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ARTICLE

ABSTRACT
We present the Homeostasis Concept Inventory (HCI), a 20-item multiple-choice instru-
ment that assesses how well undergraduates understand this critical physiological con-
cept. We used an iterative process to develop a set of questions based on elements in the 
Homeostasis Concept Framework. This process involved faculty experts and undergradu-
ate students from associate’s colleges, primarily undergraduate institutions, regional and 
research-intensive universities, and professional schools. Statistical results provided strong 
evidence for the validity and reliability of the HCI. We found that graduate students per-
formed better than undergraduates, biology majors performed better than nonmajors, and 
students performed better after receiving instruction about homeostasis. We used differ-
ential item analysis to assess whether students from different genders, races/ethnicities, 
and English language status performed differently on individual items of the HCI. We found 
no evidence of differential item functioning, suggesting that the items do not incorporate 
cultural or gender biases that would impact students’ performance on the test. Instructors 
can use the HCI to guide their teaching and student learning of homeostasis, a core con-
cept of physiology.

INTRODUCTION
Traditional biology education has long been criticized for emphasizing memorization 
of facts and terminology, particularly in the face of mounting evidence that students 
benefit from and require a more transferable and enduring educational experience 
(Valverde and Schmidt, 1997; National Research Council, 2000; Zheng et al., 2008). A 
curriculum that focuses on facts does not prepare students fully for life science careers 
in which they must rely on deep conceptual understanding and strong scientific reason-
ing skills to solve problems and adapt to the rapid changes in their fields (National 
Research Council, 2009). On the other hand, undergraduate biology textbooks are 
forever increasing in length, incorporating more factual knowledge (e.g., Michael et al., 
2009). For example, physiology textbooks now serve as encyclopedic references rather 
than guides to instruction. It is therefore challenging to move students from simple rote 
memorization of material to deep and meaningful learning (Michael, 2001; Michael 
and Modell, 2003; Knight and Wood, 2005; Momsen et al., 2010).

Identifying the core concepts of a discipline is one way to help focus breadth of 
coverage to allow for more depth (American Association for the Advancement of Sci-
ence [AAAS], 2011; National Research Council, 2012). Instructors can organize their 
courses around core concepts, directing student attention to phenomena that recur in 
a discipline. In physiology, for example, homeostatic regulation of blood pressure and 
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core body temperature can both be explained by the same con-
cept of a control system (Modell, 2000; Modell et al., 2015). 
Because students can more readily transfer conceptual under-
standing across domains (National Research Council, 2000), 
understanding of core concepts can be used to master new 
learning in subsequent courses and throughout a student’s pro-
fessional career (Michael et al., 2009).

Homeostasis has been identified as one of the eight core con-
cepts in biology (Michael, 2007). When asked to rank the core 
principles or “big ideas” in their field, more than 100 physiolo-
gists from associate’s colleges to research-intensive institutions 
ranked “homeostasis” and “cell membranes” as the two most 
important principles for students (Michael and McFarland, 2011; 
note that associate’s colleges is the current categorization of 
community colleges under the Carnegie classification; Carnegie 
Classification of Institutions of Higher Education, n.d.). Homeo-
stasis is also one of the core competencies listed in the Scientific 
Foundations for Future Physicians report (M1: the ability to apply 
knowledge about homeostasis; Association of American Medical 
Colleges and Howard Hughes Medical Institutes, 2009), and 
homeostasis is included within the core concept of “systems” in 
Vision and Change (AAAS, 2011).

The concept of homeostasis was first defined by Claude Ber-
nard in 1865 as the ability of a complex organism to maintain 
its milieu interieur, translated as “internal environment,” in a 
fairly steady state in the face of external challenges. Walter 
Cannon coined the term “homeostasis” to describe this concept 
in 1926 (Cooper, 2008; Modell et al., 2015). Some argue that 
“homeostasis is the central idea in physiology” (Michael et al., 
2009: 13, emphasis in original). Homeostatic mechanisms keep 
a regulated variable (i.e., a physiological variable that the 
organism can sense) within a range of values conducive to sup-
porting the life of the organism. To accomplish the task of main-
taining a stable internal environment, an elegant interacting 
system of sensors, integrators with set points, and effectors (or 
targets) has evolved. Homeostatic mechanisms orchestrate the 
moment-to-moment responses of an organism to the wide array 
of its interactions with the world. This orchestration includes 
small-scale processes such as maintaining human blood pres-
sure while moving from a sitting to a standing position to large-
scale responses associated with the cardiovascular response 
during a major hemorrhage.

