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ARTICLE

ABSTRACT
Multiple reports highlight the increasingly quantitative nature of biological research and 
the need to innovate means to ensure that students acquire quantitative skills. We present 
a tool to support such innovation. The Biological Science Quantitative Reasoning Exam 
(BioSQuaRE) is an assessment instrument designed to measure the quantitative skills of 
undergraduate students within a biological context. The instrument was developed by an 
interdisciplinary team of educators and aligns with skills included in national reports such 
as BIO2010, Scientific Foundations for Future Physicians, and Vision and Change. Under-
graduate biology educators also confirmed the importance of items included in the instru-
ment. The current version of the BioSQuaRE was developed through an iterative process 
using data from students at 12 postsecondary institutions. A psychometric analysis of these 
data provides multiple lines of evidence for the validity of inferences made using the instru-
ment. Our results suggest that the BioSQuaRE will prove useful to faculty and departments 
interested in helping students acquire the quantitative competencies they need to suc-
cessfully pursue biology, and useful to biology students by communicating the importance 
of quantitative skills. We invite educators to use the BioSQuaRE at their own institutions.

INTRODUCTION
Multiple national reports—BIO2010, Scientific Foundations for Future Physicians, and 
Vision and Change—have called for reform in biology education (National Research 
Council [NRC], 2003; Association of American Medical Colleges–Howard Hughes 
Medical Institute Joint Committee [AAMC-HHMI], 2009; American Association for the 
Advancement of Science [AAAS], 2011). Each report emphasizes the quantitative 
nature of biology and the need for students to be able to apply mathematical concepts 
and models to formally describe complex biological phenomena (Bialek and Botstein, 
2004). Inadequate mathematics preparation has been suggested as one reason that 
students fail to obtain degrees in the various disciplines of science, technology, engi-
neering, and mathematics (STEM). Fewer than 50% of high school students who took 
the ACT, for example, meet or exceed math or science benchmarks that indicate they 
will do well in college algebra I or introductory biology (ACT, 2015).

Whether referring to it as a “STEM crisis,” a “quantitative reasoning crisis” (Gaze, 
2014), or the “mathematics-preparation gap” (President’s Council of Advisors on Sci-
ence and Technology [PCAST], 2012), many suggest that weak quantitative prepara-
tion is in part to blame for the low percentage of college degrees awarded in STEM 
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(Business Higher Education Forum, 2011). In 2005 the percent-
age of incoming students reporting a need for remedial math in 
college was 24% (Pryor et al., 2007). Studies indicate that, for 
students attending community colleges, mathematics is a barrier 
to graduation for approximately two-thirds of those who arrive 
underprepared in mathematics (Bryk and Treisman, 2010). 
These observations and others led the PCAST (2012) to recom-
mend “a national experiment in postsecondary mathematics 
education to address the mathematics-preparation gap” (p. 27).

Because not all entering college students complete the ACT 
or SAT and an increasing number of schools have adopted 
test-optional admissions policies, a key challenge for instructors 
and departments of biology comes from the need to identify an 
instrument that provides feedback about the quantitative skills 
of arriving students interested in biology. Such data allow 
instructors, departments, or programs to consider the skills 
needed by students and the point(s) in the curriculum at which 
students can hone or develop these competencies.

Existing instruments aimed at describing the quantitative 
acumen of students assess quantitative reasoning in the broad 
sense (e.g., not in a specific context, such as biology), serve as 
tools to examine specific pedagogical interventions, or focus on 
precalculus or calculus skills (Carlson et al., 2010, 2015). For 
example, the Quantitative Literacy and Reasoning Assessment 
(QLRA; Gaze et al., 2014a,b), the Test of Scientific Literacy 
Skills (TOSLS; Gormally et al., 2012), and the Quantitative Rea-
soning Test (Sundre, 2008) measure general quantitative skills. 
Individually, these instruments examine only a subset of the 
quantitative skills indicated by national reports as necessary for 
success as a biology major and pose questions in multiple 
contexts. Alternatively, several instruments assess the pedagog-
ical impacts of specific interventions. For example, assessment 
tools have been developed for evaluating the impact of online 
resources such as MathBench (Thompson et al., 2010) or 
course-based interventions such as Data Nuggets (Schultheis 
and Kjelvik, 2015) or curricular change (Speth et al., 2010). 
Finally, the Pre-calculus Concept Assessment (Carlson et al., 
2010) and the Calculus Concept Readiness (Carlson et al., 
2015) probe understanding and reasoning abilities required for 
beginning calculus.

