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ARTICLE

ABSTRACT
Students of all ages face severe conceptual difficulties regarding key aspects of evolution—
the central, unifying, and overarching theme in biology. Aspects strongly related to ab-
stract “threshold” concepts like randomness and probability appear to pose particular dif-
ficulties. A further problem is the lack of an appropriate instrument for assessing students’ 
conceptual knowledge of randomness and probability in the context of evolution. To ad-
dress this problem, we have developed two instruments, Randomness and Probability Test 
in the Context of Evolution (RaProEvo) and Randomness and Probability Test in the Context 
of Mathematics (RaProMath), that include both multiple-choice and free-response items. 
The instruments were administered to 140 university students in Germany, then the Rasch 
partial-credit model was applied to assess them. The results indicate that the instruments 
generate reliable and valid inferences about students’ conceptual knowledge of random-
ness and probability in the two contexts (which are separable competencies). Furthermore, 
RaProEvo detected significant differences in knowledge of randomness and probability, 
as well as evolutionary theory, between biology majors and preservice biology teachers.

INTRODUCTION
Evolution through natural selection is a central, unifying, and overarching theme in 
biology. Evolutionary theory is the integrative framework of modern biology and pro-
vides explanations for similarities among organisms, biological diversity, and many 
features and processes of our world. For example, the evolution of oxygenic photosyn-
thesis massively affected geochemistry, and the evolution of organisms with calcareous 
shells led to the formation of limestone (e.g., Castanier et al., 1999; Kopp et al., 2005). 
Evolutionary theory is also applied in many other fields, both biological (e.g., agricul-
ture and medicine) and nonbiological (e.g., economics and computer science). There-
fore, the essential tenets of evolutionary theory have long been regarded as key parts 
of the foundations of science education (e.g., Bishop and Anderson, 1990; Beardsley, 
2004; Nehm and Reilly, 2007; Pugh et al. 2010; Speth et al., 2014). Accordingly, the 
American Association for the Advancement of Science (AAAS, 2006), the Next Gener-
ation Science Standards (NGSS Lead States, 2013), the National Education Standards 
of Germany (Secretariat of the Standing Conference of the Ministers of Education and 
Cultural Affairs of the Länder in the Federal Republic of Germany [KMK], 2005a), and 
official documents of many other countries all describe evolution as an organizing 
principle for biological science and include the topic as a learning goal.

Although evolutionary processes may occur in many kinds of systems, unless spec-
ified otherwise, evolution generally refers to changes over time (also referred to as 
“between generations”) in populations or taxa of organisms due to the generation of 
variation and natural selection (Gregory, 2009). There is a massive empirical body of 
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work on evolution, myriads of processes involved have been 
elucidated (e.g., genetic drift, genetic linkage, endosymbiosis, 
adaptive radiation, and speciation), and an extensive terminol-
ogy has been developed (e.g., Rector et al., 2013; Reinagel and 
Speth, 2016). However, biologists generally agree that three 
principles are necessary and sufficient for explaining evolution-
ary change by means of natural selection: 1) the generation of 
variation, 2) heritability of variation, and 3) differential repro-
ductive success of individuals with differing heritable traits 
(Endler, 1986; Gregory, 2009). This framework is deceptively 
simple, because myriad interactions are involved in phenomena 
such as adaptive radiation (the diversification of taxa leading to 
the filling of vacant ecological niches; Schluter, 2000). Further-
more, key processes such as speciation may occur gradually 
over long periods of time and many generations or in a single 
generation, if a massive chromosomal change or polyploidiza-
tion is involved. Similarly, some important processes involve 
atomic-level phenomena, while others involve large-scale spa-
tiotemporal variations in environmental variables and popula-
tions’ genetic structures. Moreover, natural selection acts on 
phenotypes (organisms’ observable traits), but adaptive changes 
are mediated by genetic changes that generally either enhance 
organisms’ reproductive success (thereby allowing the alleles 
they carry to spread in their respective populations) or enable 
colonization of new niches (Schluter, 2000). Hence, evolution-
ary change is far from simple, and it is still poorly understood 
by students throughout the educational hierarchy (Shtulman, 
2006; Nehm and Reilly, 2007; Spindler and Doherty, 2009), sci-
ence teachers (Osif, 1997; Nehm et al., 2009), and the general 
public (Evans et al., 2010). This poor understanding has been 
attributed to diverse cognitive, epistemological, religious, and 
emotional factors (for an overview, see Rosengren et al., 2012).

L. Tibell and U. Harms (unpublished data) concluded that 
complete understanding of evolutionary theory might require 
the understanding of more general abstract concepts like ran-
domness, probability, and different scales in space and time. 
These general abstract concepts coincide with a set of recently 
proposed “threshold concepts” in genetics and evolution (Taylor, 
2006; Ross et al., 2010). According to emerging theory initiated 
by Meyer and Land (2006), such concepts are portals that pro-
vide access to new ways of thinking; acquisition of understand-
ing of these concepts is said to alter students’ perspectives and 
lead them to see things through a different lens. Threshold con-
cepts are distinguished from “key” or “core” concepts, as they 
are more than mere building blocks toward understanding 
within a discipline and are tentatively proposed to have five 
characteristics: they are transformative (occasioning a shift in 
perception and practice), probably irreversible (unlikely to be 
forgotten or unlearned), integrative (emerging patterns and 
connections), often disciplinarily bounded, and troublesome 
(Meyer and Land, 2006). Threshold concepts in diverse disci-
plines have been examined, including economics (Davies and 
Mangan, 2007), chemistry (Park and Light, 2009), biology 
(Taylor and Cope, 2007), biochemistry (Loertscher et al., 2014), 
and computer science (Zander et al., 2008).

In the context of evolution, Tibell and Harms (unpublished 
data) developed a two-dimensional framework connecting 
principles and key concepts of evolutionary theory with the 
abovementioned general abstract concepts like randomness 
and probability. They propose that complete understanding of 

evolutionary theory requires the development of knowledge 
concerning not only the principles of evolution but also general 
abstract concepts like randomness and probability, and the abil-
ity to freely navigate through this two-dimensional framework.

Randomness, Stochasticity, and Probability
Random and probabilistic processes are key elements of evolu-
tionary theory, and several studies report educational problems 
associated with the underlying abstract concepts (Ross et al., 
2010; Robson and Burns, 2011). When considering random 
processes in evolution, students are reportedly challenged by 
both the terminology (Mead and Scott, 2010) and the concep-
tual complexity (Garvin-Doxas and Klymkowsky, 2008).

The term “random,” as used in everyday life and scientific 
contexts (e.g., mathematics and biology), is connected to vari-
ous conceptions and interpretations. In everyday life, an event 
is often called random if it is very rare, strange, or unusual, and 
hence unpredictable or uncertain (Bennett, 1998). This com-
mon perception of randomness or “chance occurrences” does 
not change with increasing age (Falk and Konold, 1997; 
Kattmann, 2015), which hinders understanding of the concept 
of randomness (and the closely related concept stochasticity) in 
scientific disciplines, including mathematics (Kaplan et al., 
2014) and biology (Mead and Scott, 2010). Random and sto-
chastic are widely treated as synonymous terms, and definitions 
vary, but most mathematical texts and dictionaries note a dis-
tinction. Here, the term “random” is used when referring to 
phenomena (such as rolling dice) “where the outcome is prob-
abilistic rather than deterministic in nature; that is, where there 
is uncertainty as to the result” (Smith, 2012, p. 1). In accor-
dance with Oxford Dictionaries (www.oxforddictionaries.com), 
“stochastic” is used to describe processes for which outcomes 
have “a random probability distribution or pattern that may be 
analysed statistically but may not be predicted precisely.” It 
should be noted that random and stochastic can often be used 
in the same contexts, because a process may be random in the 
sense that it is influenced by random variables and stochastic in 
the sense that it has probabilistic outcomes. More formally, “a 
stochastic process is a family of random variables {Xθ}, indexed 
by a parameter θ, where θ belongs to some index set Θ” (Breuer, 
2006, p. 1).