What physiologists perceive as elegant looks complex and 
intricate to students. Students are unsure of which internal 
environments are maintained, what set points are, whether 
homeostatic mechanisms are just on/off switches, and what 
physiological variables are homeostatically regulated. These 
confusions are just some of the struggles that students have 
about homeostasis (Modell et al., 2015).

To help address these challenges, our project team has 
developed a powerful set of tools for teaching homeostasis. We 
have documented a number of misconceptions (i.e., scientifi-
cally inaccurate or incomplete understandings, as in Crowther 
and Price, 2014; Leonard et al., 2014) regarding homeostasis 
(Wright et al., 2013, 2015). We have created a simple, yet accu-
rate diagram of the concept of homeostasis that we recommend 
textbook authors and instructors use to help students visualize 
this core concept (Modell et al., 2015). We distilled a common 
vocabulary of terms from 12 undergraduate physiology text-
books to better reflect the way experts communicate on this 

topic (Modell et al., 2015). We have also developed the Homeo-
stasis Conceptual Framework (HCF), validated with physiology 
faculty from a broad range of institutions, which describes the 
critical components and constituent ideas important for under-
graduates to understand if they are to correctly apply the con-
cept of homeostasis (McFarland et al., 2016). This suite of tools 
empowers and guides instructors to help undergraduate stu-
dents build appropriate mental models of homeostatic regula-
tion in physiological systems.

This paper describes the development and validation of the 
Homeostasis Concept Inventory (HCI), the next piece of our 
project. The HCI is a multiple-choice instrument that will allow 
biology educators to determine how well their teaching has 
helped their students master the core concept of homeostasis. It 
can also serve as a diagnostic tool to identify misconceptions 
concerning homeostasis.

METHODS
We used the HCF (McFarland et al., 2016) as the basis for the 
HCI. The physiologists in the project team (J.L.M., M.P., W.C., 
J.M., H.M., A.W.) drafted questions and then embarked on an 
iterative process of revising them in consultation with a com-
munity of physiology faculty and students from geographically 
and institutionally diverse institutions across the United States, 
including associate’s colleges, primarily undergraduate institu-
tions, regional comprehensive universities, research-intensive 
universities, and professional schools. Through this process, we 
wrote three drafts of the HCI before reaching the final version. 
The drafts are named HCI-Drafts 1, 2, and 3, following the con-
ventions of Price et al. (2014) and Newman et al. (2016); we 
acknowledge that the final version presented in this paper will 
change as understanding of teaching and student learning of 
homeostasis progresses. Once we compiled the HCI (the ver-
sion presented in this paper), we used an extensive suite of 
statistical analyses to find evidence for valid and reliable scores 
from the test as a whole and to determine whether bias existed 
for any individual items (as in Martinková et al., 2017b). An 
overview of the process used to develop the HCI is in Table 1.

HCI-Draft 1
We wrote multiple-choice questions to address the critical com-
ponents and constituent ideas identified in the HCF (McFarland 
et al., 2016). In addition to choosing the multiple-choice for-
mat, we intentionally constructed a short instrument that stu-
dents would be able to complete in a reasonable period of time, 
with a target of approximately 20 minutes. We knew that a 
short-enough instrument would not be able to assess all of the 
constituent ideas within each critical component of the HCF, but 
we thought this trade-off would make the HCI more likely for 
faculty to use and for students to complete.