Missing from this repertoire of tools is an instrument derived 
from the recommendations found in reports such as BIO2010, 
Scientific Foundations for Future Physicians, and Vision and 
Change (NRC, 2003; AAMC-HHMI, 2009; AAAS, 2011). Such an 
instrument would enable instructors, departments, and divisions 
to describe the baseline quantitative skills of incoming biology 
students and serve as a prompt to recognize the point(s) at which 
students develop such skills during an introductory curriculum 
that might include supporting courses from other departments 
(e.g., chemistry, mathematics, statistics, physics). Such empirical 
data about the skills students arrive with and the skills that 
instructors think are important for success could contribute to 
creating or adapting strategies to provide opportunities for learn-
ing. Aikens and Dolan (2014, p. 3479) highlighted the acute 
need for such targeted assessment instruments with this call:

More tools are needed to document students’ progress toward 
quantitative biology-related outcomes, especially beyond intro-
ductory or nonmajors biology. To this end, we encourage teams 
of biologists, quantitative scientists, and education specialists 

to collaborate in developing and testing a broader suite of 
assessment tools related to quantitative biology.

In response, we (a consortium of faculty from nine liberal 
arts colleges and educational psychologists from two universi-
ties) have developed a 29-item instrument, the Biology Science 
Quantitative Reasoning Exam (BioSQuaRE). The BioSQuaRE 
assesses the quantitative skills (as outlined in national reports) 
that students should possess after they have completed an 
introductory biology sequence. This paper documents the 
development and psychometric strength of the BioSQuaRE as a 
tool to measure quantitative skills within the context of biology. 
Efforts to align the assessment to national reports, gather expert 
feedback, and validate the inferences made from the assess-
ment by collecting a developmental data set and applying the 
Rasch model are detailed. We invite readers to use the 
BioSQuaRE at their own institutions to communicate the impor-
tance of quantitative skills to life science students and to provide 
data to faculty on the quantitative acumen of their students and 
the efficacy of curricular reforms.

BioSQuaRE DEVELOPMENT
Throughout the development of BioSQuaRE, we employed mul-
tiple methods to examine the measurement quality of our assess-
ment as recommended in the Standards for Educational and Psy-
chological Testing (American Educational Research Association, 
American Psychological Association, National Council on Mea-
surement in Education, and Joint Committee on Standards for 
Educational and Psychological Testing [AERA-APA-NCME], 
2014). On the basis of this framework, we observed an appropri-
ate degree of validity evidence for the scores and inferences we 
made about biology students’ quantitative skills.

We began by reviewing five national-level reports that outline 
core competencies and quantitative skills essential for students 
enrolled in introductory biology courses: 1) BIO2010 (NRC, 
2003), 2) Vision and Change in Undergraduate Biology Education 
(AAAS, 2011), 3) Scientific Foundations for Future Physicians 
(AAMC-HHMI, 2009), 4) AP Biology Quantitative Skills: A Guide 
for Teachers (College Board, 2012), and 5) Next Generation Sci-
ence Standards Science & Engineering Practices (Next Generation 
Science Standards [NGSS] Lead States, 2013). Table 1 shows 
the test blueprint for the BioSQuaRE and the mapping of con-
tent recommended by the five reports.

Thirty-eight faculty members from five liberal arts colleges 
reviewed the initial blueprint to examine coverage and provide 
feedback on the importance of the skills and competencies to be 
assessed in the content areas (Supplement A, Table A1, in the 
Supplemental Material). The responses indicated that, while 
the initial test blueprint included content faculty considered 
important for students, it was also missing content. For exam-
ple, in response to feedback, we added content related to 
students’ understanding of logarithmic and exponential rela-
tionships. After finalizing the test blueprint (Table 1), 65 faculty 
members attending the 2016 National Academies Special Top-
ics Summer Institute on Quantitative Biology verified the 
importance and coverage of blueprint content (Supplement A, 
Table A2, in the Supplemental Material).

We then used the test blueprint to guide our review of 
existing assessment instruments. With author permission, we 
adapted seven selected-response items from two existing 
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instruments (delMas et al., 2007; Sikorskii et al., 2011). The 
stems of these items were modified to provide biological con-
text and, when necessary, to align the items more closely with 
our blueprint. Additional items were piloted as free-response 
questions to explore variation in student responses and con-
verted to selected-response items by using common incorrect 
responses as distractors, as recommended by Haladyna et al. 
(2002) and Thorndike and Thorndike-Christ (2010). All item 
writing was guided by the recommendations of the AERA-APA-
NCME (2014) and Haladyna et al. (2002).