Randomness and stochasticity are fundamental elements of 
biological theories related to phenomena at all scales and lev-
els, including the evolutionary gene-, individual-, population-, 
and environment-level processes involved in both the genera-
tion of variation and natural selection (Heams, 2014; Tibell 
and Harms, unpublished data). For example, the individu-
al-level processes of mutation and recombination are regarded 
as random. Mutations may occur (at low frequencies) either in 
coding regions (thereby potentially affecting the structure and 
function of encoded proteins) or noncoding regions (thereby 
potentially affecting expression patterns). Hence, mutations of 
either kind may profoundly change organisms’ phenotypes. 
Clearly, the reactions involved must follow physicochemical 
laws, but they are regarded as random, because the individu-
al-level outcomes are far beyond our ability to model predic-
tively at this level (Heams, 2014), although we can determine 
population-level (stochastic) frequencies of mutations at given 
sites or sequences of DNA. Further, at population or environ-
mental levels, random processes may involve, for example, the 
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death of single organisms through causes that cannot be 
directly linked to selective (dis)advantages (Tibell and Harms, 
unpublished data) so even organisms close to an adaptive 
peak may die as juveniles. Thus, randomness and stochasticity 
are major elements of biological processes generally, and evo-
lution specifically. However, a desire to ascribe causes to all 
events appears to be an intrinsic element of human nature 
(Falk, 1991), which may lead to a denial of chance in general 
and explain why students have difficulties perceiving evolu-
tionary events as aimless random occurrences (Kattmann, 
2015). Furthermore, students tend to perceive biological pro-
cesses as efficient and random processes as inefficient (Garvin-
Doxas and Klymkowsky, 2008).

To summarize, randomness and stochasticity (as defined 
here) are closely related, but randomness refers to processes or 
variables that are uncertain rather determinate, while stochas-
ticity refers to probabilities of outcomes of processes in or 
affecting populations. Probability is the likelihood of a particu-
lar outcome and is assigned a numerical value between 0 and 1 
(Feller, 1968). The closer a probability value is to 1, the more 
likely the outcome. Crucially, an outcome that is extremely rare 
at the individual level, such as a given beneficial mutation, is 
extremely likely to occur at least once in a population that is 
sufficiently large or over a sufficiently long time frame (in terms 
of number of generations). In the context of evolution, proba-
bility plays a role in all three of the principles mentioned earlier, 
but particularly selection and inheritance (Tibell and Harms, 
unpublished data). For example, fertilization in sexual repro-
duction involves probabilistic events like the choice of mate. 
The best-adapted individuals are most likely to survive to repro-
ductive maturity, mate, and thus to reproduce. Hence, the fre-
quencies of organisms with given traits in a given environment 
depend on many random events, and the process of selection 
can also be defined as the probabilities of individuals with dif-
fering traits in a given population surviving and reproducing in 
a specific environment. Although reproduction depends upon 
survival and many other different factors (as mentioned ear-
lier), it is still the process of reproduction encompassing fitness 
that is evolutionarily relevant. However, it should also be 
remembered that selection acts on random processes involved 
in generation of variation (Mayr, 2001), but the importance of 
these processes seems to be a learning obstacle for students 
(Lynch, 2007; Garvin-Doxas and Klymkowsky, 2008).

Moreover, biology students not only struggle to grasp the 
importance and roles of randomness, probability, and stochas-
ticity in evolutionary theory (Gregory, 2009), but also often 
have a weak understanding of mathematics (Jungck, 1997; 
Hester et al., 2014). This clearly hinders the teaching and learn-
ing of evolution, as mathematical descriptions of randomness 
and probability are key elements of the explanations of random 
and stochastic evolutionary (and other) biological processes 
(Wagner, 2012; Buiatti and Longo, 2013). To date, there is no 
empirical evidence about students’ conceptual structures regard-
ing randomness and probability in biological contexts, and their 
connections (if any) to conceptual structures in mathematics 
contexts. However, some studies indicate that mathematical 
modeling can generally lead to improvements in problem solv-
ing and qualitative conceptual knowledge, that is, students’ abil-
ity to predict likely outcomes of processes (Chiel et al., 2010; 
Schuchardt and Schunn, 2016). Thus, there is a need to explore 

the possible connections between understanding of evolution-
ary theory and conceptual knowledge of randomness and prob-
ability in both evolutionary and mathematical contexts.

Development of Content-Related Knowledge in Higher 
Education
In Germany, higher education in biology is divided into two 
stages, generally consisting of a 3- to 4-year course leading to a 
bachelor’s degree followed by a 1- to 2-year course leading to a 
master’s degree (KMK, 2010). Bachelor’s courses are intended to 
equip students with a broad qualification by providing academic 
subject–specific foundations, methodological skills, and compe-
tences related to the professional field, while master’s courses 
provide further subject and academic specialization (KMK, 2010).

Higher education leading to a degree in teaching includes at 
least two subjects, and students can take—depending on the 
Land (federal state) or higher education institution—either a 
basic foundation course (concluding with the first state exam) 
or a graded course (with bachelor’s and master’s degrees) 
(KMK, 2010). In all programs, subject areas, subject didactics, 
and educational science components are coupled and supple-
mented with practical components in the form of school intern-
ships. The relative amounts of time allocated to subject areas 
and educational science depend on the Land and type of school 
in which the students aspire to teach. Typically, the contents of 
preservice biology teachers’ education in their chosen subjects 
(e.g., biology) account for 30–40% of the total for bachelor’s 
and basic foundation courses and 20–25% for master’s courses 
(Verband Deutscher Biologen und biowissenschaftlicher Fach-
gesellschaften e.V [VBIO], 2006).

At the beginning of bachelor’s programs, most universities 
offer a compulsory module on the topic of general biology. This 
module should enable students to gain sound knowledge about 
the structure and function of cells, acquire insights into the 
diversity and evolution of plants and animals, and learn the 
basic techniques of biological investigations. Students subse-
quently take various compulsory or elective modules, such as 
genetics, ecology, evolution, cell biology, and/or molecular biol-
ogy, depending on the university and whether they are biology 
majors or preservice teachers (VBIO, 2006). Regarding evolu-
tion (or evolutionary theory), both sets of students are normally 
exposed to the topics of mechanisms of evolution, micro- and 
macroevolution, evolutionary theories, and abiotic and biotic 
factors (see Supplemental Table S1). Nevertheless, there is a 
substantial difference in development of biological knowledge 
between biology majors and preservice biology teachers. 
Although some seminars are attended by both, preservice biol-
ogy teachers have fewer opportunities to learn the subject. 
Therefore, preservice biology teachers may tend to have less 
deep and detailed knowledge about specific biological pro-
cesses. As evolution is described as an organizing principle for 
biological science and an explicitly stated learning goal in 
diverse standards (e.g., KMK, 2005a; AAAS, 2006; NGSS, 
2013), both biology majors and preservice teacher students 
should ideally have a shared core of knowledge regarding evo-
lutionary changes through natural selection. Further, this gen-
eral knowledge is important, because evolutionary theory is the 
integrative framework of modern biology, and its essential 
tenets are key parts of the foundations of and for science 
education.
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Research Objective
Diverse instruments have been developed for measuring evolu-
tionary knowledge (e.g., Anderson et al., 2002; Nadelson 
and Southerland, 2009; Nehm et al., 2012; Price et al., 2014). 
However, we are not aware of any tool for measuring under-
standing of randomness and probability, although they play 
major roles in evolutionary processes (Tibell and Harms, unpub-
lished data). Thus, a robust test instrument for measuring under-
standing of these two abstract concepts, and their roles in evolu-
tion, is required to advance evolution education research and 
assess both biological courses and students. In efforts to meet 
this need, we have developed an instrument called the Random-
ness and Probability Test in the Context of Evolution (RaProEvo) 
and a sister instrument called the Randomness and Probability 
Test in the Context of Mathematics (RaProMath) to explore the 
empirical structure of biology students’ conceptual knowledge of 
randomness and probability and the relationship of this knowl-
edge to their conceptual knowledge of evolutionary theory. 
During development of these instruments, we applied previous 
findings on students’ common difficulties when trying to learn 
evolutionary concepts (e.g., Gregory, 2009; Mead and Scott, 
2010). Here, we describe their development, provide indications 
of their validity measures (expert ratings and criterion-related 
validity measures), and present results of field tests of the instru-
ments on biology majors and preservice biology teachers.

