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ARTICLE

ABSTRACT
Calls for undergraduate biology reform share similar goals: to produce people who can 
organize, use, connect, and communicate about biological knowledge. Achieving these 
goals requires students to gain disciplinary expertise. Experts organize, access, and apply 
disciplinary knowledge differently than novices, and expertise is measurable. By asking 
introductory biology students to sort biological problems, we investigated whether they 
changed how they organized and linked biological ideas over one semester of introduc-
tory biology. We administered the Biology Card Sorting Task to 751 students enrolled in 
their first or second introductory biology course focusing on either cellular–molecular or 
organismal–population topics, under structured or unstructured sorting conditions. Stu-
dents used a combination of superficial, deep, and yet-uncharacterized ways of organizing 
and connecting biological knowledge. In some cases, this translated to more expert-like 
ways of organizing knowledge over a single semester, best predicted by whether students 
were enrolled in their first or second semester of biology and by the sorting condition 
completed. In addition to illuminating differences between novices and experts, our re-
sults show that card sorting is a robust way of detecting changes in novices’ biological 
expertise—even in heterogeneous populations of novice biology students over the time 
span of a single semester. 

INTRODUCTION
The past 30 years have seen many discussions, publications, and policy positions 
advanced around the question “What should be the purposes of undergraduate science 
education?” The American Association for the Advancement of Science’s Science for All 
Americans (AAAS, 1991; Rutherford and Ahlgren, 1991) used “habits of mind” to 
describe the suite of scientific, mathematical, and logical thinking skills that young 
people should adopt during their school years. The Committee on Undergraduate Sci-
ence Education (National Research Council [NRC], 1999), justified then-new National 
Science Education standards, in part, by explaining,

“Citizens need scientific information and ways of thinking in order to make informed 
decisions, [and] business and industry need … workers with the ability to learn, reason, 
think creatively, make decisions, and solve problems.” (NRC, 1999, p. 2)

Brewer and Smith reiterated and reframed these and other goals in Vision and 
Change in Undergraduate Biology Education: A Call to Action when they wrote,

“Biology in the 21st century (NRC, 2009) requires that undergraduates learn how to 
integrate concepts across levels of organization and complexity and to synthesize and 
analyze information that connects conceptual domains.” (AAAS, 2011)
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These are remarkably common aspirations for undergraduate 
science education. Indeed, Vision and Change identified a set of 
five “core concepts” (AAAS, 2011, pp. 11–13) and six “core com-
petencies” (AAAS, 2011, p. 17) as a framework for guiding 
undergraduate biology education and student learning. These 
performance goals focus on developing individuals who can orga-
nize, use, make connections among, and communicate about bio-
logical knowledge and information. One way to characterize 
these and other works is to say they envision students approach-
ing disciplinary expertise (Chi et al., 1981; Glaser and Chi, 1988; 
Shanteau, 1992). What, then, is an expert? How do instructors 
and students produce learning with deep understanding and con-
nectivity, and beyond merely fact acquisition? These are open 
questions in biology education research. In this paper, we present 
an argument for viewing biological learning through a lens of 
expertise, using empirical data collected to support our claims.

Cognitive scientists have a rich history of studying expertise 
among experts in many domains, from expert performers in 
sport and music, to cognitive experts in medicine, law, and air 
traffic control. Despite domains that can make very different 
demands on performers and that require demonstrating differ-
ent skills or knowledge, experts display a remarkably consistent 
set of characteristics. Bransford and colleagues (NRC, 2000, 
p. 31) summarize six properties; for the purposes of the present 
investigation, we concentrate on three. First, experts extract 
and use meaningful patterns in information and among individ-
ual components of systems that novices do not. Second, expert 
knowledge is situated in the context of the expert’s environ-
ment; his or her past history, learning, and knowledge; and the 
applicability or usefulness of that knowledge to the present sit-
uation. This is what Bransford and colleagues termed “condi-
tionalized on a set of circumstances.” Finally, experts both know 
a great deal more than novices, and they use deep principles to 
organize and access what they know. In terms of our biology 
students and our undergraduate classrooms, these properties 
closely reflect visions of people who: possess knowledge of “sci-
entific information and ways of thinking” (NRC, 1999); can use 
their knowledge conditionally to “think creatively, make deci-
sions, and solve problems”; and “synthesize and analyze infor-
mation that connects conceptual domains” using deep principles 
(AAAS, 2011, p. ix). Importantly, expertise is domain specific—
that is, expertise in biology cannot be built or transferred from 
expertise in other disciplines.

Early empirical investigations of cognitive expertise focused 
on master chess players (deGroot, 1965; Chase and Simon, 
1973). DeGroot demonstrated that expert chess players could 
reconstruct board configurations accurately, even when they saw 
the configuration only for a few seconds, whereas novices were 
much less successful or accurate at this task. Chase and Simon 
(1973) built on this work by showing that experts perform 
“chunking”—that is, aggregating the identities and positions of 
up to 32 pieces on a 64-square playing board—into many fewer, 
internally cohesive blocks of information. These chunks account 
in part for experts’ abilities to notice meaningful patterns. Under 
chunking theory, expert chunks in memory are more numerous, 
larger, and better indexed than those of novices. Experts use 
heuristics, or rules of thumb, that increase the efficiency of 
searches for the most-relevant chunks. Experts create these heu-
ristics over many experiences and multiple exposures to patterns 
until they can recognize many patterns much more rapidly than 

novices. This feature of chunking theory helps to explain experts’ 
conditionalized knowledge: their ability to rapidly and effi-
ciently access specific knowledge in a given context.