We initially wrote at least two multiple-choice questions for 
each of the five critical components identified in the HCF, with 
each question having only one correct answer. One question 
was written as an abstract or theoretical formulation of the idea, 
in which variables were identified as x or y, while the second 
question applied to a real-world situation (see Supplemental 
Table 1). We were not sure whether one type of question would 
be more challenging than the other, but we anticipated that 
students would be exposed to both types of questions in their 
courses.
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TABLE 1.  Overview of the methods used to generate the HCIa

HCI-Draft 1 (19 multiple-choice questions and 1 open-ended)
a.  Conducted think-aloud interviews with six students at two BCAS to assess readability, interpretation, and misconceptions
b.  Revised to HCI-Draft 1.1
c.  Conducted think-aloud interviews with 11 students at an AC on HCI-Draft 1.1
d.  Revise to HCI-Draft 2
HCI-Draft 2 (18 multiple-choice questions)
a.  Taken by 16 students at an AC
b.  Revised to HCI-Draft 2.1
c. � HCI-Draft 2.1 distributed in an online survey of 20 physiology faculty members to evaluate accuracy of questions, to assess questions’ 

relevance, and to edit items
d.  Revised to HCI-Draft 3
HCI-Draft 3 (20 multiple-choice questions)
a.  Taken by 427 students at five institutions (BCAS, AC, MCU, R1, and professional school)
b. � Analyzed difficulty and discrimination; no questions were too easy; retained two challenging questions with little ability to discriminate 

because they tested ideas critical to the concept of homeostasis
c.  Conducted think-aloud interviews with seven students at two BCAS to assess readability and interpretation
d.  Distributed to faculty at the 2014 Human Anatomy and Physiology Society Conference to evaluate questions
e.  Revised two questions by changing the context from blood sodium to blood glucose homeostasis
f.  Distributed an online survey to faculty to evaluate the two revised questions; faculty confirmed the questions were accurate.
g.  Revised to the HCI
HCI (20 multiple-choice questions)
Steps are enumerated extensively in Tables 2, 3, and 4.
aAC, associate’s colleges; BCAS, baccalaureate colleges: arts and sciences focus; MCU, master’s colleges and universities; R1, doctoral universities–highest research 
activity.

The questions that are situated in the real world may some-
times be advantageous but at other times disadvantageous in 
helping students reason about homeostasis or other core con-
cepts. McNeil et al. (2009) found that teaching concepts by 
using examples with concrete objects, such as money, could 
both help and hurt elementary school students solve math 
problems. In physics, there is evidence that teaching with con-
crete representations may be beneficial for students when they 
address simple problems, but the abstract representations may 
give students an advantage with more complex problems. 
Abstract, generic questions contain only relevant relations with 
minimal information and are therefore not burdened by infor-
mation-rich, specific details of a physiological example 
(Kaminski et al., 2013). Perhaps because of this lack of detail, 
Heckler (2010) reported that students with higher course 
grades performed better on abstract problems. He also postu-
lated that, when students’ prior knowledge disagrees with sci-
entific understanding, questions with a concrete context may 
trigger application of inaccurate mental models.

Most of the questions in the HCI have four or five answer 
choices, and the distractors are based on common misconcep-
tions that students hold (Wright et al., 2013, 2015; Modell 
et al., 2015). However, questions concerning how the concen-
tration of a molecule would change in response to a perturba-
tion to the system necessarily had only three answer choices 
(increase, decrease, remain constant). We retained all three 
choices to maintain symmetry, even when students chose one 
option infrequently.

The end result of this procedure was HCI-Draft 1, composed 
of 19 multiple-choice questions and 1 open-ended question. We 
conducted think-aloud interviews with six students from two 
primarily undergraduate institutions to assess readability, to 
confirm that students were interpreting the questions as they 

were intended, and to gain greater insight as to the actual 
struggles students would have with the concepts we were test-
ing (Pollitt et al., 2008). We learned in these interviews that 
several students felt that something that was “more or less con-
stant” fluctuated more and was less regulated than something 
that was “relatively constant.” That discovery led us to use the 
phrase “relatively constant” instead.

We used this feedback to develop a 24-question HCI-Draft 
1.1. We used HCI Draft-2.1 to conduct think-aloud interviews, 
this time with 11 students from two different associate’s col-
leges. The changes based on this feedback led to HCI-Draft 2, 
an 18-question instrument.