METHODS
Participants
During the 2015–2016 academic year, we recruited 140 biology 
students (26.4% male; 72 biology majors [30.6% male] and 68 
preservice biology teachers [22.1% male]) enrolled at 23 German 
universities to complete an online survey. The participants’ aver-
age age was 22.9 years (SD = 3.7); 22.2 years (SD = 2.9) for 
biology majors and 23.7 years (SD = 4.3) for preservice biology 
teachers. On average, they had matriculated for 5.3 semesters 
(SD = 3.6) in tertiary education, with a mean of 4.7 semesters 
(SD = 3.9) for biology majors and 5.8 semesters (SD = 3.2) for 
preservice biology teachers. A total of 79 students (56.4% of all 
participants; 41 biology majors and 38 preservice biology teach-
ers) had taken compulsory modules on evolution or evolutionary 
biology and had been introduced to the topic of evolution (e.g., 
mechanisms of evolution, micro- and macroevolution, evolution-
ary theories, and abiotic and biotic factors). Furthermore, 48 of 
these students (34.3% of all participants) had also taken compul-
sory modules in genetics, ecology, and cell or molecular biology, 
while 10 students (7.1% of all participants) had only taken the 
evolutionary module. Students were also asked to provide Likert-
type responses ranging from 1 (not at all) to 4 (intensively) to the 
items regarding their learning opportunities in the contexts of 
evolution, genetics, and ecology. Their self-reported statements 
indicate that considerable attention was paid to evolution (M = 
9.51, SD = 1.8) genetics (M = 8.43, SD = 2.68), and ecology 
(M = 8.67, SD = 2.27) during their higher education.

Procedure
Participants responded to a basic demographic questionnaire 
(including items probing their academic self-concept) and 
completed tests on conceptual knowledge of randomness and 
probability in both evolutionary and mathematical contexts. 
The structure of the online survey was the same for all parti-

cipants and had no time limit. On average, the students took 
58 minutes, 56 seconds (SD = 15 minutes, 14 seconds; range: 
20 minutes, 4 seconds, to 94 minutes) to complete the survey. 
All respondents were given the opportunity to participate in a 
lottery for 10 vouchers, each worth 50 euros (approximately 
US$54 at the time of the survey).

Measures
Randomness and Probability Knowledge Test
Development. The first step in developing or considering an 
instrument to measure students’ conceptual knowledge of ran-
domness and probability in the context of evolution is to clarify 
the types of knowledge they should acquire during their educa-
tion. To do so, we first designated two focal topics (contexts): 
evolution and mathematics. For the evolution context, we iden-
tified the following five aspects in which randomness and prob-
ability play important roles that biology graduates and teach-
ers should understand: 1) origin of variation, 2) accidental 
death (single events, such as the death of one individual rather 
than another that is not linked to differences in adaptation to 
the environment; e.g., an individual could be struck by light-
ning, while less well-adapted individuals escape injury and 
produce more offspring), 3) random phenomena, 4) process of 
natural selection, and 5) probability of events. For the mathe-
matics context, we selected the following five topics: 1) single 
events, 2) random phenomena, 3) probability as ratio, 4) sam-
ple reasoning, and 5) probability of events. To explore knowl-
edge of these topics (explained in Table 1), we reviewed previ-
ously published instruments for testing evolutionary knowledge 
(e.g., Anderson et al., 2002; Bowling et al., 2008; Robson and 
Burns, 2011; Fenner, 2013) and knowledge of randomness 
and/or probability in various fields (e.g., Green, 1982; Falk and 
Konold, 1997; Garfield, 2003; Eichler and Vogel, 2012). Items 
deemed suitable were included in a pool of questions (N = 65 
items; Table 2). Most items were translated from English into 
German, and almost all were modified more than once to fit 
the specific purpose of the instrument. Additionally, a number 
of questions were created by three researchers of the EvoVis 
project group (EvoVis: Challenging Threshold Concepts in Life 
Science—enhancing understanding of evolution by visualiza-
tion). Distractors for these items were mainly based on stu-
dents’ alternative conceptions reported in previous studies 
(e.g., Gregory, 2009). A coding scheme was provided for each 
item.

Two preliminary versions of tests were developed to cap-
ture biology students’ conceptual knowledge of randomness 
and probability in the contexts of evolution and mathematics, 
designated RaProEvo and RaProMath, respectively. The 
RaProEvo test included a mixture of dichotomously scored 
(0 = no credit, 1 = full credit) and partial-credit (0 = no credit, 
1 = partial credit, 2 = full credit) items, while items of the 
RaProMath test were all dichotomously scored (0 = no credit, 
1 = full credit). To assess interrater reliability of the open-
ended items, two raters (including D.F.) independently coded 
the responses using scoring rubrics. Cohen’s kappa interrater 
reliability statistics (Cohen, 1960) for these RaProEvo and 
RaProMath versions were 0.93 and 0.91, respectively. Discrep-
ancies were resolved via deliberation between the raters. 
Items with a negative or low discrimination index (rit < 0.10) 
were excluded from further analysis (n = 3).
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Faculty Review. We examined content validity measures of the 
developed test instruments by soliciting faculty input to help 
validate the items. For this purpose, we administered an online 
version of RaProEvo to evolutionary biology faculty members 
(hereafter, biology experts) and an online version of RaProMath 
to faculty members with expertise in stochastics and/or proba-
bility (hereafter, mathematics experts) of different institutions. 
Biology experts were asked to select the correct response for 
each item, and were asked whether the item 1) tests the 
intended learning objective (Table 1) and 2) is scientifically 
accurate. A summary of their alignment is presented in Table 3. 
Experts could also add comments regarding each item and pro-
vide feedback. Mathematics experts were asked to follow the 
same procedure but to evaluate the mathematical accuracy of 
the items (Table 3). A total of 13 biology experts (10 faculty 
members and three PhD students) and 10 mathematics experts 
(eight faculty members and two PhD students) provided feed-
back on the instruments. In all cases, items with an agreement 
<80% had been flagged by the experts as potentially problem-
atic and thus were deleted or critically revised. The experts’ sug-
gestions on the intended learning objective were primarily to 
reword questions to increase precision and eliminate possible 
ambiguities. Altogether, two RaProEvo and six RaProMath 
items were finally deleted. At the end of this process, we were 
left with a 21-item RaProEvo test (16 multiple-choice, three 
free-response, and two matching items; see Supplemental 
Material 1) and a 33-item RaProMath test (30 multiple-choice 
and three free-response items; see Supplemental Material 2).

Test of Evolutionary Knowledge. Students’ conceptual knowl-
edge of evolutionary theory was assessed using the Open 
Response Instrument published by Nehm and Reilly (2007). 

This instrument was designed to determine how successfully 
biology majors can answer questions about natural selection at 
different levels of complexity and to identify both student 
knowledge and alternative conceptions. We used the following 
three, of five, items from this instrument:

• Explain why some bacteria have evolved resistance to antibi-
otics (that is, the antibiotics no longer kill the bacteria).