As chunking theory was tested and improved, researchers 
also demonstrated that experts have multiple, dynamic frame-
works that can also give rise to higher-level concepts—in the 
present study, core concepts of biology (Gobet and Simon, 
1996). This helped to explain the third characteristic of experts, 
who organize their knowledge based on the deep concepts or 
principles of their disciplines. This improvement, currently 
dubbed template theory, includes several propositions for pro-
cesses that could help to explain how people develop expertise 
generally, and specifically in our biology classrooms. The first 
proposition is the availability of an expert-like organizational 
template for novices. For novices, access to an expert-like tem-
plate may help accomplish two important goals. First, it pro-
vides an incomplete structure to use, test, and adapt to the 
information and stimuli of the learner’s environments; and sec-
ond, it can constrain what the learner pays attention to, thereby 
helping develop the conditionalized quality of expert knowl-
edge. The next proposition of chunking/template theory is that 
there may be a dosage effect. This is termed deliberate practice 
in some literature. The dosage effect posits that time investment 
is a necessary cost but not a sufficient requirement for develop-
ing expertise. Cognitive scientists have carefully studied and 
quantified very short times required for perception and memory 
access, and the very long times required to develop expertise 
(usually in tens of thousands of hours or in years; Ericsson 
et  al., 1993; Hambrick et  al., 2014). There is a large gap in 
studying whether there is a dosage effect for putative novices 
advancing toward expertise, cognizant that some individuals 
may never achieve true mastery or expertise (de Bruin et al., 
2014), which is characteristic of many populations of introduc-
tory biology students. Finally, chunking and template theories 
suggest that the order of concepts in learning might be import-
ant in developing expertise, as perceptual skills are developed 
from concrete concepts, then honed with abstract concepts. For 
example, Gobet (2005) noted from studies of chess players that 
learning from concrete concepts to abstract concepts best facil-
itated their advancement toward expertise. Other workers 
studying concepts in education have noted that there are differ-
ent types of concepts (Lawson et al., 2000; Medin et al., 2000) 
and that people engage with different types of ideas and con-
cepts differently (Solomon et al., 1999; Lawson et al., 2000). 
Among biology instructors, there exist varying beliefs but a pau-
city of research (e.g., Michael, 2007) about which concepts and 
topics are easier or harder for students to learn.

Our approach to studying expertise in the present study 
draws on a technique currently dubbed “card sorting.” Card 
sorting has its origins in early investigations of knowledge 
acquisition and concept formation. In a card sort, subjects are 
presented with cards displaying objects, shapes, words, or ideas, 
and they are then asked to sort or group similar cards together 
into meaningful groups. Investigators might be interested either 
in subjects’ processes of forming groups, on the products of the 
sorting task, or both. Depending on the experimental condi-
tions, subjects might be given group labels a priori, termed a 
closed sort (Fincher and Tenenberg, 2005), in order to probe 
subjects’ abilities to recognize and use a given organizational 
framework. Alternatively, subjects might be asked both to sort 
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the cards and to assign a label to each of the groups they create, 
termed an open sort (Fincher and Tenenberg, 2005). Here, the 
purpose is to discover how subjects, novices and experts alike, 
differ in how they link and organize ideas.

Chi and colleagues used a physics problem-sorting task to 
characterize differences between novices and experts in physics 
(Chi et al., 1981). They investigated what categories people used 
to sort physics textbook problems and how the categories dif-
fered among putative novices (undergraduate physics students) 
and experts (advanced PhD students). They found that novices 
tended to categorize problems based on superficial features: 
objects, physics terms, or problem features (Chi et  al., 1981; 
Figure 1). Experts tended to categorize problems by the deeper 
physical principles or concepts of the problem, such as conserva-
tion of energy and Newton’s second law (Chi et al., 1981; Figure 
2). Subsequent work on students’ sorting of mathematics prob-
lems (Schoenfeld and Herrmann, 1982) and computer science 
problems (McCauley et al., 2005; Sanders et al., 2005) support 
this key distinction between novice and expert frameworks.

Smith and her colleagues used this distinction between nov-
ice and expert frameworks to design the Biology Card Sorting 
Task (BCST; Smith et al., 2013). Their purpose in designing and 
testing the BCST was to quantitatively measure biology concept 
expertise in multiple ways using a hypothesis-driven design. 
Their hypothesized deep concepts were taken from Vision and 
Change (AAAS, 2011) and represented four of the five proposed 
deep concepts: pathways and transformations of energy and 
matter (herein, “E&M”), storage and passage of information 
(“Info”), relationships between structure and function (“S&F”); 
and Evolution (“Evol”). (They integrated the fifth Vision and 

Change core concept, systems, within their four hypothesized 
deep categories.) Hypothesized superficial features were repre-
sented by groups of organisms: humans, microorganisms, 
insects, and plants. Smith and colleagues selected problems 
from introductory biology texts so that each problem included 
one and only one superficial feature and one and only one 
deep-concept feature, and they also chose problems that were 
not “too difficult,” consistent with cautions by Wolf and col-
leagues (2012). To explore both the products people generated 
and their processes for generation, the researchers used both 
open and closed sorting. In the closed-sort condition, which they 
termed framed sorting, the four deep categories from Vision and 
Change form the framing. Smith and colleagues also used an 
open-sort condition, in which subjects both sorted the problems 
and labeled the groups into which they sorted the problems, 
termed unframed sorting. They iterated several cycles of prob-
lem selection, tool development, administration, and think-
aloud interviews with two subject pools: putative novices (intro-
ductory, non-biology majors in their first college biology course) 
and putative experts (tenure-track college biology faculty).

Smith and colleagues (2013) extracted several key findings. 
First, the experts sorted biology problems according to their 
deep features significantly more frequently than novices, under 
both the framed (closed) sorting condition, and the unframed 
(open) sorting condition. Under both framed and unframed 
sorting conditions, college biology faculty used deep features of 
the problems to sort them, whereas introductory biology stu-
dents used a combination of superficial, deep, and unknown 
(neither superficial nor deep) features to sort their problems. 
Under the unframed condition, experts were significantly more 
likely to label their sort categories according to deep biological 
principles than novices, who were significantly more likely to 
assign superficial category labels (e.g., organisms). Finally, 
expert subjects’ sorts were significantly closer to the hypothe-
sized deep-feature sort than novice subjects’ sorts.

Left open were the questions of what factors helped novices 
develop expertise, and whether their tool could capture any 
aspects of that process. The present study had two overarching 
purposes. First, we aimed to investigate the applicability of scal-
ing up the BCST “in the wild,” to college students enrolled in 
one-semester, large-enrollment, introductory biology courses. 
Second, we tested whether and how each of three propositions 

from chunking and template theory could 
explain advancement toward expertise. 
Specifically, we addressed the following 
research questions:

1.	 Can the BCST discern population-level 
changes in expertise over a single intro-
ductory biology course? Smith and col-
leagues were optimistic about the 
broad applicability, but their putative 
novices and experts were also distinct 
from one another by at least eight 
years of education and professional 
experiences. We aimed to explore 
whether the BCST detected changes in 
student expertise over a single semes-
ter of introductory biology and in 
novice populations.

FIGURE 1.  The 16 problems in the BCST, each having a deep-con-
cept feature (Vision and Change core concepts; columns) and a 
superficial feature (organisms; rows).

