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ABSTRACT
Undergraduate biology education reform aims to engage students in scientific practic-
es such as experimental design, experimentation, and data analysis and communication. 
Graphs are ubiquitous in the biological sciences, and creating effective graphical represen-
tations involves quantitative and disciplinary concepts and skills. Past studies document 
student difficulties with graphing within the contexts of classroom or national assessments 
without evaluating student reasoning. Operating under the metarepresentational compe-
tence framework, we conducted think-aloud interviews to reveal differences in reasoning 
and graph quality between undergraduate biology students, graduate students, and pro-
fessors in a pen-and-paper graphing task. All professors planned and thought about data 
before graph construction. When reflecting on their graphs, professors and graduate stu-
dents focused on the function of graphs and experimental design, while most undergradu-
ate students relied on intuition and data provided in the task. Most undergraduate students 
meticulously plotted all data with scaled axes, while professors and some graduate stu-
dents transformed the data, aligned the graph with the research question, and reflected on 
statistics and sample size. Differences in reasoning and approaches taken in graph choice 
and construction corroborate and extend previous findings and provide rich targets for 
undergraduate and graduate instruction.

INTRODUCTION
Graphs are the main components of the scientific language, because they can be 
used to condense and summarize large data sets. The result is a symbolic represen-
tation that displays experimental findings used by scientists for communication 
(Beichner, 1994; Tairab and Al-Naqbi, 2004; Wainer, 2013). The development of the 
skill to create appropriate and clear graphs is necessary for the scientifically literate 
individual (Padilla et al., 1986). Indeed, recent calls to reform the undergraduate 
curriculum include incorporating aspects of data literacy into the science, technol-
ogy, engineering, and mathematics disciplines. Within the discipline of biology, 
there is an emphasis on the infusion of quantitative reasoning into the classroom, 
including creating and interpreting graphical representations (Association of Amer-
ican Medical Colleges, 2009; American Association for the Advancement of Science, 
2011). The increasing implementation of course-based undergraduate research 
experiences (CUREs) emphasizes the importance of understanding how students 
grapple with data and data presentation to facilitate their mastery of this skill (see 
Figure 1 in Auchincloss et al., 2014). Furthermore, current studies in the field of 
biology education have shown that students who engage in research practices feel 
more inclusive in the learning process and gain better science process skills, such as 
data analysis and graphing (Bangera and Brownell, 2014; Brownell et al., 2015; 
Linn et al., 2015).
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CONCEPTS AND SKILLS NEEDED FOR GRAPHING 
AND AREAS OF DIFFICULTY
The purpose of a graph is to communicate observational or 
numerical data in a visual format (Tufte, 1983; Leinhardt et al., 
1990), with the hope that the graph is interpreted in the same 
manner and with the same take-home message as the graph 
constructor intended. Extensive research has documented stu-
dent difficulties with graph interpretation. Tairab and Al-Naqbi 
(2004) showed that students in 10th grade had difficulty 
understanding that the x- and y-axes illustrate the relationship 
between the independent and dependent variables. Other stud-
ies show similar difficulties with interpreting interactions and 
slope of a line (Preece and Janvier, 1992; Picone et al., 2007; 
Colon-Berlingeri and Burrowes, 2011).

While these studies focused on graph interpretation, the 
concepts and skills that they studied are integral to graph con-
struction as well. Before constructing the graph, the graph 
constructor should have a clear purpose in mind, along with 
an adequate understanding of variables and graph types (Berg 
and Smith, 1994; Friel and Bright, 1996; Clase et al., 2010; 
Grunwald and Hartman, 2010; Angra and Gardner, 2016). For 
a graph to be an effective communication piece for both the 
creator and the observer, four main components should be con-
sidered: 1) data form, 2) graph choice, 3) graph mechanics, and 
4) aesthetics and visuospatial aspects. While these are four dis-
tinct components, they are all interrelated and influence the 
type and quality of the message communicated by the graph 
(Table 1). For example, the form of the plotted data (e.g., raw 
data vs. averages) can influence the type of graph and labeling 
used to clearly display those data.

Owing to its complexity, choosing and constructing an 
appropriate graph for data can be considered a problem-solving 
task (Angra and Gardner, 2016). Our previous findings (see 

Figure 1 in Angra and Gardner, 2016) on the steps taken 
during a pen-and-paper graphing construction task by expert 
professors resembled the four steps of Polya’s problem-solving 
cycle in mathematics (Polya, 1945). Polya’s problem-solving 
model has been adapted based on the data and trends that 
have emerged from our work to explain expert graph-con-
struction behavior and can be distilled into three phases: plan-
ning, execution, and reflection (for a detailed description, see 
Angra and Gardner, 2016). During the planning phase, before 
the graph is constructed, data to be plotted are evaluated, 
understood, and characterized. Specifically, decisions on the 
purpose for graphically displaying the data are clarified, ways 
to organize the data on the graph are considered, decisions on 
data transformation are made, and a graph type is chosen 
(Friel and Bright, 1996; Ainley et al., 2000; Patterson and 
Leonard, 2005; Angra and Gardner, 2016). During the execu-
tion phase, the graph is constructed with appropriate elements 
of graph mechanics for clear communication (e.g., descriptive 
title, variables on axes, scales appropriate for data, key, etc.) 
and data are plotted (Angra and Gardner, 2016). Finally, 
during the reflection phase, the constructed graph is critiqued, 
graph choice is evaluated, and the graph is checked for align-
ment with the intended purpose (Angra and Gardner, 2016).

As noted, current trends in biology education engage stu-
dents in data analysis and graphing; however, students across 
the K–16 continuum struggle with many fundamental con-
cepts and skills relevant for graphing, including scaling axes, 
using a best-fit line, and assigning variables to axes (Padilla 
et al., 1986). Further, while there are standards and recom-
mendations for K–16 education in areas related to quantita-
tive literacy (Aliaga et al., 2005), standards for graduate edu-
cation have been lacking. There have been increased efforts to 
formalize quality training for graduate students as instructors 

TABLE 1. Criteria for evaluating graph attributes explaining the components of graph mechanics, data form, graph choice, and aesthetics

Categories used to 
describe graphs 
qualitatively Category descriptions Citations

Graph mechanics 1.  Title: a title should be descriptive for the graph.
2.  Axes labels: both the x- and y-axis labels should be 

appropriate and descriptive for the experiment.
3.  Units: should be appropriate and descriptive for the 

type of data displayed.
4.  Scale: should be appropriate for the data displayed 

such that the increments are clear and easy to 
understand.

Padilla et al., 1986; Li and Shen, 1992; Brasell and 
Rowe, 1993; Kosslyn, 1994; Kostelnick, 1998; 
Ainley, 2000; Konold and Higgins, 2003; Leonard 
and Patterson, 2004; Bruno and Espinel, 2009; 
Bray-Speth et al., 2010; McFarland, 2010

Data form 1.  Graph should show a clear distinction between raw 
and manipulated data plotted.

Wild and Pfannkuch, 1999; Konold et al., 2015

Graph choice 1.  Graph type: graph type should be appropriate for 
both the independent and dependent variables.