• Cheetahs (large African cats) can run faster than 60 miles 
(97 kilometers) per hour when chasing prey. How would a 
biologist explain how the ability to run fast evolved in chee-
tahs, assuming their ancestors could run at only 20 miles 
(32 kilometers) per hour?

• Cave salamanders (amphibious animals) are blind (they 
have eyes that are not functional). How would a biologist 
explain how blind cave salamanders evolved from ancestors 
that could see?

To score students’ evolutionary explanations, we established 
and refined two scoring rubrics in a pilot study with a set of 39 
biology students. The first scoring rubric—“key concepts”—cov-
ered eight key concepts: 1) origin of variation (e.g., mutation 
and recombination), 2) individual variation, 3) differential sur-
vival potential linked to specific traits, 4) inheritance of traits, 
5) reproductive success, 6) selection pressure, including limita-
tions of resources, 7) limited survival, and 8) changes in popu-
lations or distributions of individuals with certain traits 
(explained in Table 4). Two raters (including D.F.) inde-
pendently coded their responses in these terms to compute 
interrater reliability, and Cohen’s kappa interrater reliability was 
found to be 0.76. In cases of disagreement, all coding discrepan-
cies were resolved via deliberation. This scoring rubric was used 
to quantify the presence or absence of the eight key concepts in 

TABLE 1. Explanation of randomness and probability topics in evolution and mathematics contexts and corresponding questions in the 
test instruments

Topic Learning objective: Students should be able to: Question numbers

Evolution
 Origin of variation Explain the causes of genetic variability (e.g., mutation, recombination), their 

impact on survival, and their importance for evolutionary processes.
E01, E02, E03, E07, E11, E12, E17

 Accidental death 
(single event)

Recognize that the sudden death of an individual in a population is not per se 
due to natural selection and is therefore a random process.

E04, E09

 Random phenomena Identify and explain common processes in evolution that are considered random 
(e.g., mutations).

E05, E13, E14, E15

 Process of natural 
selection

Determine that natural selection acts on phenotypes of populations with 
different organisms producing different numbers of offspring, which can 
result in specialization for particular ecological niches over time.

E06, E10, E16, E18

 Probability of events Apply mathematical modeling to biological processes and provide reasonable 
explanations.

E08, E19

Mathematics
 Single event Determine the definitions of random processes as 1) unpredictability of single 

outcomes but 2) predictable in the long term, and provide reasonable 
explanations.

M02, M03, M06, M10, M14, M17, 
M25, M26, M29, M33

 Random phenomena Interpret results as outcomes of random phenomena. M23, M27
 Probability as ratio Distinguish between equally likely and not equally likely experiments and thus 

predict the probability of simple experiments.
M01, M04, M08, M12, M15, M16, 

M18, M20, M21, M22, M28
 Probability of events Applying appropriate methods to predict the probability of multistage experi-

ments (e.g., probability tree diagram or combinatorics).
M05, M07, M09, M11, M13, 

M24, M32
 Sample reasoning Explain how samples are linked to populations and what conclusions can be 

made from samples to populations.
M19, M30, M31
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TABLE 2. Sources of the final RaProEvo and RaProMath test items

Context Topic Item number Source of the idea/item (item code)a

Evolution Origin of variation E01 Fenner, 2013 (item 24 pretest)
E02 Fenner, 2013 (item 26 pretest)
E03 Robson and Burns, 2011 (item 5 pretest)
E07 Campbell and Reece, 2011 (item 3, chap. 23)
E11 Author
E12 Bowling et al., 2008 (item 9)
E15 Author
E17 Campbell et al., 2006 (item 8)

Accidental death (single event) E04 Author
E09 Author

Random phenomena E05 Campbell et al., 2006 (item 16)
E13 Author
E14 Klymkowsky et al., 2010 (item 4)

Process of natural selection E06 Author
E10 Fenner, 2013 (item 20, pretest)
E16 Author
E20 Author

Probability of events E08a Author
E08b Author
E19a Green, 1982 (item 7)
E19b Author

Mathematics Single event M02 Green, 1982 (item 8)
M03 Green, 1982 (item 1)
M06 Green, 1982 (item 21a)
M10 Green, 1982 (item 21d)
M14 Jones et al., 1997 (item CP1)
M17 Author
M25 Eichler and Vogel, 2012
M26 Author
M29 Author
M33 Green, 1982 (item 25)

Random phenomena M23 Author
M27 Falk and Konold, 1997

Probability as ratio M01 Garfield, 2003 (item 8)
M04 Green, 1982 (item 3)
M08 Green, 1982 (item 2)
M12 Jones et al., 1997 (item CP2)
M15 Green, 1982 (item 17)
M16 Author
M18 Green, 1982 (item 6d)
M20 Herget et al., 2009 (item 1a, test part 3)
M21 Weber and Mathea, 2008 (item 5, test form 2)
M22 Jones et al., 1997 (item CP2)
M28 Herget et al., 2009 (item 1b, test part 3)

Probability of events M05 Author
M07 Garfield, 2003 (item 18)
M09 Green, 1982 (item 22)
M11 Garfield, 2003 (item 13)
M13 Garfield, 2003 (item 19)
M24 Garfield, 2003 (item 9)
M32 Weber and Mathea, 2008 (item 6, test form 1)

Sample reasoning M19 Garfield, 2003 (item 14)
M30 Green, 1982 (item 21d)
M31 Green, 1982 (item 23)

a“Author” indicates an item developed by the authors together with other members of the EvoVis project.



CBE—Life Sciences Education • 16:ar38, Summer 2017 16:ar38, 7

Randomness and Probability Knowledge

each of the students’ responses. The mean numbers of key con-
cepts each student referred to in responses to all three items 
(hereafter, key concept score) and in responses to each of the 
three items (hereafter, key concept diversity [KCD]) were found 
to be 8.01 (SD = 4.89, range: 0–19, out of a maximum possible 
score of 24) and 4.61 (SD = 2.42, range: 0–8, out of a maximum 
possible score of 8), respectively. The second scoring rubric, 
“alternative conceptions concerning natural selection” (hereaf-
ter, alternative conceptions), was developed using seven com-
mon, well-known alternative conceptions that have been exten-
sively documented in research literature (Bishop and Anderson, 
1990; Gregory, 2009; Nehm and Reilly, 2007; Nehm et al., 
2012): 1) need, 2) use and disuse, 3) anthropomorphism, 
4) essentialism, 5) soft inheritance, 6) events versus processes, 
and 7) source versus sorting of variation (explained in Table 4). 
Two raters (including D.F.) independently coded their responses 

in these terms to compute interrater reliability, and Cohen’s 
kappa interrater reliability was found to be 0.73. In cases of 
disagreement, all coding discrepancies were resolved via delib-
eration. This scoring rubric was used to quantify the presence or 
absence of the seven common alternative conceptions in each of 
the students’ responses. The mean numbers of alternative con-
cepts each student referred to in responses to all three items 
(hereafter, alternative concept score) and in responses to each 
of the three items (hereafter, alternative concept diversity 
[ACD]) were found to be 0.55 (SD = 0.71, range: 0–3, out of a 
maximum possible score of 21) and 0.35 (SD = 0.56, range: 
0–3, out of a maximum possible score of 7), respectively.

To quantify students’ evolutionary knowledge in terms of key 
concept and alternative conception measures more fully, we 
used the Natural Selection Performance Quotient (NSPQ) of 
Nehm and Reilly (2007). The NSPQ is derived by multiplying 
KCD/(KCD + ACD) and KCD/maximum possible key concept 
score, and expresses the product on a scale of 0 to 100. The “first 
term expresses the proportion of students’ answers that were 
correct, and the second expresses how the correct proportion 
compared with the most complete possible answer” (Nehm and 
Reilly, 2007, p. 266). Further, the NSPQ distinguishes between 
students who have significant knowledge of natural selection, 
but conceptual problems, and those with no alternative concep-
tions but differing levels of knowledge (Nehm and Reilly, 2007). 
The mean NSPQ of our sample was 0.55 (SD = 0.31).