HCI-Draft 2
We administered HCI-Draft 2 to 16 students in an associate’s 
college course on human anatomy and another associate’s col-
lege course on human anatomy and physiology. We used their 
responses to remove distractors that were not being chosen. We 
also removed some questions, added others, and incorporated 
revisions. The resulting HCI-Draft 2.1 had 19 questions that we 
distributed through an online survey to 20 faculty experts with 
whom we consulted regularly throughout this project. These 
faculty experts teach physiology at research-intensive, regional 
comprehensive, and primarily undergraduate universities; 
associate’s colleges; and professional schools. The faculty 
experts were asked to evaluate the accuracy of the questions, to 
assess each question’s importance to their teaching of under-
graduate physiology, and to suggest edits. We incorporated this 
feedback into HCI-Draft 3, a 20-question instrument.

HCI-Draft 3
We administered the HCI-Draft 3 to 427 students at five insti-
tutions from different Carnegie classifications (Carnegie 
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Classification of Institutions of Higher Education, n.d.), and 
we analyzed the resulting data to determine the difficulty and 
discrimination of each item (Allen and Yen, 1979), checking 
to ensure that the instrument captured a range of scores and 
range of student academic abilities. Two particularly challeng-
ing questions (items 7 and 17 in the HCI) did not discriminate 
well, but we decided to retain them, because they assess con-
cepts that are essential for students to learn. Item 7 reveals the 
common misconception that the nervous system is always 
involved in homeostatic regulation, and we wanted faculty to 
be able to assess the prevalence of this misconception among 
their students. Item 17 requires students to know how the dif-
ferent components interact in the system that regulates blood 
pressure. We conducted an additional seven think-aloud inter-
views with students from two different primarily undergradu-
ate institutions to assess readability and to confirm that stu-
dents were interpreting the questions on the HCI-Draft 3 as 
intended.

We distributed HCI-Draft 3 to faculty at a workshop at the 
2014 Human Anatomy and Physiology Society Annual Confer-
ence. The workshop participants raised concerns about two 
questions (the precursors to items 11 and 20 on the HCI) that 
we subsequently addressed by changing the context from 
blood sodium to blood glucose homeostasis. We asked another 
20 faculty members from our group of physiology experts to 
evaluate the accuracy of these two revised questions, and these 
faculty members agreed the questions were accurate. The 
resulting instrument is the HCI, a 20-question multiple-choice 
instrument.

Homeostasis Concept Inventory
To assess the validity of HCI scores, we recruited a sample of 
669 undergraduates from 12 institutions (Tables 2 and 3). 
These students were enrolled in courses for life science majors, 
mixed majors, or allied health majors; each course covered 
homeostasis to some extent. All of the students took the HCI 
within the last 2 weeks of their courses. Most instructors gave 
students extra credit for good-faith efforts to complete the HCI. 
We excluded students who completed the HCI in less than 4 
minutes; because none of these respondents scored more than 
10 points, we concluded that they rushed through the HCI with-
out considering the questions seriously.

We used a series of smaller student samples (Table 2) to 
conduct additional statistical tests, including analysis of test–
retest and pretest–posttest relationships and to compare 
graduate students with undergraduates. Graduate students in 
professional schools served as our upper limit of performance 
on the HCI, as we determined that the learning goal for our 
undergraduate curriculum would be to prepare students for 
professional school.

Our extensive suite of statistical analyses assessed the valid-
ity and reliability of the total scores from the HCI (Table 4). We 
also conducted item-level analyses to relate student ability to 
each item and to assess whether any of the items are biased. We 
included both classical test theory analyses and item-response 
theory (IRT) models to investigate item and test properties (as 
did Neumann et al., 2011; Jorion et al., 2015; Kalinowski et al., 
2016). We have also included structural analyses to test the 
unidimensionality of the instrument. The analyses were com-
pleted in R (R Core Team, 2016; Supplemental Material, 

TABLE 2.  Types of institutions used in the validation of the HCI

Typea Region No. of students
Main sample (N = 669)
AC NW 47

NW 34
SE 20
SW 98

BCAS NE 48
SE 38

MW 16
MW 21

MCU SW 68
SW 76

R1 SW 95
SE 108

Test–retest (N = 45)
Professional school NW 45
Graduate student performance (N = 10)
R1 MW 10
Pre/posttesting (N = 16)
AC NW 16
aSee Table 1 for definitions of abbreviations.

