assistants, or 
peer mentors throughout the day. FRI lab spaces often be-
come a place where students not only conduct research but 
also study for classes and spend time more informally. The 
involvement of undergraduate mentors gives students ac-
cess to near peers who have recent experience learning the 
research and who can provide general advice on navigating 
the first 2 years of college. Class size is not likely to be a ma-
jor factor, since enrollments are similar between FRI courses 
and standard laboratory courses, and most FRI courses en-
roll up to 35 students, which is larger than the typical 24-per-
son introductory lab course. Different versions of FRI that 
make use of curricular and instructional staffing models are 
now being implemented at universities across the country. 
Cross-site study of student outcomes has the potential to 
yield insight into which FRI design elements are necessary 
and sufficient to achieve the results reported here.

Future research on CUREs should focus on using research 
and theory from social sciences, including situated learning 
(Brown et al., 1989), communities of practice (Wenger, 1999; 
Lave and Wenger, 1991), and knowledge integration (Linn 
et  al., 2015), to understand the features of CURE design 
and implementation that lead to these long-term outcomes 
(Corwin et al., 2015a). Recent research aimed at distinguish-
ing CUREs from traditional lab courses indicates that the 
extent to which students have opportunities to make dis-
coveries that are of broad interest, engage in iterative work 
(e.g., troubleshooting, revising based on feedback, building 
off one another’s findings), and have opportunities to de-
velop a sense of ownership of their research projects may be 
particularly important design features (Hanauer et al., 2012; 
Hanauer and Dolan, 2014; Corwin et al., 2015b). In addition, 
study of CUREs indicates that more proximal outcomes, in-
cluding the development of scientific self-efficacy and scien-
tific identity and internalization of scientific values, are im-
portant predictors of persistence in science research–related 
education and career paths (Estrada et al., 2011; Hernandez 
et al., 2013; Robnett et al., 2015). CUREs should be examined 
for their potential to foster student growth in these domains, 
ideally using a model-based approach that links CURE de-
sign features to students’ short- and long-term outcomes 
(Corwin et  al., 2015a). Future research on CUREs should 
also follow the advice of calls for the next generation of dis-
cipline-based education research, aimed at understanding 
not simply what works for students but for whom and in 
what contexts (Singer et al., 2012; Freeman et al., 2014; Dolan, 
2015).

These results should be useful on a national level for tailor-
ing allocation of funds to CUREs versus UREs according to 
the intended goals. CUREs, especially those offered as part 
of introductory course work, are likely to be a more fruitful 
investment when stakeholders are interested in increasing 
graduation rates and retention in STEM majors. Investment 
in research internships may be better suited to helping stu-
dents confirm their career interests, explore graduate edu-
cation, and further develop their scientific expertise. These 
results lay an important foundation for conducting cost–
benefit analyses regarding the value of CUREs in terms of 
yielding additional tuition dollars and increasing the earn-
ing potential of STEM majors, especially for students from 
underrepresented or underserved backgrounds, for whom 
FRI was equally effective.
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