High School Grade Point Average (GPA). The high school 
GPA is one of the most important criteria for selecting candi-
dates for higher education in Germany (Heine et al., 2006) and 
is widely used as a proxy for cognitive ability (Anderson and 
Lebière, 1998). Thus, we used self-reported GPA to assess the 
convergent validity measures of the RaProEvo and RaProMath 
tests. GPA was captured by a single item, with scores ranging 

TABLE 3. Summary of RaProEvo and RaProMath faculty review

Items with given faculty agreement

>90% >80% <80%

RaProEvo
 The item tests the intended 

learning objective.
18 4 1

 The information given in the 
item is scientifically 
accurate.

15 5 3

RaProMath
 The item tests the intended 

learning objective.
32 0 7

 The information given in the 
item is mathematically 
accurate.

32 0 7

TABLE 4. Explanations of key concepts and alternative conceptions

Topic The response refers to the following aspects:
Key concepts
 Origin of variation Changes are caused by mutation or recombination.
 Individual variation Differences in the traits of individuals are addressed (e.g., the fastest).
 Differential survival potential Individuals have different survival potentials due to specific traits (e.g., higher survival potential, evolutionary 

advantage).
 Inheritance of traits Traits are passed on from the individuals to their offspring (or next generation).
 Reproductive success Some individuals have higher reproductive success than others.
 Selection pressure Designation of selection factors, selection pressure, or limited resources (e.g., light, prey).
 Limited survival Imagine that some individuals will survive, while others die.
 Changes in populations [Beneficial] traits become more frequent.

Alternative conceptions
 Need Individuals develop the new trait or behavior because they need it to survive (or the trait disappears because 

they do not need it).
 Use and disuse New traits or physical changes result from use or nonuse and are passed on directly to the offspring.
 Anthropomorphism The individual knows about the benefit/lack of benefit of a characteristic and therefore the characteristic 

appears or disappears.
Natural selection (nature) is understood as a sorting-out force.

 Essentialism The individuals of a population change at the same time and develop the new feature.
 Soft inheritance Characteristics acquired by an individual during its lifetime are passed on to the offspring.
 Events vs. processes Natural selection is an event with a beginning and an end (and is not understood as continuous).
 Source vs. sorting of variation Mutations appear because of a changed environment and are therefore advantageous.
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from 1 (good performance) to 4 (poor performance). The 
results indicate that our students’ GPAs, and hence cognitive 
ability, covered a sufficiently wide range for robustly testing our 
instruments (M = 2.17, SD = 0.53, minimum [min] = 1.00, 
maximum [max] = 3.50).

Students’ Academic Self-Concept. To investigate the criteri-
on-related validity measures of the RaProEvo and RaProMath 
tests, we assessed students’ academic self-concept. This is 
reportedly a highly important and influential predictor of cogni-
tive and behavioral outcomes such as performance and self-
worth, and it also seems to be strongly related to academic 
achievement (Marsch and Martin, 2011). Further, Paulick et al. 
(2016) showed that preservice biology teachers’ academic 
self-concept is positively related to their biological knowledge. 
Hence, RaProEvo and RaProMath scores should be positively 
correlated with academic self-concept in evolutionary theory 
and stochastics, respectively.

To assess our participants’ academic self-concept, we used 
the Knowledge Processing subscale of the Berlin Evaluation 
Instrument for Self-Evaluated Student Competencies (BEva-
Komp; Braun et al., 2008). This instrument operationalizes 
knowledge processing as students’ self-reported competency 
(based on self-knowledge and evaluation of value or worth of 
one’s own capabilities) regarding a specific subject. We adapted 
the (five) selected BEvaKomp items to the topics of evolution-
ary theory and stochastics, then asked our students to provide 
Likert-type responses ranging from 1 (does not apply at all) to 
4 (fully applies) to the items regarding both contexts (see Sup-
plemental Material 3 for items). The results indicate that our 
students had medium self-reported competency in evolutionary 
theory (M = 3.04, SD = 0.72, min = 1.00, max = 4.00; Cron-
bach’s alpha = 0.93) and somewhat lower self-reported compe-
tency in stochastics (M = 2.42, SD = 0.82, min = 1.00, max = 
4.00; Cronbach’s alpha = 0.94). All rating levels were chosen by 
at least five students.

Statistical Analysis
Test Instrument Dimensionality. To tackle the question of 
whether students’ conceptual knowledge of randomness and 
probability in the context of evolution and mathematics follows 
a single dimension or is better modeled as two separate dimen-
sions, we first conducted a principal components analysis on 
Rasch scores in IBM SPSS Statistics (version 23). It has been 
suggested that unidimensionality be assumed when the first 
component explains at least 20% of the total variance (Reckase, 
1979). Further, a single dimension is supported with one large 
eigenvalue and a large ratio of the first and second eigenvalue 
(Hutten, 1980; Lord, 1980).

Rasch analysis was applied in ACER ConQuest (version 1; 
Wu et al., 2007) to analyze the psychometric distinction of 
students’ conceptual knowledge of randomness and proba-
bility in the contexts of evolution and mathematics. Because 
the two tests were designed to capture students’ conceptual 
knowledge of randomness and probability in two contexts, a 
two-dimensional model was fitted to the data, based on the 
assumption that students have separable competencies for 
evolution and mathematics, which can be captured as the 
latent traits “competency in RaProEvo” (measured by the 21 
evolutionary items) and “competency in RaProMath” (mea-

sured by the 33 mathematical items), respectively. This 
model was compared with a one-dimensional model presum-
ing a single competency, that is, that items represent one 
latent trait (“competency in randomness and probability,” 
measured by 21 evolutionary combined with 33 mathemati-
cal items).

To determine which model provides the best fit to the 
acquired data, we calculated final deviance values, which are 
negatively correlated with how well the model fits the data 
(and thus indicate degrees of support for underlying assump-
tions). To test whether the two-dimensional model fits the data 
significantly better than the one-dimensional model, we applied 
a χ2 test (Bentler, 1990). In addition, we applied two informa-
tion-based criteria, Akaike’s (1981) information criterion (AIC) 
and Bayes’s information criterion (BIC), to compare the two 
models. These criteria do not enable tests of the significance of 
differences between models, but generally the values are nega-
tively correlated to the strength of how well the model fits the 
data (Wilson et al., 2008).

Test Instrument Evaluation by Rasch Modeling. Assuming 
that evolution and mathematics competencies differ, the reli-
ability measures and internal structure of the RaProEvo and 
RaProMath instruments were evaluated by analyzing the partic-
ipants’ responses using the Rasch partial-credit model (PCM) 
and Wright maps. The PCM is rooted in item response theory 
and provides a means for dealing with ordinal data (Wright and 
Mok, 2000; Bond and Fox, 2015) by converting them into inter-
val measures, thus allowing the calculation of parametric 
descriptive and inferential statistics (Smith, 2000; Wright and 
Mok, 2000; Bond and Fox, 2015). The discrepancy between a 
considered PCM and the data is expressed by so-called fit statis-
tics (Bond and Fox, 2015). Because person and item measures 
are used for further analyses, only items fitting the model 
should be included; otherwise, values of these measures could 
be skewed and lead to wrong conclusions in further analyses. 
To calculate fit statistics for the RaProEvo and RaProMath 
instruments, we used ACER ConQuest item response modeling 
software (version 1; Wu et al., 2007). ConQuest provides outfit 
and infit mean square statistics (hereafter outfit and infit, respec-
tively) to measure discrepancies between observed and 
expected responses. The infit statistic is mainly used for assess-
ing item quality, as it is highly sensitive to variation in discrep-
ancies between models and response patterns, while outfit is 
more sensitive to outliers (Bond and Fox, 2015). Furthermore, 
aberrant infit statistics usually raise more concern than aberrant 
outfit statistics (Bond and Fox, 2015). Therefore, we used the 
weighted mean square (WMNSQ): a residual-based fit index 
with an expected value of 1 (if the underlying assumptions are 
not violated), ranging from 0 to infinity. We deemed WMNSQ 
values acceptable if they were within the range 0.5–1.5 (Wright 
and Linacre, 1994) and had t values that did not significantly 
deviate from 1.0 (being within the range −2.0–2.0).