2.  Alignment: graph should align with the original 
intended purpose.

3.  Take-home message: graph type allows reader to 
draw appropriate conclusions from the data in the 
graph.

Cleveland, 1984; Li and Shen, 1992; Bright and Friel, 
1998; Shah et al., 1999; Schriger and Cooper, 2001; 
Konold and Higgins, 2003; Grawemeyer and Cox, 
2004; Leonard and Patterson, 2004; Metz, 2008; 
Bray-Speth et al., 2010; McFarland, 2010; Franzblau 
and Chung, 2012; Humphrey et al., 2014; Rougier 
et al., 2014; Slutsky, 2014; Angra and Gardner, 2016 

Aesthetics and visuospatial 
aspects

1.  The graph should be pleasing to the eye such that the 
data plotted occupy sufficient room in the Cartesian 
plane.

2.  Sound construction and mechanistic properties 
enable the reader to extract meaning from the graph.

Tufte, 1983; Kosslyn, 1994; Kostelnick, 1998; Kellman, 
2000; Few, 2004
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(Schussler et al., 2008; Reeves et al., 2016) and scholars 
(National Institutes of Health [NIH], 2016; National Science 
Foundation [NSF], 2016). However, specific objectives for 
concepts and skills for all graduate students to master have 
not been widely implemented outside the activities of funded 
programs, such as training grants (NIH, 2016). Quantitative 
skills related to data representation are most likely developed 
by graduate students through experience reading primary lit-
erature, analyzing and presenting their own data, and with 
guidance from their research mentors. However, graphing dif-
ficulties exist and have been documented in individuals who 
possess advanced and/or terminal degrees, that is, professors 
(Bowen and Roth, 2005), professionals (Rougier et al., 2014; 
Weissgerber et al., 2015) and medical doctors (Cooper et al., 
2001, 2002; Schriger and Cooper, 2001; Schriger et al., 2006).

Previous studies share suggestions and sample data sets to 
encourage practice with graph creation (Tairab and Al-Naqbi, 
2004; Patterson and Leonard, 2005; Bray-Speth et al., 2010). 
For instance, Patterson and Leonard (2005) advocate for train-
ing students to use software for graph construction, using a bal-
ance of analytical thought and creative artistry. However, before 
letting students use software, they suggest that students should 
focus on the message they want to communicate in a graph, 
explain the appropriate statistics, and sketch a graph by hand so 
they know what the end product produced by the software 
should look like (Patterson and Leonard, 2005). Other sugges-
tions to remediate graphing difficulties include incorporating 
graphing into the science classroom. This will provide more 
opportunities, repetition, and student–instructor feedback to 
tackle graphing difficulties and increase student competency 
with graphing (Roth and McGinn, 1997; Roth and Bowen, 
2001; McFarland, 2010; Harsh and Schmitt-Harsh, 2016).

The best methods and techniques for graph construction 
when translating raw data into a graph are still unknown, which 
can lead to challenges for both undergraduate and graduate stu-

dents and active research scientists. The underlying thought pro-
cesses used by graph constructors when choosing and construct-
ing graphs are not fully understood. Therefore, one problem we 
face is having an incomplete understanding of the reasoning that 
occurs during graph choice and construction. While constructing 
a graph using software programs is useful and replicates the 
authentic graph-making processes that occur in classrooms and 
laboratories, it can interfere with thoughtful and reflective deci-
sion making. Software programs overload the graph constructor 
with multiple graphing choices, without having the graph con-
structor reflect on decisions regarding variables, data, graph 
choice, and the purpose of the graph. In this study, we aim to 
uncover the reasoning that occurs during graph choice and con-
struction and the attributes of the resulting graphs by using the 
pen-and-paper mode of graph construction.

THEORETICAL FRAMEWORK GUIDING STUDY DESIGN 
AND ANALYSIS
Our study design and data analysis are guided by the metarep-
resentational competence (MRC) framework (diSessa and 
Sherin, 2000). This framework outlines the knowledge and 
reflective reasoning practices that an individual competent in 
creating external representations (e.g., graphs), such as an 
expert scientist, would exhibit. As such, implicit in the MRC 
framework are expert-like knowledge and skill (diSessa, 2004), 
which can provide helpful benchmarks when studying student 
MRC (National Research Council, 2000; diSessa, 2004) and can 
inform classroom practices. The components of the MRC frame-
work can be leveraged to reveal a person’s areas of competence 
and difficulty with graph choice, construction, and critique. 
Specifically, these components are invention, critique, function-
ing, and learning or reflection (diSessa and Sherin, 2000; sum-
marized in Table 2). In our study the MRC component of inven-
tion is assumed, because all participants created a graph. 
Therefore, we use the last three components from MRC to 

TABLE 2. Categories in the MRC and their definitions and connections to this study

Categories in 
the MRC Definitionsa Connection to this study

Invention The underlying skills and abilities that 
allow students to conceive novel 
representations

•  Competency with graph choice, construction, and knowledge of variables is vital 
for conjuring new graphical representations (Leonard and Patterson, 2004; Tairab 
and Al-Naqbi, 2004; McFarland, 2010; Webber et al., 2014).

•  In the think-aloud interviews, participants were asked to construct a graph from 
raw data.

Critique Critical knowledge that is essential for 
assessing the quality of representa-
tions

•  Assessing the strengths and weaknesses of various graphs exposes students’ criti-
cal knowledge (McFarland, 2010; Angra and Gardner, unpublished data)

•  Although the interviewer did not explicitly probe the participants to critique their 
graphs, we wanted to see whether participants spontaneously generated a 
critique.

Functioning Providing reasoning for understanding 
the purpose of different representa-
tions, their usage, and limitations

•  Functioning unearths students’ reasoning for understanding the purpose of differ-
ent types of graphs and the usage being dependent on the type of data present 
(McFarland, 2010; Webber et al. 2014; Angra and Gardner, unpublished data)

•  In the think-aloud interviews, students were asked to articulate their graph 
choice.

Learning/
reflection

Strategies for fostering understanding 
of representations

•  Reflection, reveals students’ awareness of their own understanding of graphs and 
gaps in their knowledge (Tanner, 2012)

•  Several times in the think-aloud interviews, participants were probed to reflect on 
their graph choice and construction.

aSee diSessa and Sherin (2000).



16:ar53, 4  CBE—Life Sciences Education • 16:ar53, Fall 2017

A. Angra and S. M. Gardner

define graph-construction reasoning as a persons’ reflection on 
graph choice and construction by understanding the function of 
different types of graphs and being able to thoughtfully analyze 
a graph based on the type of data it is representing, variables, 
and the overall advantages and disadvantages of the chosen 
graph. As diSessa (2004) argues, creating a graph is not a diffi-
cult task, but the act of being critical, reflecting on the task and 
the graph itself, is what needs to be practiced to gain automa-
ticity and independence with graphing.

RESEARCH QUESTIONS
The overarching research objective of this study is to elucidate 
the differences in graph-construction reasoning that may exist 
among undergraduate students, graduate students, and profes-
sors in the biological sciences. To accomplish this objective, we 
sought to answer two questions:

1. How do undergraduate students, graduate students, and 
professors reason with graph choice, data, and graph 
construction?