FIGURE 2.  Examples of a student’s framed sort (A) and a student’s unframed sort (B).
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2.	 Which, if any, factors help explain how relative novices 
develop expertise over a single semester of introductory 
biology? The present study tests three possible explanatory 
factors suggested by chunking and template theories: 
whether availability of an expert framework facilitates 
advancement toward expertise (the framework proposition); 
whether there is a dosage effect; and whether the order of the 
two introductory course topics matters.

METHODS
Subjects
Participants in this study were students enrolled in either their 
first or second course in introductory biology, during Spring 
2014, Fall 2014, or Spring 2015 at a large midwestern land-
grant university. The 751 participants were enrolled in one of 
15 different course sections varying in topic and sequence (see 
Procedure section). Many but not all students were biology or 
other science, technology, engineering, and mathematics 
majors; in total, 82 different majors were represented in our 
population. We describe student demographics in Table 1.

The Task
We used a problem-sorting task, developed and tested by Smith 
and colleagues, composed of 16 biology problems selected from 
common introductory biology textbooks (Smith et al., 2013). 
Smith and colleagues modified these problems in ways that 
eliminated jargon, graphics, and overt cues to core biological 
concepts. Each problem possessed a single deep-concept fea-
ture and a single superficial (Chi et  al., 1981) feature. The 
deep-concept features were adapted from the core biological 
concepts in Vision and Change (Smith et al., 2013) as described 
in the Introduction and summarized here: 1) energy and matter 
(E&M); 2) information storage and transfer (Info); 3) structure 
and function (S&F); and 4) evolution (Evol; Figure 1, column 
headers). Superficial features were groups of organisms: plants, 
insects, humans, and micro-organisms (Figure 1, row labels). 
We used Smith and colleagues’ 16 vetted problems unmodified, 

except that we inadvertently transposed two problem identifi-
ers, F and H, before our first administration in Spring 2014. To 
simplify data collection and analysis, we preserved the prob-
lem-ID transposition. To maintain the integrity of the task and 
limit student access, the problems we used in this study are not 
included in this publication but can be obtained by contacting 
the corresponding author for the BCST (Smith et al., 2013). In 
the following sections, we describe how we used and adminis-
tered the BCST to respond to our research questions.

Procedure
We administered the BCST in 15 introductory biology courses 
spanning three semesters using a pre–post design: during the 
first or second week of the semester and again during the sec-
ond to last or last week of the semester (Table 2). The pre–post 
design allowed us to address our first research question of 
whether the BCST detects changes in student biological exper-
tise over a single semester. We gave each student two sheets of 
paper with the 16 problems printed and labeled “A” through “P,” 
and one sorting form. We informed students that the purpose of 
the task was to sort the problems, not to solve them. We gave 
students unlimited time to read the problems and assign them 
to categories on their sorting forms, but found that 20 minutes 
was more than adequate to allow all students to complete the 
task. Students completed this task individually, without the 
assistance of textbooks, and without access to the internet or 
notes. Students also completed a consent form and could opt 
out of the investigation at any time. This investigation was 
reviewed, the protocol approved, and the study determined 
exempt by the university’s Institutional Review Board (IRB# 
x14-026e, File ID: i045259).

We also aimed to investigate three possible explanations 
for changes in student expertise: the framework proposition, 
exploring whether there was an effect of sorting under framed 
(closed) or unframed (open) conditions; the dosage effect, 
inquiring whether and how first or second courses affected 
changes in expertise; and the topic proposition, testing 
whether and how broad course topics affected changes in 

TABLE 1.  Student demographics by sex, class standing, nonwhite, and international student status with SEMs in parentheses

Course % Male % Female % Freshman % Sophomore % Junior % Senior % Nonwhite % International

1 43 57 57 20 17 7 11 2
2 28 72 46 38 13 3 13 4
3 57 43 34 42 20 4 17 5
4 22 78 47 44 9 0 22 0
5 38 62 2 94 5 0 15 0
6 60 40 54 22 13 10 24 6
7 47 53 6 76 6 12 24 6
8 39 61 6 54 35 6 19 3
9 29 71 4 57 30 9 17 0
10 18 82 59 18 10 13 15 0
11 39 61 47 39 7 7 18 5
12 51 49 31 44 13 10 13 0
13 31 69 31 50 13 6 6 0
14 42 58 6 49 39 6 25 0
15 20 80 15 30 55 0 25 10
Mean 38 (3) 62 (3) 30 (6) 45 (5) 19 (4) 6 (1) 18 (1) 3 (1)
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expertise. To address the framework proposition, we adminis-
tered the BCST under one of two sorting conditions: a framed 
sort (Figure 2A) and an unframed sort (Figure 2B). In the 
framed sort, we provided students with the four deep-concept 
categories into which they should sort problems. In the 
unframed sort, students were not provided with any catego-
ries; instead, we asked students to group problems, then cre-
ate a name for each category. We directed students to create as 
few as two or as many as 15 categories and to label each cat-
egory. Cognitively, then, the unframed sort can be quite differ-
ent from the framed sort, especially for novices (Chi et  al., 
1981; Gobet and Simon, 1996; Gobet, 1998; Fincher and 
Tenenberg, 2005). Under both sorting conditions, we directed 
students to sort all problems based on what they knew about 
biology and to make sure they sorted each and every problem 
into one and only one category.

Some students in this study were taking their first introduc-
tory biology course, and others were taking their second intro-
ductory biology course. This allowed us to test whether there 
was a dosage effect under our second research question. Intro-
ductory biology courses at this university varied in how instruc-
tors structured their courses. In some cases, instructors endeav-
ored to align their courses with biological concept (AAAS, 2011; 
Campbell et al., 2014). In other cases, instructors chose a more 
topical approach to their course design. Because there was no 
coordination among most instructors other than partitioning 
broad topics between the semesters, we define “dosage effect” 
here in the sense of a larger (longer time) dose, rather than a 
more complete dose of biology. Hence, our use of “dosage” is 
consistent with research on deliberate practice, which posits an 

effect of time on the potential attainment of expertise (Ericsson 
et al., 1993; Hambrick et al., 2014).

Finally, design of the introductory biology sequence at 
this university meant that course topics fell into two catego-
ries: courses that focused on cellular and molecular biology 
and courses that focused on organismal and population biol-
ogy. This division of topics across courses allowed us to test 
the third proposition, the topic proposition. There were two 
different introductory biology course tracks at this univer-
sity: one with cellular–molecular topics in the first semester 
and organismal–population topics in the second semester, 
and the other track reversing this sequence. Therefore, 
course topic and course sequence were independent of one 
another. Thus, our study design was a within-subjects, 
full-factorial design, with factors of course topic, sequence, 
and sort type as the grouping variables (“fixed effects”; see 
Analyses).