To test whether the developed test instruments fit the Rasch 
model, we calculated model fit indices regarding the items and 
participants’ abilities (“person ability”). Person ability and item 
difficulty were estimated using Masters’s (1982) partial-credit 
model, as RaProEvo includes a mixture of dichotomously scored 
and partial-credit items. The partial-credit model allows analy-
sis of items scored in more than two ordered categories, with 



CBE—Life Sciences Education • 16:ar38, Summer 2017 16:ar38, 9

Randomness and Probability Knowledge

different measurement scales for different items, and estimates 
a distinct threshold parameter for each item (Wright and Mok, 
2000). Four reliability indices—person reliability, person sepa-
ration, item reliability, and item separation—were calculated 
(Bond and Fox, 2015). For further analysis, person parameters 
were estimated by calculating weighted maximum likelihood 
estimation (WLE) values.

Validity Measures Check. Spearman’s rho correlation coeffi-
cients were used to assess criterion-related (convergent/dis-
criminate) validity measures of the applied instruments and 
the relationship between students’ knowledge of evolutionary 
theory and their conceptual understanding of randomness 
and probability. The instruments’ convergent validity mea-
sures were assessed by testing the association between the 
participants’ person ability scores and GPAs (assumed to be 
negatively correlated), while their discriminant validity mea-
sures were assessed by testing the association between their 
person ability scores and academic self-concepts (assumed to 
be stronger for corresponding than for noncorresponding 
self-concepts).

Furthermore, we applied one-way analyses of covariance 
(ANCOVAs) to explore differences between biology majors’ and 
preservice biology teachers’ knowledge in terms of 1) person 
RaProEvo ability, 2) person RaProMath ability, and 3) students’ 
evolutionary knowledge (KCD, ACD, and NSPQ). In all cases, 
participant GPA was a covariate.

RESULTS
Test Instrument Dimensionality
Rasch score principal components analysis was conducted to 
tackle the issue of dimensionality. The first component obtained 
in this analysis explained 11.25% of the total variance. In order, 
the eigenvalues of the first five components were 6.08, 3.71, 
2.88, 2.39, and 2.13. Correspondingly, the ratio of the first and 
second eigenvalues was 1.64, indicating the lack of a dominant 
single dimension.

To determine whether students’ conceptual knowledge of 
randomness and probability in the context of evolution is psy-
chometrically distinct from their mathematical knowledge of 
randomness and probability, we compared two-dimensional 
and one-dimensional partial-credit models fitted to data 
obtained from coding 140 biology students’ responses to the 
two instruments. Rasch analysis results and AIC values indicate 
that the two-dimensional model provides a better fit to the 
data, although values of the other information-based crite-
rion applied (BIC) indicates that the one-dimensional model 
provides a better fit (Table 5). Nevertheless, results of a χ2 test 
show that the two-dimensional model significantly outper-

formed the one-dimensional model: χ2 (2, N = 140) = 6.23, p = 
0.044. Thus, students’ conceptual knowledge of randomness 
and probability in evolutionary and mathematical contexts 
appear to be empirically separable competencies. Accordingly, 
the Spearman’s correlation coefficients between their knowl-
edge in the two contexts were rlatent = 0.86 and rmanifest = 0.59 
(p < 0.001), indicating that the two competencies are closely 
related but distinct.

Test Instrument Analysis
As the two-dimensional model represents students’ conceptual 
knowledge of randomness and probability slightly better than 
the one-dimensional model, the results regarding the reliability 
measures and internal structure of RaProEvo (N = 140, 21 items) 
and RaProMath (N = 140, 33 items) are presented separately (see 
Supplemental Tables S2 and S3 for item parameter estimates).

RaProEvo. The Wright map acquired from analysis of the 
RaProEvo test results (Figure 1) was used to analyze the inter-
nal structure of the instrument (Boone and Rogan, 2005). In 
such a map, the distributions of persons and items of the instru-
ment (or more strictly person ability and item difficulty esti-
mates) are plotted along the same dimension (conventionally to 
the left and right, respectively) and can be directly compared. 
Items of equivalent difficulty are located at the same position on 
the scale (e.g., rpE14 and nsE18; Figure 1), and persons at the 
same position or height on the scale as a particular item have a 
50% chance of answering that item correctly, while those 
located above and below an item have a 50% higher and lower 
chance of answering it correctly, respectively. The RaProEvo 
Wright map suggests that a typical respondent would answer 
most questions correctly, as 38.1% and 61.9% of the items were, 
respectively, above and below the position of the mean person 
(dotted line). Nevertheless, fits for items forming the test for 
conceptual knowledge of randomness and probability in evolu-
tion were acceptable, with WMNSQ values ranging from 0.81 to 
1.07 and t values from −1.9 to 0.7. For the 21 items of the 
RaProEvo test, an item separation reliability of 0.98, a WLE per-
son separation reliability of 0.58, and a Cronbach’s alpha (inter-
nal consistency) value of 0.66 were computed. Mean person 
ability (person parameters) was found to be 0.01 (SD = 0.08), 
and the mean score (item parameters) was 17.27 points (SD = 
2.93, range: 6–22 points, maximum possible score = 23 points).

RaProMath. The Wright map acquired from analysis of the 
RaProMath test results (Figure 2) was also used to assess the 
internal structure of the instrument (Boone and Rogan, 2005). 
Like the RaProEvo map, it suggests that a typical respondent 
would answer most questions correctly, as 42.4% and 57.6% of 

TABLE 5. Final deviance and information criteria for comparing the two- and one-dimensional models of students’ conceptual knowledge 
of randomness and probability (N of items = 54)a

Context of conceptual knowledge One-dimensional model Two-dimensional model

Allocation to dimension Evolution A A
Mathematics A B

Deviance (no. of free parameters) 6178.15 (57) 6171.92 (59)
AIC 6292.15 6289.92
BIC 6459.83 6463.48
a“A” indicates dimension 1; “B” indicates dimension 2.
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the items were above and below the position of the mean per-
son, respectively (dotted line). Like those in the RaProEvo test, 
the items forming the test for conceptual knowledge of ran-
domness and probability in mathematics had acceptable fit, 
with WMNSQ values ranging from 0.80 to 1.12 and t values 
from −1.8 to 1.8. For the 33 items of the RaProMath test, 
an item separation reliability of 0.99, a WLE person separation 
reliability of 0.68, and a Cronbach’s alpha (internal consistency) 
value of 0.69 were computed. Mean person ability (person 
parameters) was found to be 0.02 (SD = 0.90), and the mean 
score (item parameters) was 24.01 points (SD = 3.66, range: 
10–31 points, maximum possible score = 33 points). Addition-
ally, the joint Wright map generated from the two-dimensional 
model (Figure 3), which enables comparison of patterns of 
knowledge of randomness and probability in evolution and 
mathematics contexts, shows that the two instruments detected 
similar spread in our students’ abilities.