2. How do graph attributes differ between undergraduate stu-
dents, graduate students, and professors?

METHODOLOGY
Think-Aloud Interviews for Graph Construction
In this study, we used a pen-and-paper graphing task in the 
context of think-aloud interviews to describe the reasoning 
behind graph choice and construction and the final graph arti-
facts. All interviews were conducted between March 2013 and 
October 2014. The LiveScribe pen was used to collect data, as 
it synchronizes written notes with recorded audio and has an 
embedded infrared camera that detects pen strokes when used 
with the LiveScribe dot paper (LiveScribe, 2015). Participants 
were randomly presented one of two scenarios (i.e., bacteria or 
plant scenario; Supplemental Material, Table 1) predetermined 
before the interview. Participants were asked to read the sce-
nario prompt aloud and were then instructed to create a graph 
from the data in the scenario, narrating their thought process 
during this graph-construction task. Constructing a graph by 
hand may not be an everyday activity that most participants 
engage in, neither is thinking aloud while performing a task. 
To account for this, the interviewer gently probed the partici-
pants to articulate their thinking, especially if there were pro-
longed silences during graph construction. The think-aloud 
format provided insight into the thought process and reason-
ing, which was then used to characterize and delineate differ-
ences between experts and novices (Angra and Gardner, 2016). 
Think-aloud interviews are reliable sources of data, because 
they reveal the thought processes that occur and the sequences 
of thought (Ericsson, 2006). Several studies have found no evi-
dence for differences in the accuracy of performance between 
those who silently completed the task versus those who verbal-
ized their thoughts (Ericsson and Simon, 1993; Ali and Pee-
bles, 2011). This gave us confidence that active narration 
would not influence the performance with the graphing task. 
After the participants finished their graph construction, the 
interviewer intervened and asked them to reflect on the follow-
ing questions:

1. Why did you decide to create the graph that you did?
2. What are you plotting (raw data, computed value, etc.)?

The graphing task, with associated interview, ranged 
between 10 and 30 minutes in duration.

Development of the Graphing Scenario
The development of the scenario used in our think-aloud 
interviews involved outside validation and literature review. 
Knowing that some of our participants would have had at 
most a partial semester of introductory biology at the time of 
the interview, we consulted an award-winning high school 
teacher to get her opinion on biological scenarios that would 
be familiar to students who had ninth-grade biology. We used 
two scenarios: bacterial growth or plant growth (Table 1 of 
the Supplemental Material), because we wanted to minimize 
the threats to internal validity: instrumentation and diffusion 
of treatment (Drost, 2011). Both bacteria and plant scenarios 
are isomorphic, consisting of a dependent variable, indepen-
dent variable, and two treatments with three replicates in each 
treatment. Simple numbers were used, so participants could 
easily manipulate the data, if they chose to do so (Konold 
et al., 2015). In four sentences, the scenario provided the par-
ticipants with a brief background and a data table that orga-
nized the elements mentioned earlier. We organized data in a 
table instead of a paragraph with numbers, because in scien-
tific practice, data are often initially organized in a table so 
that it is easy for the graph constructor to visualize the raw 
values (Wainer, 2013). To validate the graph-construction 
prompts, we piloted the plant and bacteria scenarios with two 
undergraduate biology students and one professor. Pilot inter-
views were conducted in Fall 2012 to solidify the interview 
protocol and prompts and gauge the amount of time it took to 
construct a graph (Seidman, 2013). To ensure that the graph-
ing scenario and task of constructing a graph while thinking 
aloud aligned our research questions, pilot interviews were 
transcribed and memoed (Patton, 2001) to look for ideas pre-
viously reported in the graphing literature.

Participant Recruitment
As part of a larger, multipart graphing study, undergraduate 
students, graduate students, and professors were recruited 
from the biological sciences department at a large, midwestern 
research university. A stratified, purposeful sampling method 
was used to obtain the target population (Hatch, 2002). To 
obtain a heterogeneous and representative sample of the under-
graduate student population, we sent recruitment emails to 
faculty teaching large biology courses. Personal recruitment 
emails were sent to graduate students and biology faculty from 
diverse biological subdisciplines. All recruitment methods were 
approved by the Institutional Review Board (protocol no. 
1210012775). Recruitment criteria for undergraduate students 
were based on 1) their status as or intention to be a biology 
major and 2) their current enrollment in or successful comple-
tion of the introductory biology lecture and laboratory course. 
At the time of recruitment, undergraduate research experience 
was not one of our criteria, but it was incorporated postinter-
view, based on literature outlining data representation skills 
and concepts students learn while engaged in research 
(Auchincloss et al., 2014). In this paper, we report data from 
undergraduate students who did not have research experience 
at the time of the interview (UGNRs) and undergraduate stu-
dents who did have research experience (UGRs). Recruitment 



CBE—Life Sciences Education • 16:ar53, Fall 2017 16:ar53, 5

Reflecting on Graphs

criteria for graduate students (GSs) were based on 1) their 
enrollment in the graduate program—all graduate students 
were pursuing a PhD degree; 2) successful completion of their 
qualifier examination taken at the end of their first year; and 
3) their having held a teaching assistantship or having men-
tored undergraduate students. Criteria for professors were 
based on 1) their credentials—all professors held a PhD in a 
subdiscipline of biology; 2) their having an active research lab-
oratory with postdocs, graduate students, and/or undergradu-
ate students; and 3) their having taught for at least 1 year.

Participants and Inclusion Criteria
Our initial pool of participants included seven professors, 13 
graduate students, and 39 undergraduate students. This pool 
was reduced based on the following inclusion criteria. To mini-
mize the threat to internal validity, we eliminated the six under-
graduate and one graduate student interviews that were con-
ducted early in the project with an interviewer who did not 
follow the think-aloud protocol with high fidelity. From the 
remaining 33 undergraduate student interviews that were con-
ducted by the first author (A.A.), we further eliminated stu-
dents who spontaneously constructed multiple graphs during 
the first prompt to construct a graph, as they did not articulate 
their reflection on graph choice for all graphs they constructed, 
and the interviewer felt it was inappropriate to interrupt the 
flow of thought during graph construction. Although these 
data are interesting and will be analyzed in future work, for this 
study, we chose to exclude them to ensure uniformity across all 
participant groups. The same criteria were applied to graduate 
students and professors. Our final participant pool consisted of 
five professors, eight graduate students, and 15 undergraduate 
students. Of the 15 undergraduate students, 10 reported hav-
ing no research experience and five reported having research 
experience. In this study, we categorized and defined our most 
novice participants as the ones who reported not having any 
research experience, followed by undergraduate students who 
reported research experience, graduate students, and finally, 
the professors, who each had more than 10 years’ experience 
conducting research and constructing graphs. Participants in 
our study represented many subdisciplines in biology. Profes-
sors’ specialties ranged from cellular neurobiology to behav-
ioral ecology, while the graduate students’ research interests 
ranged from virology to avian behavior. The Supplemental 
Material, Tables 2–4, provides demographic information for 
our participants. Because undergraduate research experiences 
vary immensely, we found that using the relative approach 
described here to group experts as professors, graduate stu-
dents as advanced, undergraduate students with research expe-
rience as intermediates, and undergraduate students without 
research experience as novices (Chi, 2006) to be a useful 
method of analysis.