During the first semester of our investigation, we adminis-
tered both sort types within each course section in a random-
ized split-block design. However, because one aim of our inves-
tigation was to characterize individual and population-level 
changes in expertise, it was important for each student to com-
plete the BCST under the same sorting condition, both pre and 
post. When we administered the post test, reliance on individ-
ual students correctly remembering their pre test condition led 
to excessive sort-type mismatches between the pre and post, 
resulting in a high discard rate. Therefore, after the first semes-
ter, all students in a course section completed the BCST under 
the same sorting condition, either framed or unframed (Supple-
mental Figure S1).

TABLE 2.  Surface, deep, and unexpected problem pairings for each of the 15 sections of introductory biology included in this studya

Course N Semester Sort type Sequence Topic
% Surface  

(Pre)
% Deep  
(Pre)

% Unexpected  
(Pre)

% Surface  
(Post)

% Deep  
(Post)

% Unexpected  
(Post)

1F 29 1 F First Cell-Molec 13 (1) 50 (5) 37 (3) 15 (1) 42 (4) 44 (3)
2F 47 1 F First Cell-Molec 14 (1) 42 (4) 43 (3) 13 (1) 52 (4) 36 (3)
3 76 2 F First Cell-Molec 17 (1) 41 (3) 43 (2) 13 (1) 41 (3) 46 (3)
4F 22 1 F First Org-Pop 15 (2) 43 (6) 42 (5) 10 (2) 59 (7) 30 (5)
5F 39 2 F First Org-Pop 11 (1) 57 (4) 32 (3) 11 (1) 56 (4) 33 (3)
6 68 2 F First Org-Pop 13 (1) 46 (3) 41 (2) 12 (1) 47 (3) 41 (2)
7F 17 1 F Second Org-Pop 13 (1) 46 (5) 41 (4) 10 (2) 64 (6) 27 (4)
8F 44 1 F Second Org-Pop 13 (1) 49 (4) 38 (3) 9 (1) 66 (4) 26 (3)
9 70 3 F Second Org-Pop 12 (1) 48 (3) 39 (2) 8 (1) 66 (4) 26 (2)
1U 17 1 U First Cell-Molec 42 (7) 25 (5) 33 (4) 40 (7) 24 (4) 36 (4)
2U 22 1 U First Cell-Molec 37 (8) 36 (6) 27 (4) 26 (5) 40 (5) 34 (3)
10 39 3 U First Cell-Molec 41 (5) 30 (4) 29 (2) 30 (5) 39 (4) 31 (3)
11 57 3 U First Cell-Molec 37 (4) 34 (3) 29 (2) 36 (4) 36 (3) 29 (2)
4U 10 1 U First Org-Pop 26 (6) 38 (6) 36 (4) 13 (3) 50 (7) 36 (4)
5U 27 2 U First Org-Pop 39 (7) 30 (5) 31 (4) 44 (6) 29 (5) 26 (3)
12 39 3 U First Org-Pop 45 (5) 29 (4) 27 (2) 44 (5) 29 (4) 27 (3)
13 16 2 U Second Cell-Molec 30 (6) 45 (7) 25 (4) 12 (2) 58 (4) 30 (2)
8U 25 1 U Second Org-Pop 32 (5) 30 (4) 38 (3) 23 (5) 44 (6) 33 (4)
14 67 2 U Second Org-Pop 33 (4) 35 (3) 31 (2) 27 (3) 43 (3) 30 (2)
15 20 3 U Second Org-Pop 43 (7) 29 (5) 28 (4) 21 (5) 44 (5) 35 (3)
aDuring the first semester of our investigation, we administered both sort types within each course section in a randomized split-block design; these courses are desig-
nated with an F or a U after the course number. The count N shows valid sorts for that course section (see Methods). Under sort type, F indicates the framed sort, and U 
indicates the unframed sort. Sequence denotes whether the section was a first course or second course in the introductory track. For topic, Cell-Molec indicates courses 
that focused on cellular and molecular biology, and Org-Pop indicates courses that focused on biology at the organism and population level. Percentage pairings are 
shown for both the pre and post sorts, with SEMs in parentheses.
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There were some important differences between the pur-
poses of our data collection and those of Smith and colleagues 
(2013). First, the pre–post design makes our investigation a 
within-subjects design. Our analyses included only students 
who consented to participate in the study; who completed both 
sorts under the same sort condition, pre and post; and who 
completed valid sorts according to the sort conditions described 
earlier. Also, we did not ask students to reflect on the sorting 
conditions, nor did we impose a deadline or keep time. Finally, 
during the second and third semesters of administering the 
BCST, and despite not administering the BCST to all possible 
introductory course sections, we became aware that it was pos-
sible for some students to complete the BCST more than once in 
two different courses as they moved through the introductory 
curriculum. To account for any possible priming effects (Forster 
and Davis, 1984), we discarded data from the small number of 
students who had completed the BCST during a second course. 
In other words, the data reported here are all from students 
completing their first and only instantiation of the BCST, where 
an instantiation is completing both the pre and post conditions 
in a single semester.

METRICS
To address our research questions and test our propositions, we 
used two metrics described by Smith and colleagues: problem 
pairings and edit distance. In addition, because our data set was 
considerably larger, we were also able to use a third metric: 
deep-feature problem triplets. We investigated deep-feature 
problem triplets as potential illuminators of some introductory 
students’ greater expertise (“initiates” in Hoffman, 1996).

Problem Groupings: Pairs and Triplets
When a student placed two problems into the same category, 
this constituted a problem pair. Three problems placed in the 
same category formed a problem triplet. When a student put 
two problems into the same organism-based category, this con-
stituted a superficial pair. Likewise, when a student put two 
problems into the same deep-concept category, this constituted 
a deep pair. Students formed unexpected pairs when they put 
two problems that did not share a common superficial or deep 
feature into the same category. Unpaired problems were also 
dubbed unexpected. Students formed deep- and superfi-
cial-problem triplets similarly. However, we could no longer 
apply the term “unexpected” in the same way with triplets, 
because a triplet that was neither wholly superficial nor wholly 
deep might contain a combination of superficial, deep, and 
unexpected pairs that confounded efforts to characterize them. 
Consider the following examples to illustrate these principles. 
In the student’s problem grouping {CGHMP} shown in Figure 
2A, three pairs—GM, GP, and MP—belong to the deep-feature 
category S&F (Figure 1); two pairs—CG and HM—belong to 
superficial-feature categories (micro-organisms and insects, 
respectively; Figure 1). Pairs CH, CM, CP, HP, and GH represent 
unexpected pairings, since they are paired neither by superficial 
nor deep features. The same problem grouping contains a 
deep-feature triplet—GMP (S&F). However, consider the triplet 
HMP. It contains a superficial pair, HM (insects); a deep pair, 
MP (S&F); and an unexpected pair, HP, defying categorization 
as merely “unexpected.” We therefore considered only deep 
triplets in our analyses.