Validity Measure Check
To test the instruments’ validity measures, we first analyzed the 
relationships between the participants’ GPAs and person ability 
in the two knowledge dimensions of randomness and probabil-
ity in evolutionary and mathematical contexts to assess their 
convergent validity measures. The results confirmed our hypoth-
eses that GPA values would be negatively correlated with both 
RaProEvo and RaProMath person abilities (rs = −0.25, p = 0.004, 
and rs = −0.33, p < 0.001, respectively; n = 129 in both cases).

Next, we analyzed the relationship between the two dimen-
sions of person ability (knowledge of randomness and probabil-
ity in evolutionary and mathematical contexts) and the partici-
pants’ academic self-concepts to assess the tests’ discriminant 
validity measures. The results confirmed our hypothesis that 
participants’ academic self-concepts in the contexts of evolu-
tionary theory and mathematics would be more strongly con-
nected to their RaProEvo and RaProMath composite scores, 
respectively (Table 6).

The results also showed that KCD in students’ responses was 
significantly positively related to person ability as measured by 
both RaProEvo (rs = 0.45) and RaProMath (rs = 0.35), while 
ACD was significantly negatively related to person ability (rs = 
−0.32 and −0.17, respectively). Furthermore, the NSPQ was sig-
nificantly positively related to person ability measured by 
RaProEvo (rs = 0.47) and RaProMath (rs = 0.36). These findings 
(p < 0.001, N = 140 in all cases) confirm the hypothesis that 
their conceptual knowledge of evolutionary theory would be 
positively correlated with their conceptual knowledge of ran-
domness and probability.

Biology Majors versus Preservice Biology Teachers
To assess effects of study program on the participants’ perfor-
mance, we applied one-way ANCOVAs to compare RaProEvo- 
and RaProMath-measured abilities of biology majors and preser-
vice biology teachers and their KCD scores, ACD scores, and 
NSPQs while controlling for cognitive ability as indicated by GPA.

We detected a significant effect of study program on RaPro-
Evo scores: biology majors obtained significantly higher 
RaProEvo person ability scores (adjusted M = 0.33, SEM = 
0.11, n = 69) than preservice biology teachers (adjusted M = 
−0.33, SEM = 0.12, n = 60): F(1, 126) = 15.97, p < 0.001. In 

FIGURE 1. Wright map of responses to items of the RaProEvo test 
(N = 140; 21 items). Abilities of persons who took the test are 
displayed on the left and difficulty of the (coded) items on the right. 
Each “X” indicates 0.9 individuals in the sample. The first two letters 
represent: ov, origin of variation; ad, accidental death (single 
event); rp, random phenomena; ns, process of natural selection; 
and pe, probability of events. “E” represents the content of 
evolutionary theory; the numbers 01–19 indicate the item number 
in the RaProEvo test; and the last letter represents item 1 (“a”) or 
item 2 (“b”) within a similar item task.
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contrast, the study program had no significant effect on RaPro-
Math scores: F(1, 126) = 1.54, p = 0.217. Regarding KCD and 
ACD scores, biology majors (adjusted M = 5.02, SEM = 0.29, 
n = 69) used significantly more key concepts in their answers 

than preservice biology teachers (adjusted 
M = 4.00, SEM = 0.31, n = 60): F(1, 126) 
= 5.78, p = 0.018, while study program 
had no significant effect on numbers of 
alternative conceptions identified in their 
responses: F(1, 126) = 1.40, p = 0.239. 
Nevertheless, biology majors obtained 
significantly higher NSPQs (adjusted M = 
0.60, SEM = 0.04, n = 69) than preservice 
biology teachers (adjusted M = 0.46, SEM 
= 0.04, n = 60): F(1, 126) = 6.27, p < 
0.001.

DISCUSSION
We have attempted to address the need for 
instruments capable of measuring under-
standing of two important abstract con-
cepts underlying the biological concepts in 
evolutionary theory (randomness and 
probability) and advance evolutionary 
education research. Using the presented 
instruments, we explored the psychometric 
distinction of biology students’ conceptual 
knowledge of randomness and probability 
in the context of both evolution (RaPro-
Evo) and mathematics (RaProMath). We 
then assessed the reliability and validity 
measures of the RaProEvo and RaProMath 
instruments. Finally, we investigated the 
relationships of RaProEvo and RaProMath 
scores with evolutionary knowledge (KCD, 
ACD, and NSPQ) and the difference in this 
knowledge between biology majors and 
preservice biology teachers.

Several of the empirical findings are of 
potential interest, particularly given the 
importance of understanding randomness 
and probability, both in science gener-
ally, as highlighted in national and inter-
national education standards (KMK, 
2005a,b; NGSS, 2013), and specifically in 
teaching and learning evolution (Mead 
and Scott, 2010; Tibell and Harms, unpub-
lished data). First, the percentage of the 
total variance explained by the first com-
ponents of a Rasch score principal compo-
nents analysis and the ratio of the first and 
second eigenvalues of this principal com-
ponents analysis reveals a lack of unidi-
mensionality. Second, Rasch analysis also 
indicated that a two-dimensional model 
fits the participants’ responses slightly 
but significantly better than a one-di-
mensional model, supporting the assump-
tion that RaProEvo and RaProMath mea-
sure separate competencies. We obtained 

promising indications of the instruments’ reliability measures, 
albeit preliminary due to the small sample size, and their valid-
ity measures were confirmed by experts and criterion-related 
indications. Furthermore, biology students’ RaProEvo scores, 

FIGURE 2. Wright map of responses to items of the RaProMath test (N = 140; 33 items). 
Abilities of persons who took the test are displayed on the left and difficulty of the (coded) 
items on the right. Each “X” indicates 1.1 individuals in the sample. The first two letters 
represent: se, single event; rp, random phenomena; pr, probability as ratio; pe, probability 
of events; and sr, sample reasoning. “M” represents the content of mathematics; the 
numbers 01–33 indicate the item number in the RaProMath test.



16:ar38, 12  CBE—Life Sciences Education • 16:ar38, Summer 2017

D. Fiedler et al.

high performers. Nevertheless, the Wright 
maps obtained from our analysis of 
responses to items of the tests provided 
indications of informative patterns regard-
ing students’ thinking (which require 
further verification), as outlined in Test 
Instrument Analysis.

The RaProEvo Wright map indicates 
that most students could satisfactorily 
answer items regarding the process of nat-
ural selection (Figure 1), which mainly 
concerned broad, probabilistic aspects of 
the process, rather than specific contribu-
tory processes or key associated concepts. 
Illustrative phenomena used in these ques-
tions might be mostly familiar, such as 
changes in color of foxes’ fur in adaptive 
responses to environmental changes, a fre-
quently used example of natural selec-
tion–mediated change that many students 
may learn from textbooks. In contrast, 
only high-performing students correctly 
answered questions with complex probabi-
listic backgrounds (psE19; probability of 
events).

Similar patterns were discerned in 
responses to the RaProMath instrument. 
Questions concerning probability as a ratio 
seemed quite easy for the participants. This 
may seem unsurprising, as pupils learn to 
calculate ratios in primary school (KMK, 
2005b). However, only high performers 
correctly answered items concerning pro-
bability of events, although students also 
should have learned this topic in school 
(KMK, 2004, 2015). This finding corrobo-
rates indications presented by various 
authors (e.g., Chi et al., 1981) that students 
tend to ignore connections to underlying 
concepts (e.g., probability) that would 
allow them to transfer their understanding 
to other problems. This is a concern, as stu-
dents have to calculate and apply ratios 
explicitly in biology to topics such as Men-
delian inheritance and Hardy-Weinberg 
equilibrium (e.g., Campbell et al., 2006) 
and (more often) implicitly in diverse con-
texts (e.g., the influence of alleles’ selective 

strength on the probability of fixation as a function of the strength 
of genetic drift), which increases the sophistication of the required 
conceptualization (Tibell and Harms, unpublished data).