DATA ANALYSIS
Data Organization and Coding
Think-aloud interviews were transcribed verbatim and system-
atically organized and coded using inductive analysis to address 
the first research question (Strauss and Corbin, 1998; Patton, 
2001). This initial step of transcript segmentation began the 
process of open coding within each phase of thought (planning, 
execution, and reflection phases). Selective coding was then 

used to organize the codes into a story that described the com-
plex network of themes that emerged (Creswell, 2013). For the 
final step, themes from the selective coding step were aligned to 
the categories present in the MRC framework. The first author 
(A.A.) independently coded all transcripts from the think-aloud 
interviews and compared her codes with 20% of those coded by 
the second author (S.M.G.). Both authors met regularly to com-
pare and discuss the coding, until a consensus was reached on 
the final codes and themes.

To see whether there was a difference among the partici-
pant groups in terms of the time it took to plan, construct, and 
reflect on the graph, we conducted an independent-samples t 
test using Statistical Package for the Social Sciences, version 
22 (SPSS v. 22; IBM, 2013). Levene’s test for the equality of 
variance was conducted, and equal variances were not 
assumed when reporting the p value (α < 0.05; SPSS v. 22; 
IBM, 2013). Because we were interested in differences across 
participant groups, we did not perform inferential statistics 
across phases of the graph interview. Professors also used 
more words than undergraduate students in their thought pro-
cesses and explanations. Roth and Bowen (2003) used word 
analysis to understand how experts interpreted graphs. We 
used a similar method to quantify and characterize the num-
ber of words spoken during each phase by the participants. 
Transcripts were coded in Microsoft Word by placing portions 
of the interview transcript under specific codes in our code-
book. To standardize time spent talking by each participant, 
we performed word analysis. Words mentioned multiple times 
within a given phase were counted and coded once. The words 
for each code were counted and the number was divided by 
the total number of words uttered by the participant. This 
number was then multiplied by 100 to obtain the percentage 
of words uttered for particular codes for the particular phase. 
Final results are displayed in Figure 1.

Owing to the small sample size in each participant group, 
statistics for themes on the qualitative interview data are not 
reported, but the absence or presence of themes and the occur-
rence of the MRC categories between the three participant 
groups are summarized in Figure 2.

For addressing the second research question, graphs con-
structed by professors, GSs, and the two undergraduate popu-
lation groups (UGNR and UGR) were described qualitatively 
based on four broad categories: graph mechanics, data form, 
graph choice, and aesthetics. The evaluation categories are 
listed in Table 1.

RESULTS
Graph-Construction Reasoning
To answer our first research question, we identified the themes 
that emerged from the transcripts from our think-aloud 
graph-construction interviews for each phase of the graph-con-
struction process (planning, construction, and reflection). We 
mapped the emergent themes to the categories of the MRC 
framework.

Planning Phase
The planning phase occurred after participants were presented 
with the task and before they began graph construction, as indi-
cated by the drawing of the axes. Figure 1 displays the amount 
of time the participants spent talking in each of the interview 
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FIGURE 1. A comparison of the amount of time spent in each interview phase by 
undergraduate students, graduate students, and professors that summarizes the time 
spent during the planning, construction, and reflection phases for professors (P, n = 5), 
graduate students (GS, n = 8), undergraduates with research experience (UGR, n = 5), and 
undergraduates without research experience (UGNR, n = 10). An independent-samples t 
test shows there was a significant difference in the amount of time spent reflecting 
between GS and UGR (*, p < 0.05) and GS and UGNR (**, p < 0.01).

FIGURE 2. Summary of graph-construction reasoning findings showing the presence of themes in each of the three interview phases by 
professors (P, N = 5), graduate students (GS, N = 8), undergraduates with research experience (UGR, N = 5), and undergraduates without 
research experience (UGNR, N = 10). “X” denotes the presence of a theme by one participant; “X” indicates the presence of a theme by 
multiple participants. Because invention involves graph construction and participants were explicitly asked to reflect on graph choice, 
these themes are blacked out. Refer to Figures 2, 3, and 4 for themes that appeared for each participant. Small n in the table is a subset of 
the total sample (N) of the participant group.

phases. Looking across the three phases 
and at the four participant groups, we 
notice that, relative to the other two 
phases in the interview, participants spent 
the smallest amount of time planning. 
Within the planning phase, almost every-
one took time to think about the scenario 
and data before proceeding with graph 
construction. This is indicated by the sam-
ple size in the second column in Figure 2.

Three out of the four categories from 
the MRC framework map onto the plan-
ning phase: function, invention, and learn-
ing/reflection (Figure 2 and Table 3). The 
definitions of the themes, example quotes, 
and the alignment of the themes to the 
MRC categories can be found in Table 3. 
Within the MRC category invention, the 
themes of data type and graph construc-
tion were prevalent across the multiple 
participant groups. However, the theme 
data type was seen only for one UGR, and 
the theme graph construction was seen for 
only one UGNR. Within the MRC category 
function, the themes purpose and graph 
choice emerged. In the planning phase, 
the theme purpose was observed only for 
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professors and UGRs. The theme graph choice was observed for 
multiple GSs and UGRs, but only for one UGNR. Professors 
were unique in that they were the only group who did not 
explicitly state the graph choice in the planning phase.

Finally, within the MRC category learning/reflection, the 
theme data table appeared with multiple subjects and across all 
participant groups.

Construction Phase
The construction phase followed the planning phase and began 
with the drawing of the axes and ended when a participant 
signaled that he or she had finished constructing the graph. 
Relative to the planning phase, most participants spent more 
time constructing their graphs (Figure 1). However, professors 
spent less time than the other three participant groups. This is 
consistent with the graphs they created (see Graph Attributes). 
Although each participant constructed a graph, some of the par-

ticipants regurgitated the information presented in the data 
table and focused on plotting points, labeling axes, titling the 
graph, making a key, and scaling the axes.

All four MRC categories were present in the construction 
phase, with a focus on invention (Figure 2). Ideally, as partici-
pants were constructing their graphs, they also should have 
been reflecting on their graph choice, critiquing the data pro-
vided, and ending with a take-home message of the data they 
just plotted. A summary of the MRC categories, themes, and 
examples from transcripts is displayed in Table 4. Compared 
with the planning phase, there was more diversity in the distri-
bution of themes across the MRC categories and across the par-
ticipant groups during the construction phase (Figure 2).

Themes within the MRC category invention were similar 
across the participant groups and were data type, statistics, and 
graph construction. However, the theme statistics was seen 
only for one UGR. Within the MRC category critique, sample 

TABLE 3. Planning phase: summary of the themes, definitions, and participant examples 

Categories 
in MRC Themes Participant examples

Function Purpose: this is when the participant 
explicitly states that the purpose of 
the graph is to align with the 
purpose of the task.

P2: So the question is how temperature affects growth of bacteria.
P4: We might be interested in taking a particular time point that we think is key and 

looking at the data for the groups at that time point, or we might sort of go the whole 
nine yards and [make] 5 separate plots.

UGR2: Okay so we’re measuring how one bacteria type grows at two different tempera-
tures, so we have the two different temperatures and there are three tubes for each 
temperature, and we have different times so you can see how it grows.

Graph choice: the participant is 
explicitly stating graph choice (i.e., 
bar, line, scatter) based on the 
data provided in the table. 
Participants may also interject 
their personal feelings or rely on 
their past experiences when 
contemplating between different 
graph types, their usage, and 
limitations.