The items from the initial version of the BioSQuaRE were iter-
atively refined based on the analysis of response data from six 
administrations (see Supplement B in the Supplemental Material 
for development details). A few items were rewritten extensively 
or, in some cases, removed. Whenever items were dropped, addi-
tional items were written to ensure the content of the BioSQuaRE 
matched the test blueprint. In general, items have only under-
gone minor revision. For example, Figure 1 shows the evolution 
of an item from its origin as a free-response item. After the item 
was converted into a selected-response item, the stem was also 
modified for clarity. Additionally, the color palette for the plot 
was also changed from red–green to blue–yellow, a color combi-
nation accessible to students with red–green color blindness. 
After the second administration, the item’s stem was further clar-
ified, and the number of response options was reduced from four 
to three based on psychometric analysis.

During the third and fourth administrations of BioSQuaRE, 
we continued to evaluate item performance. Data were 

collected from 1140 students from seven different postsecond-
ary institutions across the United States. Participants came 
from a variety of institutional types (i.e., private liberal arts 
schools, M1 master’s universities, and R1 and R3 doctoral uni-
versities). On the basis of student response information, we 
refined items as needed. Many of the items performed well 
and needed no modification. In fact, 19 of the 29 items on the 
most current form of BioSQuaRE remained the same for the 
third and fourth administrations. During this time, we also 
piloted new items that included content covering students’ 
ability to reason and interpret visual representations of data 
(see Supplement B in the Supplemental Material for develop-
ment details).

METHODS
Psychometric analysis was used throughout the development 
process. Here, we focus on the most recent (fifth) administration 
of BioSQuaRE, unless otherwise noted. Student responses were 
analyzed using the framework of item response theory (IRT), a 
general statistical theory that links students’ item responses and 
test performance to the underlying trait or ability measured by 
test content. By capitalizing on this relationship, IRT models can 
be used not only to compute item statistics (e.g., difficulty, dis-
crimination), but also to estimate student ability (i.e., estimates 
on the latent trait). Another advantage of IRT is that item statis-
tics are reported on the same scale as ability. The latter allowed 
us to examine the relationship between students’ ability and 
their performance on any particular item. Finally, the IRT models 

TABLE 1.  Instrument blueprint for constructing the Biology Science Quantitative Reasoning Exama

Content Students should be able to: BIO2010
Vision and 

Change SFFP AP Bio NGSS S&E

Algebra, functions, and 
modeling

Carry out basic mathematical computations. (e.g. propor-
tional reasoning, unit conversion, center, and variation)

X X X X X

Recognize and use logarithmic or exponential relationships X X
Fit a model such as population growth X X
Use a representation or a model to make predictions X X X X X
Describe/infer relationships between variables (scatter plots, 

regression, network diagrams, maps)
X X

Perform logical/algorithmic reasoning X X X X

Statistics and probability Calculate or use the concept of the likelihood of an event X X X
Calculate or use conditional probability X X X
Recognize and interpret what summary statistics represent X X X
Identify different types of error X
Recognize that biological systems are inherently variable 

(e.g., stochastic vs. deterministic)
X X

Formulate hypothesis statements X X X X
Understand what a p value is X X X X
Understand when causal claims can be made (e.g., correlation 

vs. causation)
X X X X

Visualization Choose the appropriate type of graph X X X X X
Interpret a graph (e.g., functional relationships, logarithmic 

relationships)
X X X X X

Be able to use a table X X X
Use spatial reasoning to interpret multidimensional numerical 

and visual data (geographic information)
X

a“X” indicates the content and competencies recommended for biology students in the reports used to guide development of the BioSQuaRE: BIO2010 (NRC, 2003), 
Vision and Change (AAAS, 2011), SFFP, Scientific Foundations for Future Physicians (AAMC-HHMI, 2009); AP Bio, AP Biology Quantitative Skills (College Board, 2012); 
NGSS S&E, Next Generation Science Standards Science & Engineering Practices (NGSS Lead States, 2013).
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also allowed us to estimate the standard errors of scores condi-
tional on student ability.

Although IRT models allow for continuous or mixed-format 
item responses, we focus here on a set of models that use 
dichotomously scored responses (correct/incorrect). The sim-
plest of these—the Rasch model—describes students’ observed 
responses as a function of ability and a single parameter for 
each item, namely the item’s difficulty. Before presenting the 
results of the Rasch analysis, we first describe the sample of 
students included in the analysis.