The 16 problems were therefore potentially arranged into 24 
deep pairs (six in each of the four deep categories), 24 superfi-
cial pairs, and 88 unexpected pairs (including unpaired prob-
lems). Similarly, the same 16 problems could form 16 superfi-
cial triplets (four in each category) and 16 deep triplets (four in 
each category). Superficial-feature triplets were rare, especially 
under the framed sort, so we did not use them in our analyses. 
Using this scheme of problem pairings, we were able to quanti-
tatively analyze students’ problem sorts.

Edit Distance
In addition to problem pairs and triplets, we used another met-
ric, edit distance, to quantify the problem sorts (Deibel et al., 
2005). The edit distance to the deep sort (EDdeep) is the number 
of single problems in a student’s sort that would need to be 
moved to categories corresponding to a deep-feature sort. From 
the sort shown in Figure 2A, to obtain the deep sort, problem C 
must be moved to the Evol deep-feature category, problem H to 
E&M, and problem I to S&F. In Figure 2B, problems H and L 
must be moved to E&M (“cellular respiration and photosynthe-
sis” on that student’s response), and problem O to Info (“cell 
division”). Because both sorts required three problem moves to 
arrive at the deep-feature sort, EDdeep = 3. We used Python 
scripts developed by Smith and colleagues (2013) to calculate 
each subject’s edit distance to a deep sort.

Normalization and Weighting: Deep Pairs, Deep Triplets, 
and Edit Distance
One aim of this investigation was to compare results on 
deep-feature pairs, deep triplets, and edit distance to deep sort, 
each among large-enrollment courses that varied in sort type, 
sequence, and topic. To do so, we needed to account for differ-
ent pre test starting values among courses. We therefore nor-
malized gains and losses in our metrics of deep pairs, deep trip-
lets, and edit distance (Hake, 1998). We calculated normalized 
gains (or losses) toward deep-feature sorting as the ratio of 
actual gain (or loss) to possible gain (or loss). For example, 
suppose we aimed to compare changes in the percentage of 
students assigning expert pair AD to the expert category E&M 
between two courses. Also suppose that 35% percent of course 
1’s students assigned pair AD to E&M on their pre test, and 55% 
on the post. In course 2, suppose that 48% of students assigned 
pair AD to E&M on the pre, and 68% on the post test. The net 
gain is 20% in both courses. However, because students in 
course 2 started closer to the maximum deep-feature sort per-
centage (48% vs. 35%), their normalized gain is actually greater 
than that of course 1:

Course 1: 20/(100–35) = 31%,�Course 2: 20/(100–48) = 38%

We normalized losses using the same principle. For simplicity, 
we describe these as relative gains or losses in subsequent figures 
and text. Additionally, courses varied in enrollment size, and we 
therefore weighted the course means of our metrics—deep pairs, 
deep triplets, and edit distance—by the number of individuals 
completing valid sorts (as described earlier) in that course.

ANALYSES
We first performed k-means cluster analysis to probe the 
robustness of the superficial and deep categories. We then 
used two sets of analyses to address our research questions: 
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comparative analyses (research question 1) and linear mixed 
modeling (research question 2). Individual courses were the 
units of analysis.

Comparative Analyses: Problem Pairs and Triplets
For problem pairs, we calculated the mean percentage of each 
problem type—superficial, deep, and unexpected—and the 
total of deep pairs to a maximum of 24. We did this for each sort 
type (framed and unframed) and for each sort event (pre and 
post). For problem triplets, we calculated total deep triplets to a 
maximum of 16. We used two-tailed Student’s t tests to com-
pare means and Levene’s test for equality of variances to select 
the proper results.

Linear Mixed Modeling: Grouping Variables as 
Fixed Effects
We used grouping variables describing sort type (framed or 
unframed), course sequence (first or second), and course topic 
(cellular–molecular or organismal–population). Each of these 
three binary variables was potentially a fixed effect, with course 
section in which the student was enrolled as a random effect in 
a linear mixed model. Each fixed effect corresponded to a prop-
osition of our second research question: framework proposition 
(sort type), dosage effect (course sequence), and topic proposi-
tion (course topic). We performed linear mixed modeling on 
normalized change in edit distance to deep sort, normalized 
gains in deep pairs, and normalized gains in deep triplets to 
explore each fixed effect—both alone, and in interaction with 
other fixed effects. In the case of deep pairs and triplets, if one 
of the grouping variables was a significant factor in LMM, we 
then performed analysis of variance to determine effects on 
individual pairs and triplets. Additionally, we calculated effect 

sizes for all statistically significant or marginally significant 
results to assess the magnitude of the effect (Maher et al., 2013).

RESULTS
Superficial and Deep Templates/Frameworks
Our results from k-means cluster analysis validated superficial 
and deep categories. Cluster 1 corresponded to deep-feature 
sorting and contained nine diagnostic deep-problem pairs. 
Cluster 2, corresponding to superficial sorting, contained 21 
superficial-problem pairs (Supplemental Table S1).

Research Question 1: Comparative Analyses of Problem 
Groupings
In our analysis of card pairings, we observed significant 
increases in deep pairings and significant decreases in superfi-
cial pairings from pre to post in both sorting conditions (Figure 3 
and Table 2). Despite being provided the deep-feature category 
names on the framed sorting task, superficial pairs comprised 
13% of total pairs on the pre test, and 11% on the post test 
(Figure 3A and Table 2). Also, superficial pairings were more 
common, and deep pairings less common, under the unframed 
than the framed sorting condition, both pre and post (Figure 3B). 
Students also made significant gains over a single semester in 
the number of deep pairs and deep triplets they created under 
both sort types (Table 3).