GS4: I could make a scatter plot and have different symbols for different temperatures 
and they have three replicates for each.

UGR1: Okay I’m going to make a bar graph for the sake of comparison here. Actually I 
might want to change my mind about what I’m doing here. I think I’m going to 
change to a type of line graph. I don’t think the bars are going to be the best 
comparison for showing a time course of a single plant.

UGNR4: I’m going to make a line graph to compare two different types of data in the 
same graph … I think it’s going to show best patterns of each.

Invention Graph construction: when the 
participant either verbalizes 
variables in the table to the axes 
on the graph or the data or 
explains how they are visualizing 
the data on the graph.

P1: So what I’m going to do is because the dependent measure is number of cells, I’m 
going to put that on the y axis.

GS3: So definitely the independent variable is time, as they call it, the x axis.
UGR1: So it will be plants with 15 ml of water per day and the bar with the lines will be 

for the 5 ml treatment group.
UGNR9: So generally when you have time you want to put that on the x axis.

Data type: the participant is explicitly 
making decisions about whether or 
not to plot raw data or plot 
manipulated data (i.e., average) or 
the number of graphs to use to 
properly convey the data.

P5: Let’s start with the 15 ml [treatment]. What I would do is, since we have 3 points per 
time point I will try to get the average of the three.

GS1: I would probably pull the replicates [together], although the math for this would be 
pretty bad in my head, and I would have to draw fake error bars.

UGNR1: Well I might be able to make this into two graphs because it’ll be easier to see 
maybe ... or we could do the average of the three tubes.

Learning or 
reflection

Data table: this is when the partici-
pant is making sense of the data 
provided in the data table as 
evidenced by summarizing the 
data and/or the variables 
presented.

P5: Number of leaves, 2 different amounts of water and you have time on axis and you 
have for each amount of water from plants. Ok. So now I should create a graph of 
that.

GS6: I’m looking at the time, the number of cells, three test tubes, temperature needs to 
go there, and so it’s at 22 degrees and 10 degrees Celsius, and as the time progresses 
we will see whether there is any growth of bacteria or not so at 22 degrees I see there 
is growth and at 10 degrees there is not as much.

UGR1: Okay so measurements of the number of leaves are taken every thirty hours for up 
to 120 hours. Looks like they have three plants in each treatment group.

UGNR1: So we are doing this at 22 degrees Celsius and 10 degrees Celsius.

GS, graduate student; P, professor; UGNR, undergraduate student who did not have research experience; UGR, undergraduate student who did have research experience.
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Continues

TABLE 4. Construction phase: summary of the themes, definitions, and participant examples

Categories 
in MRC Themes Participant examples

Function Graph choice: participant is 
explicitly stating graph 
choice (i.e., bar, line, 
scatter) based on the data 
provided in the table. 
Participants may also 
interject their personal 
feelings or rely on their past 
experiences when contem-
plating between different 
graph types, their usage, 
and limitations.

GS1: Oh that’s a good point, whether or not I can connect them, because [with] the [variable] 
time line can be discrete. I’m not sure. I think since its cell growth over time that should be 
fine [to do] so (connects points on the graph).

UGR2: I’m using the line graph because it shows the trend the easiest, because it goes straight 
and up a little.

UGR3: … did I say line or bar? I’m doing lines. I’m doing a line chart now I changed my mind.

Invention Statistics: participant is talking 
about either descriptive or 
inferential statistics.

P5: [the trend] is almost linear and [this is] because there is some error [in the data] which I 
didn’t calculate (sketches error bars on each data point).

P2: You do need a bigger sample size, but [I will estimate] the error [bar] for each one 
[treatment]. (adds error bars and labels lines as either 10C or 22C).

GS7: I think what I’m going to do is take average of three tubes and make a bar for each time 
point at each temperature. I’m plotting to show the standard deviation from the average 
value.

UGR4: … you can create a trendline for each dataset, so basically out of 15 ml and 5 ml, you 
can do the line of best fit, where you try and roughly go through as many of the points as 
possible.

UGNR7: This graph looks like it’s not going to be linear, but I’ll make a line of best fit for each 
[tube] just so you can tell where it’s going.

Data type: participant is 
explicitly making decisions 
about whether or not to plot 
raw data or plot manipu-
lated data (i.e., average) 
and the number of graphs 
to use to properly convey 
the data.

P1: I’m collapsing across tubes, so I’m giving total [number of cells], or I could do mean 
[number of cells].

GS5: There are three tubes within each temperature group, so I will do the average—calculate 
the mean of the number of cells for the same time point for all three tubes. And for each 
time point I can have the mean and standard deviation.

UGR3: Okay well I’m going to make two charts then if that’s the case. I’ll make one the cell 
count at 22 degrees Celsius, and I’ll make another one for cell count at 10 degrees Celsius 
with the same axes.

UGR4: Because we have three plants, which is like three trials for each, I’m going to average the 
number of leaves at each time for each plant for each amount of water.

UGNR6: I’m thinking maybe I could do like an average number of plants that would require 
doing calculations. There’s fifteen milliliters of water a day. I’m just going to go ahead and 
do averages.

Learning/
reflection

Evaluation: participant is 
talking either about the 
general graphing habits, 
future directions, or 
take-home message.

P2: You do need a bigger sample size, but [I will estimate] the error [bar] for each one 
[treatment] (adds error bars and labels lines as either 10C or 22C).

GS8: This is the most horrible graph ever because it’s not even clear what the data mean. It 
might be easy for me to understand what I’ve done but it’s not easy. If I gave it to you, I’m 
sure you would not understand it, if it was out of context.

UGR4: You can see really clearly that they [lines] are increasing at the same rate but throughout 
the entire experiment, the 5 ml produces less leaves.

UGNR3: I did this wrong … I should have put ml on the y axis … I’ll just keep going with this. I 
might be okay … okay yeah I need to plot this with number of leaves instead of ml 
[scratches the x-axis label and renames it number of leaves]. The number of leaves will be 
on the x axis.

Technology: participant is 
mentioning the habitual use 
of graph-making software to 
reflect on elements of the 
current graph construction.

GS3: So if I read the problem and use Excel, I can just put linear regression lines and the r2 
values, both are greater than 0.8 or something (draws 2 linear regression lines through 
points and labels lines with r2 > 0.8).

UGR1: So I feel like if I was doing this in Excel, I would make each plant its own representation 
symbol or its own color to better represent that. Have like a uniform structure to this but a 
different representation.

UGR4: … if you are in Excel, you can [get] the equation for the trend line and it will tell you 
that y equals some function of x. From that, you can see the mathematical relationship 
behind the number of leaves that you have.
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size was seen for multiple professors, but only one UGNR. Pro-
fessors critiqued the data presented and indicated that a bigger 
sample size would be preferable to run inferential statistics 
(Figure 2). However one professor connected the small sample 
size to a possible real-life situation a biologist could encounter, 
saying “With 3 plants in each, I guess you could put a standard 
error on that, n = 3 is pretty small but sometimes in biology, you 
are stuck with pretty small.” The theme aesthetics emerged for 
multiple UGNRs and one UGR, but did not appear for profes-
sors or GSs. Within the MRC category function, only one theme, 
graph choice, emerged for GSs, UGRs, and UGNRs. Within the 
MRC category of learning/reflection, the themes technology 
and evaluation emerged. While evaluation was prevalent for 
multiple participants across all groups, technology was only 
present in GSs and UGRs.