The most recent BioSQuaRE administration comprised 
555 students from five different postsecondary institutions 
across the United States, including two Hispanic-serving 
institutions, an M1 master’s university, an R1 doctoral univer-
sity, and a private liberal arts college. Of the sample, 64% 
reported being female, and 35% reported being first-genera-
tion college students. In addition, 42% of students indicated 
that they identify as white, 17% as Asian, 23% as Hispanic, 
3% as Black, and 10% as some other race or as multiracial. 
These numbers mirror those obtained through the National 
Center for Education Statistics (2015, Table 322.30). The stu-
dents in our sample reported completing a range of biology 
courses at the postsecondary level; 21% reported that they 
had completed one or fewer biology courses, 32% reported 
having completed two or three, and 43% reported having 
completed four or more.

RESULTS
To begin the analysis of BioSQuaRE, we examined the degree 
to which items were internally consistent, reflected in the reli-
ability of scores. Several methods have been used to compute 
the reliability of scores (e.g., coefficient alpha, Gutmann’s 

lambda), the most common of which is coefficient alpha. 
Coefficient alpha for the BioSQuaRE scores was 0.81, 95% CI 
= [0.78, 0.83]. This meets the recommended value of 0.8 for 
“very good” reliability (Kline, 2011). We also computed the 
average interitem correlation, which was 0.13. Although not 
high, the value is not surprising, given the broad content 
covered on BioSQuaRE. It is also worth noting that score reli-
ability remained fairly constant between the third and fifth 
administrations.

Under the IRT framework, reliability is considered some-
what differently than under a classical test theory framework; 
however, under each framework, reliability provides insights 
about measurement precision. Supplement C in the Supple-
mental Material describes and discusses additional person and 
item reliability analysis of the BioSQuaRE instrument.

Rasch Analysis
Using the 29 items from the most current (fifth) administration, 
the Rasch model was fitted to the 555 respondents’ data using 
the ‘ltm’ package (Rizopoulos, 2006) in the statistical language 
R. This model, which expresses the probability of responding 
correctly to an item, can be expressed mathematically as

P X e
e

( 1)
1i

( )

( )

j i

j i
= =

+
θ −β

θ −β

where P(Xi = 1) is the probability of responding correctly to item 
i, θj is the jth student’s ability on the latent trait (i.e., ability 
level), and θi is the ith item’s difficulty parameter. The item 
difficulty estimates based on this analysis are provided in 
Table 2.

The difficulty estimates presented in Table 2 indicate the 
ability level at which the probability of responding to the item 

FIGURE 1.  Example of changes in a BioSQuaRE item through different administrations. The free-response question in the first administra-
tion (version 1) led to the change in coloring and the creation of the selected-response question used in the second administration 
(version 2). The item stem and number of response choices were further modified in the third and fourth (versions 3 and 4) administrations. 
This item showed similar psychometric properties in the third, fourth, and fifth administrations.
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correctly is 0.5. Thus, students with an ability level higher than 
the difficulty estimate are more likely to respond correctly to the 
item than they are to respond incorrectly. (Note that the ability 
levels are standardized so that an ability level of 0 indicates 
average ability.) The items show a range of difficulty; some are 
easier (negative values) and some are more difficult (positive 
values).

Model–Data Fit
Using the Rasch paradigm, one can examine how well the stu-
dent response data fit the underlying Rasch model. While there 
have been many proposed methods for evaluating different 
aspects of the IRT model fit, there is no consensus on which 
approach is best (van der Linden and Hambleton, 1997). To 
evaluate how well our data align with the Rasch model, we 
opted to examine both model-level and item-level fit.

Model-Level Fit.  To examine the fit at the model level, we first 
used Monte Carlo simulation to generate 200 data sets from the 
Rasch model, and compute Pearson’s r2 for each of the data sets. 
The observed value of Pearson’s r2 from the development data 

set does not suggest a misfit to the Rasch model (p = 0.350). We 
also examined several other model-level fit indices. Table 3 
shows that the root-mean-square error of approximation 
(RMSEA) and two standardized root-mean-square residual 
approaches (SRMR and SRMSR) indicate good to reasonable fit 
to the model.