Research Question 2: Linear Mixed Modeling 
and Fixed Effects
We explored three fixed effects—sort type, course sequence, 
and course topic—using three metrics: gains in edit distance 
to a deep sort, gains in deep pairings, and gains in deep 
triplets, respectively. Two fixed effects—sort type and course 

FIGURE 3.  Students (N = 751) sorted problems significantly differently at the end of a semester of biology (post; black bars) than the 
beginning (pre; gray bars). Under both framed (A) and unframed (B) sorting conditions, percentage of superficial pairings significantly 
decreased (p < 0.001), while deep pairings significantly increased (p < 0.001). Unexpected problem pairings were remarkably similar 
(30–40%) pre to post and between sort types. Error bars are SEM. Asterisks indicate statistically significant results.

TABLE 3.  Average deep-problem groupings, pre and post, under both framed and unframed sort types with SEMs in parentheses

Pairs Triplets

Sort type N Pre Post Δ Pre Post Δ

Framed 412 12.2 (0.3) 13.8 (0.3) 1.6 (0.4) 6.1 (0.2) 7.4 (0.2) 1.3 (0.3)

Unframed 339 7.9 (0.3) 9.5 (0.3) 1.6 (0.4) 3.1 (0.2) 4.0 (0.2) 0.9 (0.3)
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sequence—had significant or marginally significant effects on 
two metrics—edit distance to deep sort (EDdeep), and gains in 
deep pairings (Table 4). The course topic fixed effect did not 
explain gains in any metric. Overall, no fixed effect explained 
gains in deep triplets, but there were effects at finer grains of 
comparison. There were no discernible pairwise interactions 
among our grouping variables.

Gains in Edit Distance to Deep Sort
Linear mixed modeling using change in edit distance to deep 
sort (ΔEDdeep) as the dependent variable showed that providing 
students with an expert framework (the framed sort condition; 
framework proposition) resulted in students making signifi-
cantly greater relative gains toward the deep-feature sort 
(Figure 4 and Table 4). These relative gains were marginally 
larger in the second than the first course in the introductory 
sequence (dosage effect), and were unaffected by course topic 
(topic proposition; Table 4). There were no interactions among 

grouping variables for ΔEDdeep. Course section data are given in 
Supplemental Table S2.

Gains in Deep Pairs and Triplets
Results of linear mixed modeling on single problems under the 
framed sort condition showed that neither course sequence nor 
course topic predicted gains toward deep-feature sorting of the 
16 single problems, either alone or in interaction with other 
grouping variables (all p values > 0.05).

In contrast, results of linear mixed modeling on deep-feature 
pairs showed that course sequence (dosage effect) significantly 
predicted gains toward expertise, with a marginal effect of sort 
type (framework proposition; Table 4) on gains. Students in 
their second biology course made significantly greater normal-
ized gains on 13 of 24 deep pairs (Figure 5) than students in 
their first course, and the effects were large. Course topic (topic 
proposition) was not a significant predictor of changes in 
deep-feature pairings. There were no interaction effects between 
any pairs of grouping variables.

Results of linear mixed modeling on deep-feature triplets 
showed a more complex pattern. While no fixed effect 
explained gains in aggregated deep triplets (Table 4), two 
fixed effects each explained gains within two different 
deep-concept areas. Course sequence (dosage effect) was the 
only predictor of gains in deep-feature association for three of 
four S&F deep-feature triplets, and the effects were significant 
and large (all p ≤ 0.05; all Cohen’s d ≥ 0.9). On the other hand, 
sort type (framework proposition) was the significant predic-
tor of gains in deep-feature association for three of four Evol 
deep triplets; the effects were significant and large (all p ≤ 
0.05; all Cohen’s d ≥ 1.1). Course topic (topic proposition) 
was not a significant predictor of normalized gains or losses in 
any deep-feature triplets. There were no pairwise interactions 
among any of the grouping variables.

DISCUSSION
The aim of the present study was to begin to characterize exper-
tise development among large, heterogeneous populations of 
introductory biology students, and our results build on previous 
research in two specific ways. First, we demonstrate that the 
BCST discerns changes in expertise over a relatively short time 
span among individuals in populations best characterized as 
novice. Second, we demonstrate that the BCST is capable of 
illuminating changes in expertise based upon the availability of 
an external deep-feature framework (captured by the sort type) 
and a dosage effect (captured by whether the course was first or 
second in the sequence).

TABLE 4.  Significance testing and effect size analysis of three fixed effects used in linear mixed modeling supports the framework and 
dosage effect propositions (column headers), but not the course topic propositiona

Fixed effects

Sort type Course sequence Course topic

Test statistic p Value Effect size Test statistic p Value Effect size Test statistic p Value

Change in edit distance to deep sort F1,13 = 8.27 0.01* η2 = 0.32 F1,13 = 3.93 0.07m η2 = 0.15 F1,13 = 0.06 0.81
Gains in deep pairs F1,13 = 3.82 0.07m η2 = 0.16 F1,13 = 5.19 0.04* η2 = 0.21 F1,13 = 0.01 0.92
Gains in deep triplets F1,13 = 2.25 0.16 n/a F1,13 = 1.041 0.33 n/a F1,13 = 0.004 0.95

aSort type was a significant and large predictor of change in edit distance to deep sort, but only a marginal and moderate predictor of gains in deep pairs. Likewise, course 
sequence was a significant and large predictor of gains in deep pairs, but a marginal and moderate predictor of changes in edit distance to deep sort. Course topic did 
not predict changes in any metric. Effect sizes are shown for all significant (*) and marginally significant (m) results; n/a = not applicable.

FIGURE 4.  Changes in edit distance to a deep sort were signifi-
cantly greater under the framed (black bars) than the unframed 
(gray bars) sort types (p = 0.01; Table 4) and marginally greater after 
a second course (right) than a first course (left) (p = 0.07; Table 4). 
Asterisks indicate statistically significant results.
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Research Question 1. Can the BCST Detect Changes over a 
Single Semester?
The BCST detected population-level changes in expertise 
among students in their first or second semester of introduc-
tory biology. Decreases in superficial pairings, increases in 
deep pairings, and a decrease in unexpected problem pairings 
under the framed sort (Figure 3) support this claim. These 
data are consistent with results from other card-sorting 
research results (Chi et al., 1981; Sanders et al., 2005; Smith 
et al., 2013), but are the first to show changes in biological 
expertise over a single semester of introductory biology and 
within a population described as predominantly novice. More-
over, cluster analyses (Supplemental Table S1) support a 
superficial framework based on organisms and a deep concep-
tual framework in biology based on core concepts from Vision 
and Change (AAAS, 2011). In other words, students were not 
merely slotting the biological ideas and facts they encountered 
into an arbitrary, externally imposed framework. The deep 
conceptual framework that experts build closely resembles 
one based upon four core concepts in Vision and Change.