Reflection Phase, Graph Choice
The reflection phase followed the construction phase and began 
when the interviewer intervened and probed the participants to 
elaborate on their graph choice and what they plotted. Figure 1 
displays the amount of time the participants spent answering 
the reflection question “Why did you choose to make this type 
of graph?” There was a significant difference in the amount of 
time spent reflecting between GSs and UGRs (p < 0.05; inde-
pendent-samples t test, SPSS v. 22) and GSs and UGNRs (p < 
0.01; independent-samples t test, SPSS v. 22).

All four MRC categories were present in the reflection phase, 
which specifically targeted the learning and reflection category. 
We expected participants to elaborate on graph choice, using 
the graph created in the construction phase (invention) to pro-
vide a reflection and critique. A summary of the MRC catego-
ries, themes, and examples from transcripts are displayed in 
Table 5.

All participants provided an answer for this phase, and the 
most prevalent theme across the participant groups was evalu-
ation, which is not surprising, because the participants were 
probed to reflect on their graph choice. However, there were 
different reasoning categories under this theme. Four UGNRs 
and four GSs used their personal experiences and intuitions 
when reflecting on their graph choice; two UGNRs, two GSs, 
and professors used this opportunity to justify their graph 

choice by explaining why bar, pie, and scatter plots would not 
accurately display the data; two UGNRs and one GS formulated 
the take-home message for the graph; and the other two used 
the data table to justify their reasoning for constructing a line 
graph—a theme that was not seen in the professor group and 
was only seen with one UGR and GS. It is also interesting to 
note that the themes purpose and variables were present only 
in the GS and professor populations. The professors stated the 
purpose of the experiment and aligned it with the message por-
trayed by their graph.

All of the participants who mentioned time in their reflection 
constructed line graphs. We did not notice differences in the par-
ticipants’ graph reflection themes and the graphing scenarios.

Overall Patterns In Graph-Construction Reasoning
The distribution of themes within the MRC categories and 
across the participant groups was the most diverse in the con-
struction and reflection phases (Figure 2). Across all the MRC 
categories, there were multiple instances in all population 
groups when all three themes under the MRC category of inven-
tion were mentioned in either the planning, construction, or 
reflection phases (see Figure 2). In the MRC category function, 
the theme graph choice appeared for all participant groups and 
multiple times either in the planning, construction, or reflection 
phases. Another theme that was well represented across the 
construction and reflection phases for all participant groups was 
evaluation, and it fell under the MRC learning and reflection 
category. A second theme under this same category, data table, 
was common across all participant groups, but only in the plan-
ning phase. Remaining themes under the MRC categories cri-
tique, function, and learning and reflection were less frequent.

GRAPH ATTRIBUTES
To address our second research question aimed at characteriz-
ing the quality and attributes of graphs constructed by partici-
pants, we described the graphs qualitatively based on similari-
ties and differences that emerged across participants and 
participant groups (Table 1, Figure 3, and Figures 2–8 in the 
Supplemental Material).

Graphs constructed by undergraduate students (UGRs and 
UGNRs) and graduate students (GSs), but not professors, 

Categories 
in MRC Themes Participant examples

Critique Aesthetics: participant is using 
elements of graph design 
(i.e., gestalt principles and 
color) to critique the 
constructed graph.

UGR2: I guess I will graph the other [tubes] too and we can just imagine that they are different 
colors.

UGNR1: I’d use different colors for the ones at 22 [degrees Celsius] and the ones at 10 [degrees 
Celsius] and then you can show that in the legend … . But the legend is black so I guess I’ll 
just graph the points at different lines. They will all be the same color.

Sample size: participant is 
critiquing the small sample 
size presented in the data 
table.

P4: With 3 plants in each, I guess you could put a standard error on that [data point]; n = 3 is 
pretty small but sometimes in biology, you are stuck with pretty small. I can’t [calculate 
standard error] in my head but, what I would probably do is put each standard error at 
each [data] point, plus or minus.

P2: You do need a bigger sample size.
UGNR6: I’ll draw the dotted line that represents the five milliliters of water per day, which is 

also approximately a linear line but if there was more data it could possibly be curving off to 
give a constant average, at least if you want any of those.

GS, graduate student; P, professor; UGNR, undergraduate student who did not have research experience; UGR, undergraduate student who did have research experience.

TABLE 4. Continued
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TABLE 5. Reflection phase: summary of the themes, definitions, and participant examples

Categories in 
MRC Themes Participant examples

Function Purpose: this is when the 
participant explicitly 
states that the purpose 
of the graph is to align 
with the purpose of the 
task.

P2: Well you want to see the effect of temperature on growth. Here (pointing to the graph), you 
can easily see the two treatments, [and the] two levels of temperatures that were used while 
they changed over time.

GS4: My question was how temperature affects the growth of bacteria, so here I can see the 
difference between these two lines is how much difference the temperature had on the growth.

Time: participant is using 
phrases like “change 
over time” or “flow 
over time” to justify 
choosing a line graph.

P5: I would say that [usually] [when you have the variable] time, a line graph is used.
GS1: I would be able to show how the cell number changed over time.
UGR1: Things that are measuring changes over time I think lines show trends there better than my 

initial thought of a bar graph.

Variables: participant 
explains variables in 
the data table using 
the words “indepen-
dent” or “dependent.”

P5: So because we have independent variable, time and dependent variable, number of leaves and 
we have two—in this case, two different conditions of, uh, amount of water that a second 
variable and we can just show it as two different lines.

GS1: I was trying to decide whether or not time was going to be a continuous variable. I ended up 
thinking it would be, even though it might not be because of the distinct chosen time points.

Invention Statistics: participant is 
talking about either 
descriptive or 
inferential statistics.

P2: Of course we know that as more time passes bacteria grow faster, but there could be an 
interaction between time and temperature [not depicted by the data plotted].

GS3: … in the beginning I was thinking [of] putting the standard deviations but I decided to 
[plot] the data first [and] I think that putting a linear regression is very easy to use and read.

UGR4: You can’t compare the number of leaves for 15 ml at 120 hours with the 5 ml at 30 hours 
because that’s just not a fair comparison. You have to show them linearly and in some kind of 
relationship.

UGNR6: A best fit line is like when you have points that almost make a linear line but they’re a 
little bit off which could be due to experimental error. So you draw a line that best represents 
all the data so it doesn’t go minimum and a maximum so it kind of evens it out if you have 
some equal number of points below the best fit line and above, so it makes an average between 
the line.

Learning/
reflection

Evaluation: participant is 
talking about the 
general graphing 
habits, future 
directions, or 
take-home message.

P5: (Pointing to the graph) If this [was] 4 different plants instead of time points then I probably 
would have [made] a bar graph, [to accommodate for] more categories.

GS8: If I were to do any other type of bar graph or something, I’m not very sure how to do that by 
myself. Maybe if I were to do it in Excel then, yeah. The truth is, I don’t really know what type 
of data to use for a bar graph.