Item-Level Fit.  To further explore the fit of the Rasch model, 
we examined measures of item-level fit. The mean squared infit 
and outfit statistics represent two common measures of item fit. 
These measures have an expected value of 1 under the Rasch 
model. Items that have infit and outfit values that deviate too 
far from 1 do not fit the model and are viewed as not productive 
to the measurement process. Linacre (2002) suggests that val-
ues between 0.5 and 1.5 indicate reasonable fit to the Rasch 
model. Items with values below 0.5 or above 1.5 are misfit to 
the model and are generally not productive to the measurement 
process; and items having values above 2.0 can even hinder the 
measurement process. Table 4 shows the mean squared infit 
and outfit statistics for the BioSQuaRE items. None of the items 
suggests misfit to the model.

TABLE 2.  Item difficulty estimates (B) and standard errors (SE) for the 29 BioSQuaRE items with items grouped by content area and then 
arranged from easiest to most difficult

B SE Content Item

Algebra, functions, and modeling
−1.73 0.118 Compute probability from a two-way table 1
−0.59 0.096 Predicting from a genetic model 24
−0.47 0.095 Understanding variation in log-transformed measurements 3
0.48 0.095 Translating content to tabular summaries 10
0.80 0.098 Translating between two graphs of data 13
0.84 0.098 Interpreting plots of logarithms 14
0.92 0.100 Predicting from a recursive model of population growth 16
1.30 0.106 Interpreting plots of logarithms 15
1.69 0.116 Graphing a nonlinear function 25

Statistics and probability
−1.77 0.120 Understanding variation in measurements 2
−1.38 0.109 Translating summary statistics to a distribution 5
−1.35 0.108 Relating sample size to uncertainty 4
−0.62 0.096 Understanding p value 8
−0.47 0.095 Relationship between summary statistics and statistical significance 23
−0.15 0.094 Translating content to a statistical hypothesis 6
−0.04 0.093 Understanding relationship between p value and effect 9
1.10 0.102 Understanding p value 7

Visualization
−1.77 0.120 Interpreting relationships between variables from a line plot 20
−1.05 0.102 Interpreting variation in a heat map 11
−0.86 0.099 Interpreting relationships between variables from a line plot 19
−0.61 0.096 Interpreting interaction effects from a plot 18
−0.55 0.096 Interpreting trend in a heat map 12
−0.47 0.095 Understanding relationship between data, RQ, and plot 28
−0.20 0.094 Interpreting variation in a choropleth map 22
−0.16 0.094 Interpreting interaction effects from a plot 17
0.06 0.093 Interpreting trend in a choropleth map 21
0.52 0.095 Understanding relationship between data, RQ, and plot 26
0.55 0.096 Understanding relationship between data, RQ, and plot 27
1.32 0.107 Understanding relationship between data, RQ, and plot 29
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Item fit was also examined by using a simulation method 
suggested by Yen (1981) that categorizes students based on 
their ability estimates. The proportion of students responding 
correctly to a particular item is then evaluated against the 
expected proportion using an r2 goodness of fit test. A signifi-
cant r2 value indicates potential item misfit. Table 4 also shows 
the results of fitting this analysis to the BioSQuaRE data using 
200 Monte Carlo replications. Item 10 is the only item that 
suggests potential misfit to the model. The decision was made 
to keep item 10 despite the significance of Yen’s method, 
because the infit and outfit measures for item 10 were both 
reasonable, and fit evidence from significance tests tends 
to flag items as misfitting more than they should (i.e., type 
I error).

Wright Map
Using the Rasch model, we computed ability estimates from the 
student response data from the most current (fifth) administra-
tion of the BioSQuaRE. These estimates are a function of the 
item parameters and the students’ response patterns. A Wright 
map (Wright and Masters, 1982; Figure 2) provides a visual 
representation of the BioSQuaRE by plotting the item difficulty 
values on the same measurement scale as the ability of the 

respondents. This allows a comparison of both respondents and 
items, which helps us to better understand the measurement 
properties of the BioSQuaRE instrument.

The Wright map is organized vertically in two parts. The top 
half of the map shows the distribution of the 555 respondents’ 
ability estimates. These ability estimates provide a measure-
ment of the respondents’ quantitative reasoning in a biological 
context. A vertical line is drawn at the average ability level. A 
respondent with an ability estimate that falls to the left of this 
vertical line has lower than average skills in quantitative rea-
soning in a biological context, while a respondent with an abil-
ity estimate to the right of this vertical line has higher than 
average skills in quantitative reasoning in a biological context. 
The distribution is relatively symmetric with 72% of the stu-
dents’ ability estimates within 1 SD of the mean.