In the mathematical context, students found some of the sin-
gle-event items challenging (some were apparently easy, but 
responses to more than half were distributed across the scale). 
Even when asked about the (un)predictability of single events, 
students seemed to think about predictability in aggregate 
terms. Similarly, in the evolutionary context, items regarding 
origin of variation, either generally (e.g., ovE03, ovE17) or 
linked to specific sources of variation like recombination (e.g., 
ovE07) and mutation (e.g., ovE12) were also distributed across 

KCDs, and NSPQs (but not ACDs) were all higher than those of 
the preservice teachers, indicating that they had more evolu-
tionary knowledge. In contrast, RaProMath scores did not dif-
fer between biology students and preservice teachers.

Randomness and Probability Knowledge
There was a good fit between the data set and the Rasch 
model, indicating that the tests had strong internal validity 
measures. Detailed analysis indicated that the RaProEvo 
instrument’s difficulty was not optimal for our sample of biol-
ogy students: many items clustered at the low end of the scale, 
and there was a lack of sufficiently difficult items to distinguish 

FIGURE 3. Wright map of responses to items linked to the two dimensions of the 
RaProEvo test (bold; N = 140; 21 items) and RaProMath test (N = 140; 33 items). Abilities of 
persons who took the test are displayed on the left and the difficulty of the (coded) items 
on the right. Each “X” indicates 1.0 individuals in the sample. The first two letters repre-
sent: ov, origin of variation; ad, accidental death (single event); rp, random phenomena; 
se, single event; ns, process of natural selection; pe, probability of events; pr, probability as 
ratio; and sr, sample reasoning. E01 to E19 indicate the item number in the RaProEvo test; 
M01 to M33 represent the item number in the RaProMath test; and the last letter rep-
resents item 1 (“a”) or item 2 (“b”) within a similar item task.
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the entire scale. Finally, random phenomena seemed quite chal-
lenging for our students in evolutionary contexts. When they 
had to explain why evolutionary change through natural selec-
tion is a nonrandom process, they often forgot that natural 
selection acts upon randomly generated variation. Indeed, as 
noted by Mayr (2001): “Without variation, there would be no 
selection.” Even Darwin (1859) suggested that variation is a 
fundamental requirement for evolutionary change in On the 
Origin of Species by Means of Natural Selection (for more infor-
mation, see Gregory, 2009), although he could not explain 
where the variation comes from. Nevertheless, only 17% of the 
participants stated this in their answers.

A particularly important source of new variation in the focal 
contexts is mutation, which is regarded as a random process, 
partly because the probability of mutations occurring is not 
affected by the selective consequences and partly because their 
occurrence in a given individual at a given time is far beyond 
our modeling capacities (Gregory, 2009; Heams, 2014). Never-
theless, several studies have indicated that students tend to 
struggle with both the importance of random processes such as 
the origin of variation in evolutionary processes and under-
standing why mutations are called random (e.g., Garvin-Doxas 
and Klymkowsky, 2008; Smith et al., 2008; Speth et al., 2014). 
Our results corroborate these findings that random processes 
pose learning difficulties.

Differences between Biology Majors and Preservice 
Biology Teachers
Most studies of evolutionary knowledge focus on differences 
between novice and advanced students attending similar study 
programs (e.g., Frasier and Roderick, 2011; Nehm and Ridgway, 
2011). However, possible differences between biology majors 
and preservice biology teachers are also potentially important, 
particularly as the latter will form the next generation to teach 
evolutionary theory. So, it might be acceptable for preservice 
biology teachers to lack detailed knowledge of specific associated 
processes, and thus obtain lower scores in tests such as RaProEvo, 
but they should have similar general understanding (as mea-
sured, e.g., by KCD and NSPQ) of evolutionary change through 
natural selection. Alarmingly, we found significant deficits (rela-
tive to the biology majors) in both their conceptual knowledge of 
randomness and probability in evolutionary contexts and their 
evolutionary knowledge. These findings cannot be explained by 
differences in cognitive abilities, because we accounted for varia-
tions in participants’ GPAs, and Klusmann (2013) found no dif-
ferences in cognitive characteristics between students attending 

to become a teacher and other university education courses. 
However, we cannot exclude the possibility that these findings 
are simply a manifestation of differences that existed between 
the groups before their higher educational training.

Regardless of the reasons for the preservice teachers’ 
lower RaProEvo scores, there will clearly be potential prob-
lems in teaching evolution if the next generation of teachers 
has only modest knowledge of evolution(or harbors miscon-
ceptions about it). Thus, when considering strategies to 
improve biology students’ understanding, it is important not 
only to foster development of accurate evolutionary knowl-
edge but also to ensure that the next generations of teachers 
develop an adequate knowledge base. As proposed by Tibell 
and Harms (unpublished data), a step toward appropriate 
solutions could be to deepen students’ knowledge of abstract 
concepts underlying evolutionary processes.

Limitations and Future Research
Mathematics is a compulsory subject in school, and mathemat-
ical concepts, particularly randomness and probability, are fun-
damental elements of descriptions of myriad biological interac-
tions, relationships, and processes (Jungck, 1997; Chiel et al., 
2010). However, most previous studies on evolutionary knowl-
edge have solely considered biological aspects (Tibell and 
Harms, unpublished data). A major implication of our study is 
that conceptual knowledge of randomness and probability is 
important for biology students’ understanding of evolutionary 
theory. In contrast to other studies on students’ misunderstand-
ing of random processes (Garvin-Doxas and Klymkowsky, 2008; 
Robson and Burns, 2011), we also detected clear differences in 
students’ conceptual knowledge of randomness and probability 
in evolutionary and mathematical contexts. In developing the 
instruments, we also tried to extend extant research by showing 
that threshold concepts are important factors for a deeper con-
ceptual knowledge of evolutionary theory, and thus important 
in students’ education.

Nevertheless, instruments such as RaProEvo and RaProMath 
have intrinsic limitations, partly because they need to be rea-
sonably short and not require much time to complete or mark. 
Thus, they must include only a few items targeting each con-
cept. Hence, the instruments should be used mainly for forma-
tive purposes, that is, for instructors to identify obstacles their 
students are currently facing. The instruments were not 
intended to be summative evaluation tools. The utility of RaPro-
Evo and RaProMath lies in their proposed ability to assess stu-
dents’ general conceptual knowledge about randomness and 
probability in two contexts (evolution and mathematics), rather 
than exhaustively assess their knowledge of specific constructs 
(e.g., genetic drift).

We also note the obvious limitation of the small sample size 
in our study. We obtained promising preliminary results, but the 
reliability measures of the instruments must be confirmed with 
a larger group of students. Further, the participants were all 
German students from a single cohort. To assess the generality 
of the findings and identify causes of possible variations in find-
ings, tests of the instruments internationally and with other 
cohorts are required.

Finally, we hope that our instruments will facilitate efforts to 
design more tools to assess students’ conceptual knowledge of 
randomness and probability. In addition, having developed an 

TABLE 6. Spearman’s rank correlation coefficients (rho) between 
students’ academic self-concepts of evolutionary theory and 
stochastics and their knowledge of randomness and probabilitya

Academic self-concept

Evolutionary theory Stochastics

RaProEvo 0.40** 0.13

RaProMath 0.19* 0.23**
aRaProEvo = person parameters in conceptual knowledge of randomness and 
probability in evolution; RaProMath = person parameters in conceptual knowl-
edge of randomness and probability in mathematics.
*p < 0.05.
**p < 0.01.
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instrument for measuring conceptual knowledge of random-
ness and probability in the context of evolution (RaProEvo), we 
found that instruction about randomness and probability con-
nected to evolutionary concepts warrants attention. Therefore, 
an objective of ongoing research is to investigate whether visu-
alizations and/or instructional support can help students to 
develop better conceptual knowledge of the roles of random-
ness and probability in evolution and, hence, better evolution-
ary knowledge.
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