UGR4: One of the scales in the experiment was the passing of time. You can’t use a bar graph or 
pie chart to show the passing of time, because you’re going to want to show it like linearly 
along some kind of axis, so that means you’re going to have to find some way to put the data 
points sequentially according to the time it happened, in order to compare them accurately.

UGNR1: This is the most common type of graph that I make so I thought of this kind first.

Data table: this is when 
the participant is 
making sense of the 
data provided in the 
data table as evidenced 
by summarizing the 
data and or the 
variables presented.

GS1: … since the two variables have the same cell number over time, things that are being studied 
could both be displayed on the same graph which would help to visualize by looking at one 
time point, [which is] why I chose the line [graph]. 

UGR1: The way this chart is presented, at first I thought it was a comparison because plant 1,2, 
and 3 is redundant, but that’s just in my treatment group so I misread that.

UGNR3: Because in order to plot time versus number of leaves, you’d have to do a scatter plot of 
sorts. In retrospect, I should have made two graphs and separated them out into 5 and 15 ml.

UGNR1: Because that’s what I thought about when I first looked at this chart and it does show the 
number of cells.

Critique Aesthetics: participant is 
using elements of 
graph design (e.g., 
gestalt principles and 
color) to critique the 
constructed graph.

GS8: I know that if I were to make this graph in Excel, I could put in a lot of colors and make 
sense out of it.

UGR1: Ideally, this would be a little bit more visually appealing with different colors and evenly 
spaced dots and lines.

GS, graduate student; P, professor; UGNR, undergraduate student who did not have research experience; UGR, undergraduate student who did have research experience.
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FIGURE 3. Graph exemplars from all participant groups using the bacteria scenario. (A complete summary of the graphs constructed can 
be found in Figures 1–8 of the Supplemental Material.)

followed basic graph conventions and included meticulously 
labeled axes, titles, tick marks, scale, and key. Ten of the 15 
undergraduate students titled their graphs, whereas only one of 
the eight GSs and one of the five professors titled their graphs. 
In terms of axis labels, all participants labeled their axes appro-
priately based on the data they chose to plot with time on the 
x-axis and either number of leaves or cells on the y-axis. How-
ever, one UGNR struggled with labeling the axes, initially hav-
ing a difficulty deciding how to organize the axes and label 
them such that the independent variable, time, is on the y-axis 
instead of the x-axis. Almost all participants indicated time in 
either minutes or hours. All participants had an appropriate 
scale, except for Professor 2, who did not scale the y-axis. Two 
students did not plan ahead concerning the space they needed 
for the scale, realizing midway through the scaling process that 
they were running out of space, so they decided to add axis 
breaks (Figures 1–8 of the Supplemental Material). In contrast 
to the undergraduate and graduate students, professors tended 
to sketch their graphs, omitting detailed axis labels and metic-
ulous plotting (Figures 1–8 of the Supplemental Material).

Of the 15 undergraduate students, eight plotted all of the 
raw data points, four plotted some of the raw data, and three 
plotted averages. In contrast, graduate students and profes-
sors and three undergraduate students collapsed the data, 
plotted transformed data values, and sketched error bars 
(descriptive statistics) or mentioned a statistical test they 
would run (inferential statistics) to show meaningful trends 
and changes.

Participants who were randomly assigned the bacteria sce-
nario generally constructed a line graph, except for three 
graduate students who constructed either a scatter or a bar 
graph (Figures 1–8 of the Supplemental Material). Line graphs 
represent the general consensus for this scenario in biology 
textbooks (e.g., Freeman et al., 2017) and primary literature 
(e.g., Ratnowsky et al., 1982; Zwietering et al., 1990, 1991), 
because they are associated with either logistic or exponential 
growth models. There are also studies that report data on bac-
terial growth with temperature in bar graphs, box-and-whis-
ker plots, and categorical dot plots (e.g., Seel et al., 2016). 
There was greater variety among the graphs constructed by 
participants who were randomly assigned the plant scenario 
(Figures 2, 4, 6, and 8 of the Supplemental Material). These 
results are similar to the bar and line graphs displayed by 
Mayak et al. (2004), looking at how water affects plant 
growth. In our study, we did not see specific themes that were 
exclusive to either only the bacteria or the plant scenario. We 

did notice that some of the participants who constructed a line 
graph used the theme time in their graph reflection.

The graphs constructed by all participants were, in general, 
aesthetically sound, and the presence of gestalt principles (i.e., 
proximity, continuity, and connectedness) enabled easy obser-
vation of the general data trends and take-home message. The 
ink-to-white space was appropriate, and what was plotted was 
clear without extraneous elements. However, there were five 
graphs that had too many lines with overlapping data point 
labels, which made it difficult to understand the take-home 
message. In particular, the graph constructed by UGNR3 was 
sufficiently unclear that the viewer found it difficult to identify 
the data points and formulate a clear take-home message 
(Figures 1–4 of the Supplemental Material).

An important purpose of graphs that summarize data is the 
alignment of the data presented and graph chosen with the 
research question and/or hypothesis. In our interview task, this 
was looking at either how temperature affects the growth of 
bacteria or how the amount of water influences plant growth. 
The graphs of four undergraduate students did not align with 
the research question or hypothesis, as only a subset of the data 
was plotted (e.g., data from one treatment). All graphs con-
structed by graduate students aligned with the research ques-
tion posed in the task.

DISCUSSION
In this study, we used the MRC framework to understand how 
undergraduate students, graduate students, and professors rea-
son with graph choice, data, and graph construction and how 
the attributes of the graphs constructed by the study partici-
pants might differ.

Implicit in the MRC framework is expert competence with 
creating and understanding external representations. While 
all participants engaged in reasoning within all MRC catego-
ries, there is evidence for expert–novice differences across our 
participant groups (Figure 2). All professors took time to 
understand the data before proceeding with graph construc-
tion, and all but one graduate student planned, whereas only 
some of the undergraduate students planned before proceed-
ing with graph construction. Generally, we saw that, when 
reflecting on their graphs, expert professors focused on the 
function of the graph and showcased their understanding with 
concepts related to experimental design, while novice under-
graduate students generally relied on their intuition and data 
given to them in the task. We also saw expert–novice differ-
ences in the data plotted in the graphs of undergraduate 
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students, graduate students, and professors. Most undergrad-
uate students meticulously plotted all raw data, whereas most 
professors and graduate students plotted transformed data 
values. Our data are reminiscent of an expert–novice study 
conducted in the context of neurobiology that also noted dif-
ferences in drawing of neurons by undergraduate students, 
graduate students, and laboratory leaders (professors; Hay 
et al., 2013). Undergraduate students’ representations were 
meticulous reproductions of neurons illustrated in textbooks. 
Neuron drawings by graduate and postdoctoral students 
closely resembled images seen under the microscope and were 
influenced by observations from their research projects, 
whereas the expert laboratory leaders used years of research 
experience to create imaginative drawings based on hidden 
hypotheses. Findings reported by Hay et al. (2013) and our 
graphing study are supported by the National Research Coun-
cil (2000), which states that experts organize their knowledge 
in a way that reflects a deep understanding of the subject mat-
ter and expert knowledge cannot be recalled as a set of iso-
lated facts but is applied to the context or the problem that is 
being solved. Deep understanding is evident in professors’ 
graph reflections as they talk about the purpose of the graph, 
experimental design, and relevant concepts that are not pres-
ent in the reasoning of the undergraduate students. Jordan 
et al. (2011) found that, when solving a task, experts were 
more likely to use their prior knowledge and discuss ideas at a 
broader context as compared with novices, who solved the 
task with only the information given to them. Likewise, in the 
Hay et al. (2013) study, neuron drawings by the laboratory 
leaders were original and unlike those found in textbooks, 
because the experts’ drawings were informed by years of expe-
rience and accumulated knowledge.