The bottom half of the Wright map displays the distribution 
of item difficulties from least difficult (item 2) to most difficult 
(item 25). The item difficulty scale is the same scale used for 
the respondent ability levels. This makes it easier to make 
statements about students and items. For example, a student of 
average ability (at the M level in Figure 2) is likely to respond 
correctly to all the items that are to the left of the vertical line in 
Figure 2.

An examination of the distribution of difficulty values of 
items shows that the BioSQuaRE provides measurement across 
a range of student abilities, although 18 of the 29 items are of 
less than average difficulty. Parsing this for each of the three 
primary content areas represented on the BioSQuaRE, we see 
that there are items in the categories related to algebra or visu-
alization that measure at levels that span the range of student 
abilities. However, items with statistics and probability content 
tend to do a better job of measuring students’ reasoning at 
lower ability levels and may not provide as much information 
about students of higher ability.

The conversations about how or where in the undergraduate 
curriculum students develop the skills revealed to be lacking by 
data accumulated using BioSQuaRE should also consider the 
following observations. A student of average ability who com-
pletes the BioSQuaRE would be expected to respond correctly 

TABLE 3.  Model-level fit of data to the Rasch modela

Fit measure Value Criteria for “good” model fit

RMSEA 
[95% CI]

0.041  
[0.034, 0.047]

According to MacCallum et al. (1996)
RMSEA ≤ 0.01 indicates excellent fit
RMSEA ≤ 0.05 indicates good fit
RMSEA ≤ 0.08 indicates mediocre fit

SRMR 0.058 According to Hu and Bentler (1999)
SRMR ≤ 0.05 indicates good fit
SRMR ≤ 0.08 indicates acceptable fit

SRMSR 0.075 According to Maydeu-Olivares (2013)
SRMSR ≤ 0.05 indicates good fit
SRMSR ≤ 0.08 indicates acceptable fit

aRMSEA, root-mean-square error approximation; SRMR and SRMSR, standard-
ized root-mean-square residuals.

TABLE 4.  Results of the item-level fit analyses with items grouped by contenta

Algebra, functions, and modeling Statistics and probability Visualization

Yen (1981) Yen (1981) Yen (1981)

Item Infit Outfit r2 p Item Infit Outfit r2 p Item Infit Outfit r2 p

1 0.94 0.89 8.76 0.582 2 0.92 0.86 14.29 0.149 11 0.94 0.91 16.59 0.095
3 0.98 0.97 10.23 0.567 4 0.98 0.93 8.18 0.647 12 0.94 0.92 18.20 0.065
10 0.91 0.87 30.70 0.005 5 0.96 0.92 9.79 0.478 17 1.08 1.10 2.51 0.990
13 1.08 1.11 14.06 0.214 6 0.94 0.92 13.49 0.224 18 1.03 1.08 14.47 0.194
14 0.95 0.93 17.64 0.060 7 0.94 0.96 15.53 0.124 19 0.97 0.93 10.44 0.453
15 1.00 1.00 7.34 0.741 8 1.08 1.15 12.85 0.239 20 1.02 1.27 5.92 0.846
16 0.96 0.94 16.33 0.105 9 1.08 1.09 10.58 0.448 21 1.00 0.98 12.02 0.403
24 1.06 1.08 16.70 0.100 23 0.92 0.89 17.04 0.080 22 0.93 0.90 14.59 0.204
25 1.04 1.19 10.27 0.408 26 1.06 1.07 14.26 0.149

27 1.15 1.23 8.64 0.697
28 0.97 0.95 6.41 0.836
29 1.11 1.25 11.04 0.428

aThe mean-square infit and outfit statistics were calculated for each item. Values between 0.5 and 1.5 indicate a fit to the Rasch model. The r2 goodness-of-fit values and 
p values, based on Yen’s (1981) simulation method (using 200 replications), are also shown.
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to items that include content such as computing conditional 
probabilities from a table (item1), identifying variability given 
a table of data (item 2), or interpreting relationships between 
variables from a line plot (item 20; Figure 2). This may reflect 
the inclusion of this content in recent K–12 science and mathe-
matics standards (e.g., National Council of Teachers of Mathe-
matics, 2000; National Governors Association Center for Best 
Practices and Council of Chief State School Officers, 2010; 
NGSS Lead States, 2013). In contrast, only students at higher 
ability levels would be able to correctly answer questions related 
to probabilistic interpretation of a p value (item 7), interpreting 
plots in which the response variable has been transformed 
using a base-2 logarithm (item 15), plotting a nonlinear func-
tion (item 25), and selecting appropriate graphs to answer a 
research question given the description of a study (item 29; 
Figure 2). Some of these difficulties have been previously docu-
mented in the STEM literature. For example, students’ difficulty 
with logarithms, primarily in the context of pH, has been 
described (DePierro et al., 2008; Watters and Watters, 2006), 
and misconceptions about hypothesis testing are known to be a 
challenge in statistics education (e.g., Castro Soto et al., 2009).