Our results also show that novices are significantly more likely 
to link problems based on deep-concept principles when they 
have access to the deep conceptual framework and under the 
framed sorting condition, in which superficial and unexpected 
pairings both decreased, while deep pairings increased. This pat-
tern holds for both pairs and triplets (Figure 4 and Table 3). The 
implication for introductory biology instruction is that students 
should benefit from early and frequent access to the deep con-
ceptual framework, along with opportunities to explore, test, and 
explain links among facts and ideas. Interestingly, when students 
in our study were provided the deep-feature categories under the 
framed sorting condition, a small but persistent fraction of the 
problem pairings (11–13%, Figure 3A) were still based on super-
ficial problem features, even after one or two semesters of intro-
ductory college biology. Thus, providing a deep conceptual 
framework is a necessary but insufficient precondition for exper-
tise development. We also characterized changes in fractions of 
problems grouped as deep triplets. Although the overall frequen-
cies of deep-concept triplets were low, the frequencies of 
deep-concept triplets increased significantly, pre to post, under 
both sorting tasks (Table 3). Because they represent a three-way 
linkage among ideas, deep-concept triplets are unlikely to occur 

by chance alone. Thus, deep concept may be a promising way to 
identify individuals or subpopulations of people who are farther 
along in their advancement to expertise (e.g., initiates or appren-
tices; Hoffman, 1996).

Our data provide strong evidence that the BCST is a robust 
tool for detecting changes in expertise over a single semester of 
introductory college biology.

Research Question 2. Which (If Any) Factors Help Explain 
How Relative Novices Develop Expertise over a Single 
Semester of Introductory Biology?
We explored the utility of three propositions for explaining the 
development of expertise in introductory biology students: pro-
vision of an expert framework (on the framed vs. unframed 
sort), a dosage effect (students in second vs. first biology 
course), and course topic (cellular–molecular topics vs. organ-
ismal–population topics). We found that the first two proposi-
tions helped to explain changes in expertise, but course topic 
did not. Specifically, we found support for the framework prop-
osition from changes in students’ edit distance to a deep sort; 
the results were both significant and large (Table 4). Gains in 
deep pairs marginally supported the framework proposition, 
with a moderate effect size. We found support for a dosage 
effect from gains in deep pairings, with a result that was signif-
icant and moderate (Table 4). Change in edit distance to deep 
sort marginally supported the dosage effect, also with a moder-
ate effect size. We describe our results addressing these three 
propositions, implications for research, and implications for 
curricular design and pedagogy, in greater detail below.

Framework Proposition
Students made significant advances toward deep-feature sort-
ing under the framed sorting condition. Supporting this claim is 
the change in edit distance to deep sort, which was significantly 
larger for the framed sort type than the unframed sort type 
(Table 4 and Figure 4). Course sequence (whether first or sec-
ond) only marginally explained change in edit distance to deep 
sort. However, students’ advancement toward biological exper-
tise occurs alongside other phenomena. For example, unex-
pected pairings accounted for a remarkably robust 30–40% of 
all problem pairings (Figure 3), consistent with data reported 
by Smith and colleagues (2013). Also, edit distance to a 

FIGURE 5.  Thirteen of 24 deep-feature pairs showed significant and large gains (all p ≤ 0.05, Cohen’s d ≥ 0.8) in deep-feature sorting by 
students in their second semester of introductory biology (black bars) compared with first-semester students (gray bars). For readability, 
only data for the 13 deep pairs showing significant differences between first and second courses are shown. Error bars are SEM.
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deep-feature sort changed independently of edit distance to a 
superficial-feature sort (unpublished data).

Students made gains in deep-feature sorting under both sort 
types (Figures 3 and 4). When provided the deep conceptual 
framework on the framed sort, students were able to sort 
deep-feature problem pairs marginally significantly more often 
than on the unframed task (Table 4), in which they had to gen-
erate the categories from their existing frameworks themselves.

Taken together, these lines of evidence support a claim 
that it is important for novices to have access to a deep con-
ceptual framework before they are able to generate it them-
selves. Throughout their experiences in our courses, it is likely 
that our novice population is testing, forming, and breaking 
links among ideas as they build and improve their nascent 
conceptual frameworks. Our results suggest that consistent 
access to the deep conceptual framework, along with 
instructor- and student-generated explanations of these link-
ages, might be critically important to novice students early in 
their journeys toward expertise. One question prompted by 
these results is how concepts and ideas interact with one 
another in the novice’s evolving conceptual framework. There 
is empirical support for both the superficial- and deep-feature 
organization frameworks of novices and experts, respectively, 
but the dynamics and mechanisms that help explain how a 
superficial framework evolves into a deep conceptual frame-
work are unknown.

Dosage Effect
When we examined course sequence as a fixed effect, we found 
that it had a significant effect on gains in deep pairs, and a mar-
ginally significant effect on EDdeep. Students in their second biol-
ogy course had greater normalized gains in 13 of 24 deep-con-
cept pairs (Table 4 and Figure 5): 3/6 deep pairs in E&M, 4/6 
deep pairs in both Info and S&F, and 2/6 deep pairs for Evol. 
Although course sequence had a marginal effect on changes in 
edit distance to deep sort, the effect was significant on the sub-
set of students completing the framed sort (Figure 4), highlight-
ing the critical role of access to an expert framework as a pre 
condition for linking facts and ideas. These results may be 
explained by how developing experts use their experiences with 
facts and ideas to filter and conditionalize what they pay atten-
tion to in the future (Gobet and Simon, 1996). As students 
progress through the curriculum, the time they spend working 
with facts and ideas should increase. Because student experi-
ences shape their abilities to filter and conditionalize their 
knowledge, it may be critically important to their development 
of expertise that such experiences are meaningfully grounded 
in deep concepts and scientific practices.

Topic Proposition
There was no difference in the effect of course topics on student 
changes in expertise among any of the three metrics we used, 
alone or in conjunction with the other two fixed effects. This set 
of evidence, at least, runs counter to beliefs of some instructors. 
However, we recognize that course topic is a very coarse grain 
size to apply to courses that both include a mixture of concrete 
and abstract, or descriptive, hypothetical, and theoretical top-
ics, as in Lawson and colleagues’ (2000) framework. At this 
university, instructors are also free to structure their individual 
courses as they believe will help students’ learning and to 

sequence a broad set of topics as they choose. It is possible that 
particular topics within courses themselves may influence 
whether students advance in expertise, and by how much. 
Because we were unable to test this hypothesis at a finer grain, 
it deserves further scrutiny.