IMPLICATIONS FOR INSTRUCTORS
Our study revealed that, while all partici-
pant groups showed evidence of reasoning 
within all MRC categories, the identity of 
that reasoning was often different in a 
manner that is consistent with expected 
expert–novice differences as highlighted 
earlier. Further, the graphs produced by 
participants in the study also varied along 
the novice–expert continuum. Figure 4 
summarizes the graph-construction rea-
soning, behaviors, and graphs that we 
observed in the most novice and most 
expert participants. The distinctions sum-
marized in this figure highlight the begin-
ning of hypothetical learning trajectories 
and potential target areas for instructors to 
promote more expert-like reflective data 
handling and graphing practices. As more 
undergraduate students are encouraged to 
engage in inquiry and research project–
based biology labs and seek research 
apprenticeship opportunities during their 
higher education, they will be engaged in 
the scientific practice of data analysis and 
presentation. Therefore, it is important to 
provide students with targeted instruction 
that not only advances their biology con-

tent knowledge but also facilitates their data handling and rep-
resentation skills toward expertise. While students have experi-
ence with graphing dating back to elementary school, our data 
suggest that refocusing and scaffolding their data handling and 
graphing activities in the context of their undergraduate learn-
ing experiences is needed. Kim and Hannafin (2011) suggest 
designing and implementing instructional scaffolds that target 
student difficulties with conceptual, procedural, metacognitive, 
and strategic knowledge (Kim and Hannafin, 2011).

Conceptual scaffolds, as they relate to graphing, can 
structure students’ understanding of the purpose of a graph 
and allow them to gauge their graph knowledge. Sketching a 
graph to visualize concepts in experimental design is an 
approach suggested by Dasgupta et al. (2014). Procedural 
scaffolds help students learn the stepwise procedures that 
underlie graph choice and construction. There are many pub-
lished examples that emphasize taking a procedural approach 
to graphing (Kosslyn, 1994; Paniello et al., 2011; Webber 
et al., 2014; Duke et al., 2015). Metacognitive scaffolds 
allows students to monitor their problem-solving processes 
with a focus on constant reflection (Kim and Hannafin, 
2011). We published a tool (see Step-by-Step Guide in Angra 
and Gardner, 2016) that helps students plan their data, con-
struct graphs, and then reflect on their graphs in a methodi-
cal manner. This tool is a metacognitive scaffold (Kim and 
Hannafin, 2011), because it contains the reflection piece 
after graph construction. Even in this study, the interviewer 
followed up with participants with reflective questions ask-
ing about graph choice. In a classroom setting, instructors 
can include reflective prompts throughout multiple assign-
ments to help students develop their metacognitive abilities. 
The last scaffolding strategy, strategic scaffolds, challenges 

FIGURE 4. Visual summary of graph-construction reasoning, graphing behavior, and 
graph attribute findings with the reasoning behind graph choice and construction, 
graphing behaviors, and graph attributes along the novice to expert continuum.
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Finally, participants in this study constructed graphs manu-
ally using a LiveScribe pen and paper instead of the modern 
and conventional method of graph construction on the com-
puter. Having participants narrate their thought processes 
during manual construction allowed us to fully understand 
their reasoning. If we had asked participants to construct 
graphs using software programs, that request might have tam-
pered with their graph choice by biasing them toward graph 
choices presented by the software package. Manual construc-
tion allowed us to slow participants down and probe their 
graph-construction reasoning fully. We do acknowledge that 
biologists at all levels of expertise rarely construct graphs for 
formal presentation by hand. However, informal communica-
tion with peers during instruction often involves the genera-
tion of quick, sometimes simplified graphs (Roth and Bowen, 
2003). We saw evidence of this with our professor population, 
one professor in particular studied the data table and then 
sketched the data with error bars to answer the research ques-
tion quickly. With the data from our simple task, we can now 
move to more complex data sets and digital environments to 
further reveal areas of difficulties and competencies with 
graphing.

students to consider other options as they are solving prob-
lems. Although previously published graphing materials pro-
vide students with many examples of graphs, these resources 
do not provide explicit strategic scaffolding, because they do 
not ask students to consider other options.

Using these tools and scaffolding strategies to emphasize 
graph choice and construction skills will encourage students 
to think critically about data and graphs in and outside the 
classroom. This is important, because students are rarely 
asked to reflect critically on the affordances and limitations 
of representations that they choose (diSessa and Sherin, 
2000). Incorporating these and other graphing materials 
during teacher education may provide teachers with tools to 
guide students successfully and confidently toward proper 
graph construction. This would be useful in undergraduate 
curricula as well, as has been suggested by a continuing edu-
cation approach for biologists teaching statistical concepts 
(Weissgerber et al., 2016).

PROJECT SCOPE AND FUTURE STUDIES
Four main study design features bounded the scope of our con-
clusions. First, data were collected from students and professors 
at a single midwestern U.S. research university, which is a 
unique environment with its own curriculum and student pop-
ulation. Furthermore, our study consisted of a small group of 
participants, so the claims we present are not broad generaliza-
tions to the types of things that all professors or students do or 
think. However, many of our findings are consistent with and 
extend from previous work by others. To verify our findings 
fully, future work is needed at other types of institutions, in 
different disciplinary fields, and with their own unique partici-
pants to fully understand and appreciate the reasoning behind 
graph choice and construction.

Second, we provided all participants with a simple data set 
with one independent variable, one dependent variable, and 
two treatments with three replicates each. For our study to be 
replicated in a different disciplinary context, the bacteria and 
plant scenarios would need to be modified to fit the appropri-
ate purpose, with data and experimental methods that con-
form to the disciplinary norms and practices. However, the 
simple data set did confirm some previous difficulties docu-
mented in the literature. UGNR4 and UGR3 showed difficulty 
with scaling axes (Figures 1–8 of the Supplemental Material; 
Padilla et al., 1986; Li and Shen, 1992; Brasell and Rowe, 
1993; Ainley, 2000), as indicated by the awkward positioning 
of the axis breaks, and UGNR3 showed difficulty with vari-
ables, as indicated by the graph produced (Tairab and 
Al-Naqbi, 2004; Figures 1–8 of the Supplemental Material). 
However, the simplicity of the data set may have caused Pro-
fessor 2 to go into “teacher mode” and quickly sketch the data 
to illustrate how temperature influences bacteria growth, 
instead of taking time to plot data.

Third, participants in our study were given a data set. Previ-
ous studies have shown that, when students use their own data 
to perform advanced tasks, they show deeper reasoning than 
when they use someone else’s data (Kanari and Millar, 2004). A 
future study can examine graph choice and construction with a 
more elaborate data set and with data the participants collected 
themselves in CUREs or inquiry lab classes or with data from 
simulations.
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