DISCUSSION
The BioSQuaRE is able to assess quantitative skills in a biologi-
cal context for students with a wide range of abilities. The 
instrument was developed with national reports and expert 
knowledge to inform content and item writing standards to 
reduce measurement error, and it was refined using data col-
lected across a diverse range of institutions and students. As 
such, the BioSQuaRE should prove useful to educators and 

researchers who aim to answer the ongo-
ing calls to improve the quantitative skills 
of undergraduate biology students.

The process by which we developed 
the BioSQuaRE provides a model for oth-
ers hoping to develop similar types of 
assessment instruments. As a team of fac-
ulty and graduate students from depart-
ments of biology, chemistry, educational 
psychology, and mathematics, we brought 
diverse and multidisciplinary perspectives 
to bear on the instrument’s design. The 
inclusion of educational psychologists on 
the development team in particular pro-
vided the expertise needed to frame, ana-
lyze, and revise the instrument. Repeated 
administrations of the BioSQuaRE at 
multiple liberal arts institutions, inter-
spersed with small semiannual work-
shops, allowed for efficient evaluation and 
revision, while late-stage piloting of 
the BioSQuaRE by three large, graduate 
degree–granting institutions grew the 
data set in terms of both size and the 
diversity of participants, lending more sta-
tistical power to the analyses.

The inclusion of items with content 
related to data visualization stands as a 
distinguishing feature of the BioSQuaRE. 
Among the desired competencies listed in 

the five national reports that served as content guides for the 
instrument, only four are listed by all five reports: “basic com-
putations,” “using a model to make predictions,” “choosing an 
appropriate type of graph,” and “interpreting a graph” (Table 
1). The fact that two of these four competencies concern data 
visualization urged us to develop an instrument in which a 
majority of the items contain content related to data visualiza-
tion (e.g., the item featured in Figure 1). In the fifth administra-
tion, 79% (23/29) of the items contain a graph or a table in 
either the stem or response choices. In addition to the tool’s 
broad biological context, this emphasis on data visualization 
distinguishes the BioSQuaRE from other quantitative skills 
assessment tools such as the QLRA (Gaze et al., 2014a,b) and 
TOSLS (Gormally et al., 2012).

In contrast to instruments designed to assess the impact of 
interventions in a specific course or lab, our hope is that the 
BioSQuaRE will stimulate curricular conversations at the 
departmental or interdepartmental level. The focus on quanti-
tative skills that students should possess after they have com-
pleted an introductory biology sequence provides flexibility in 
how the instrument can be used. Administered at the beginning 
of an introductory sequence, it can help delineate the skills that 
students already possess. Administered at the end of an intro-
ductory sequence, the BioSQuaRE can instead be used to assess 
learning gains. Given even later in the curriculum, the instru-
ment can be used to assess retention and/or reinforcement 
of acquired skills. In that the instrument was developed to 
assess a wide range of quantitative topics and still be completed 
by a student within 30–40 minutes, feedback of only limited 
granularity can be provided to individual students. In contrast, 

FIGURE 2.  Wright map of the 555 respondents’ estimated ability levels (top half) and the 
estimated difficulty parameters for the 29 BioSQuaRE items sorted by primary content 
area (bottom half). A vertical line is displayed at the mean (M) ability level.
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because our analysis indicates that the instrument measures a 
single latent trait—quantitative reasoning in a biological con-
text—the aggregate score report (see Supplement C in the 
Supplemental Material for an example) provides useful and 
potentially actionable information. At a departmental level, if 
BioSQuaRE results identify prospective biology students who 
arrive at an institution with weak quantitative preparation, con-
versations can focus on where in the curriculum these students 
can be expected to strengthen those skills. BioSQuaRE results 
can also be used for programmatic assessment or to compare 
the efficacy of different curricula. Oberlin College, for example, 
is currently using the BioSQuaRE to assess programming offered 
through their Quantitative Skills Center.