TABLE 3.  Demographic characteristics of students who participated 
in the large-scale testing of the HCI (main sample of 669, Table 2)

Category Count Percent
Gender F 405 61

M 246 37
NA 18 3

Age (years) ≤24 494 74
25–29 106 16
≥30 69 10

Planning to major in the 
life sciences

No 270 40
Yes 399 60

Planning to attend 
professional school

No 190 28
Yes 479 72

Race/ethnicity Asian 117 17
Black 39 6
Hispanic 85 13
White 343 51
Mixed and other 54 8
Undisclosed 31 5

English as first language Yes 521 78
No 148 22

Year in college Freshman 67 10
Sophomore 137 20
Junior 171 26
Senior 216 32
Postbaccalaureate 78 12

R Code) with the libraries ggplot (Wickham, 2009), lme4 (Bates 
et al., 2015), lmerTest (Kuznetsova et al., 2016), psychometric 
(Fletcher, 2010), psych (Revelle, 2015), corrplot (Wei and 
Simko, 2010), ltm (Rizopoulos, 2006), mirt (Chalmers, 2012), 
WrightMap (Torres Irribarra and Freund, 2014), difNLR 
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and those who had more limited exposure. These models were 
built with our main sample of 669 students. We used Bayesian 
information criteria (BIC) to select the optimal model (Schwarz, 
1978). We used density plots (Hastie et al., 2009) to visualize 
potential differences among groups of students. Density plots 
estimate the distribution of total scores as a smooth curve 
instead of plotting the frequency of exact scores as in histo-
grams. For example, we graphed the range of scores found 
among students from different types of institutions and enrolled 
in different kinds of courses.

Reliability.  We determined the reliability of the HCI by calcu-
lating internal consistency and test–retest reliability with clas-
sical test theory. We also present item and test information 
functions based on IRT models. To determine whether the test 
was internally consistent, we calculated Cronbach’s alpha 
(Cronbach, 1951) of the main sample of 669 students. We also 
estimated test–retest reliability, that is, whether the same pop-
ulation of students would have the same performance on the 
test multiple times (Nunnally and Bernstein, 1994), by calculat-
ing the Pearson correlation coefficient and conducting a linear 
regression on a sample of 45 students enrolled in a nutrition 
course in a master’s program who had no explicit instruction in 
homeostasis between the first (test) and second (retest) time 
of  taking the HCI. We used IRT models (described in Item 
Analysis) to enumerate item and test information functions 
(Samejima, 1994). Test information function (TIF) provides an 

TABLE 4.  The statistical methods used to gather evidence for the validity of the HCI scores

Method Analytical question

Validity
Two-sample t test Do graduate students in the life sciences perform better on the HCI than undergraduates?
Pre/posttesting (t tests) Do students perform better on the HCI after receiving instruction about homeostasis? Is this improvement 

bigger than the improvement of students who did not receive any instruction about homeostasis?
Mixed-effects linear regression Do students pursuing majors in the life sciences perform better on the HCI than students pursuing other 

majors? Is this difference significant when controlling for other variables such as gender, ethnicity, 
institution, and course?

Density plots Does a range of total scores on the HCI exist for different demographic groups? Can we see a visual 
difference among the demographic groups? For example, do students pursuing majors in the life 
sciences perform better on the HCI than students pursuing other majors? Do students from R1 
institutions perform better than students from other types of institutions?

Tetrachoric correlation (heat map) Do items correlate with each other? Do clusters of items form around similar topics?
Exploratory factor analysis Is the HCI unidimensional?

Reliability
Test–retest (Pearson correlation) Is student performance on the HCI repeatable?
Cronbach’s alpha Is the test internally consistent?
Test item function (TIF) How reliable is the HCI is for students with different levels of ability?

Item-level analysis
Estimating item difficulty Does the HCI have a range of difficulties, as indicated by the percentage of students answering each item 

correctly?
Estimating item discrimination Do strong students perform better on harder questions?
Item-person (Wright) map Does the inventory capture the whole population of students? Do item difficulties correspond to student 

abilities?
Item characteristic curves Do items have a range of difficulties, and do they have sufficient discrimination?
Item information function For which latent abilities do individual items provide the highest information?
DIF analysis Are the HCI items biased with respect to gender, ethnicity, and English language status?