Caveats and Synthesis
The present study did not include a control group of stu-
dents who were not enrolled in any biology course but who 
completed the same problem-sorting task at the beginning 
and end of an academic semester. Hence, one question that 
remains is whether people can develop expertise through 
observational or vicarious learning: reading about biological 
topics for pleasure, watching engaging videos, or visiting 
museums, for example, instead of being enrolled in an aca-
demic course focused on biology. We would predict that stu-
dents not exposed to biological concepts or the deep concep-
tual framework will not gain in biological expertise, but this 
is an open question for investigation. We also assumed in the 
present study that a dosage effect corresponded to exposure 
time rather than completeness of the dose of biology. Hence, 
another remaining question is whether and how instruc-
tional alignment with deep concepts in biology affects stu-
dents’ expertise development. Finally, a plausible alternative 
explanation of the significance of course sequence on stu-
dents’ developing expertise is that student populations in 
second-semester biology courses may be more self-selective 
in their enrollment, explaining advances in expertise through 
greater motivation, attention, aptitude, or some combination 
of those factors that this investigation did not measure. With 
these caveats in mind, we offer the following synthesis.

Interestingly, while our results supported two of our three 
propositions, different metrics supported each to a greater or 
lesser extent (Table 4), most likely due to the heterogeneity of 
our student populations (Tables 1 and 2). Sort type—the avail-
ability of an expert conceptual framework—was a significant 
predictor of change in edit distance, a variable that describes a 
student’s ability to match a problem with its deep concept in a 
provided deep conceptual framework. On the other hand, 
course sequence—in our study, a dosage effect—predicted 
gains in deep pairs, a variable that measures students’ abilities 
to actually connect and situate two or more ideas within their 
deep concept. These data support both the framework proposi-
tion and the dosage effect as potential explanations for advance-
ment toward expertise in populations of putative novices. See-
ing how experts organize concepts and ideas is important, but 
it doesn’t replace the experiences of novices forming and testing 
links among facts and ideas themselves—an effect that accumu-
lates over time.

Data from deep-concept triplets were equivocal. Although 
aggregated triplet gains support none of our three hypotheses 
(Table 4), at a finer grain, conceptual triplet groups did show 
some significant trends. Three of four S&F triplets differed sig-
nificantly between students in their first or second courses (e.g., 
course sequence), whereas three of four Evol triplets differed sig-
nificantly between students in the framed or the unframed sort 
(e.g., the framework proposition). If our propositions are sup-
ported, then perhaps it is more important for students to be 
exposed over time to some biological concepts, such as for S&F, 
whereas, for other concepts, such as Evol, it may be more 
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important for students to have access to the expert framework as 
they build and adapt their own templates. In biology, systems 
show emergent properties based on multiple links among system 
components that can wax and wane over time. Expertise has 
properties of an emergent system as well, with multiple links 
among ideas and concepts that are conditionalized to a particu-
lar context. In our data, none of the individual BCST individual 
problems differed between populations delimited by any of our 
grouping variables. In contrast, 13 of 24 deep pairs (Figure 5) 
and six of 16 deep-concept triplets (unpublished data) differed 
significantly between populations. Together, these are some 
intriguing glimpses into the emergent organization of developing 
expertise. Curricula and pedagogies that allow students to grap-
ple with interactions among multiple ideas could introduce them 
to this important feature of biological systems at the same time 
that the process is helping students to build their expertise.

We believe that our results lend further support to the impor-
tance of planning and organizing curricula and course activities 
around the core concepts of our discipline. Conceptual organi-
zation may be especially important with populations of novices 
in introductory courses, and particularly the first course in a 
sequence. Instructors sometimes bemoan students’ inabilities to 
make connections among what they have learned or to extend 
their thinking. Our results suggest that one way to meet aspira-
tions of “undergraduates…integrat[ing] concepts across levels 
of organization and complexity and…synthesiz[ing] and ana-
lyz[ing] information” (AAAS, 2011, p. ix) is by providing and 
explaining the deep conceptual framework, by structuring our 
course curricula around a the deep concepts of our discipline, 
and by allowing students to grapple with constructing their 
own explanations of and links between facts and ideas. This 
approach contrasts that of many biology texts (Koulaidis and 
Tsatsaroni, 1996), curricula and pedagogical practices (Goffe 
and Kauper, 2014), and assessments (Momsen et  al., 2010). 
Feldon (2006) suggested a curricular approach based on cogni-
tive task analysis—that is, systematically breaking down the 
steps in a process of understanding the kinds of complex cogni-
tive tasks we ask our students to complete. The provision of an 
expert framework and a dosage effect together may help 
explain advances in expertise, but their effects may vary based 
on where a student is on the novice–expert continuum. If 
deep-concept triplets are indeed a reliable diagnostic of 
more-developed novices, then these results point to another 
question worth investigating: whether and how different fac-
tors are more or less important for expertise development for 
novices at different stages of their development.

FUTURE RESEARCH
This study is an example of how we tested theories from cogni-
tive science “in the wild.” We suggest three areas of investiga-
tion for the immediate future: exploring the effects of using 
different problems in the tool itself, expanding to different stu-
dent populations, and accounting for different learning environ-
ments, curricular arrangements, and student motivation. First, 
the BCST’s current design consists of 16 problems. One oppor-
tunity lies in investigating whether unknown aspects of the 
problems themselves or the superficial- and deep-concept com-
bination represented in each problem influences BCST results, 
perhaps by choosing and vetting different problems to represent 
the same superficial–deep combinations. Next, for the purposes 

of the present study, we have considered students as a single, 
heterogeneous population. Hence, another set of questions cen-
ters on investigating whether different demographic subgroups 
develop expertise differently. One testable proposition arising 
from our results is that courses focusing on a deep conceptual 
framework and upon students forming and testing links among 
facts and ideas should lead to greater gains in expertise. Finally, 
the higher-educational settings of our laboratories and class-
rooms are themselves heterogeneous: many include incidental 
or deliberate social interactions among students and instruc-
tors, all of whose motivation to master biological and social 
issues may vary. We also assumed, for this investigation, that all 
biology courses were equivalent in their effect on students 
enrolled in the course. Another potentially productive area of 
research, then, is the influence of environmental factors, includ-
ing social interactions among students and between students 
and instructors; structural factors, such as the degree to which 
courses are conceptually driven; and the role of motivation on 
the development of expertise within individuals and among 
groups. Together, these theory-driven investigations have the 
potential to influence how we help novices in their journeys 
toward expertise in our biology classrooms and beyond.
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