Individuals interested in examining or using BioSQuaRE 
should complete the Instructor Survey for BioSQuaRE, which 
can be found at www.macalester.edu/hhmi/biosquare. This 
survey gathers basic contact information (institutional type, 
departmental listing, class size, range of students, etc.). Once 
the survey is completed, directions will be sent, along with a link 
that will allow instructors to examine the instrument and stu-
dents to complete the instrument online. We will then provide 
instructors who use the BioSQuaRE with a report that summa-
rizes the responses of their students (see Supplement D in the 
Supplemental Material). Please note that these summaries will 
be aggregated to the course or institution level and will be pro-
vided only if the number of students completing the BioSQuaRE 
is large enough to protect the anonymity of individual students.

FUTURE WORK
Our hope is that BioSQuaRE will continue to be refined and 
improved. For example, several BioSQuaRE items are relatively 
easy and measure nearly the same ability level. Removing some 
items or making other items more difficult may improve the 
utility of the instrument.

Establishing instrument validity and reliability remains a 
time-intensive endeavor, and a single study rarely provides all 
forms of evidence needed to support such claims (Messick, 
1995; Reeves and Marbach-Ad, 2016; Campbell and Nehm, 
2013). Based on the sources of validity evidence articulated by 
Campbell and Nehm (2013), Table 5 highlights the methods 
that have been used, are in progress, or could be used to 
strengthen the inferences made using the BioSQuaRE instru-
ment. We note that our current effort provides solid evidence of 
content and internal structure validity. The use of open-ended 
student responses to develop response choices represents a start 
toward substantive evidence, but additional evidence through 
think-alouds or interviews about how students are solving 
problems would address limitation of instrument-irrelevant 
responses. Examples of such irrelevant responses could include 
student guesses or variation in test-taking skills. Similarly, the 
development and preliminary data gathering at multiple post-
secondary institutions serves as a starting point for generaliza-
tion validity. Gathering responses from students at a greater 
number and variety of schools (community colleges, compre-
hensive institutions, etc.) would provide additional insights into 
the utility and potential limitations of this instrument. Further-
more, a larger and more comprehensive set of data would 
enable a robust differential item functioning (DIF) analysis. DIF 
analysis has the potential to enhance instrument fairness and 
avoid items that measure more than one latent trait (Martinkova 
et al., 2017). Finally, additional work remains to establish 
evidence for external structure or consequences validity.

Future administration of BioSQuaRE at a diverse set of 
institutions should assist in furthering the sources of validity 
evidence and help to establish a robust baseline of student per-
formance, allowing individual biology programs to better gauge 
the quantitative preparation of their own students. In an effort 
to understand more about what additional insights BioSQuaRE 

TABLE 5.  Summary of forms of validity evidence that have and have not been gathered for the BioSQuaREa

Source of validity evidence Question addressed Methods used, in progress, or proposed

Content Does the assessment appropriately 
represent the specified knowledge 
domain, biological science quantita-
tive reasoning?

Used: Alignment of content of the BioSQuaRE to national reports 
(Table 1); modification of BioSQuaRE test blueprint using expert 
feedback from 38 faculty members (Supplement A, Tables A1 and 
A2, in the Supplemental Material)

Substantive Are the thinking processes intended to 
be used to answer the items the ones 
that were actually used?

Used: Response choices created based on student responses to 
open-ended questions in early versions of the BioSQuaRE

Proposed: Think-aloud interviews of students while solving the 
BioSQuaRE questions

Internal structure Do the items capture one latent trait, 
biological science quantitative 
reasoning?

Used: Coefficient alpha; Rasch analysis

External structure Does the construct represented in the 
BioSQuaRE align with expected 
external patterns of association?

In progress: Longitudinal study examining correlation of the 
BioSQuaRE scores to strength of biology course work and SAT and/
or ACT scores

Generalization Are the scores derived from the 
BioSQuaRE meaningful across 
populations and learning contexts?

Used: Administration of the BioSQuaRE at five postsecondary 
institutions

In progress: Administration of the BioSQuaRE to more students from a 
variety of undergraduate institutions; DIF analysis

Consequences In what ways might the scores derived 
from the BioSQuaRE lead to positive 
or negative consequences?

Proposed: Stimulate curricular conversations, assist in department and/
or program evaluation

aValidation framework is based on Campbell and Nehm (2013, Table 1).
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may provide, we are currently undertaking, with support from 
the HHMI, a multi-institution longitudinal study seeking to 
understand the relationship between performance on 
BioSQuaRE, success in biology course work, and performance 
on standardized exams such as the SAT and ACT.
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