Abstract and applied questions

Paired t test Is student performance on abstract questions the same as student performance on applied questions?

(Drabinova et al., 2016), difR (Magis et al., 2015), and Shiny-
ItemAnalysis (Martinková et al., 2017a). Students’ names and 
identification numbers were removed from all data sets before 
statistical analyses.

Validity of Total Scores.  We used a two-sample t test to deter-
mine whether graduate students in the life sciences scored higher 
on the HCI than the undergraduates in our main sample of 669 
students (Table 3). We also conducted pre/posttesting on a 
sample of 16 students enrolled in a physiology course that 
emphasized homeostasis to determine whether students per-
formed better on the HCI after receiving instruction about 
homeostasis (paired t test) and to determine whether this 
improvement exceeds the improvements of 45 students enrolled 
in a master’s program in nutrition who did not receive explicit 
instruction about homeostasis during the course that we sampled 
(two-sample t test; this sample of master’s students who did not 
receive instruction about homeostasis was also the same sample 
used in the test–retest analysis of reliability; see Reliability).

We used a mixed-effects linear regression model that 
accounted for correlated responses of students within classes to 
determine which demographic variables could be used to pre-
dict total score performance on the HCI. In particular, we 
wanted to know whether students planning to major in the life 
sciences performed better than students in other majors, 
because this would indicate that the HCI could discriminate 
between students who had extensive exposure to homeostasis 



16:ar35, 6	  CBE—Life Sciences Education  •  16:ar35, Summer 2017

J. L. McFarland, R. M. Price, M. P. Wenderoth, P. Martinková, et al.

estimate of reliability that depends on student ability (here, 
student ability is latent ability that is estimated with an IRT 
model; see Item Analysis).

Item Analysis.  In addition to exploring how students per-
formed on the HCI as a whole, we evaluated how they per-
formed on individual items. To assess difficulty, we calculated 
the percentage of correct responses for each item. For discrimi-
nation, we calculated the difference in the percent of correct 
responses between the upper and lower third of students to 
assess item discrimination (Allen and Yen, 1979).

To explore how each item performed in more depth, we fit-
ted IRT models to our data (De Ayala, 2008). First, we used the 
simplest, one-parameter logistic IRT model to generate an 
item-person map (also called a Wright map; e.g., Neumann 
et al., 2011; Boone, 2016), which compares a histogram of the 
students’ latent ability with the item difficulty. Here, latent abil-
ity is an individual’s true knowledge—something that a test can 
only estimate—and difficulty is defined as the ability at which a 
student has a 50% probability of answering the item correctly.

In addition, we also fitted more complex IRT models that 
allowed us to explore each item with respect to difficulty and 
discrimination (two-parameter model) and difficulty, discrimi-
nation, and pseudo-guessing (three-parameter model; e.g., 
Kalinowski et al., 2016). To select the best-fitting model, we 
used the likelihood ratio test; in this case, the three-parameter 
model outperformed the one- and two-parameter models. We 
then used the best-fitting three-parameter logistic IRT model 
(Livingston, 2006) to plot item characteristic curves and item 
information functions and to estimate the TIF to assess reliabil-
ity (see Reliability). For each item, fit indices were calculated 
using the S-X2 statistic (Orlando and Thissen, 2000; Ames and 
Penfield, 2015) to measure how well an item fits with the esti-
mated IRT model.

Structural Analyses.  We performed two different structural 
analyses. First, we analyzed the correlation structure to explore 
the relationships among items in an instrument (Jorion et al., 
2015). To do this, we used tetrachoric correlations representing 
dependencies between pairs of items that are scored discretely 
as either right or wrong. Second, we used exploratory factor 
analysis to explore the unidimensionality of the HCI. We fitted 
factor analysis models with one to eight factors and used BIC 
(Schwarz, 1978) to determine which factor structure had the 
had the lowest BIC and was therefore optimal. In addition, we 
checked the model fit with the root-mean-square error of 
approximation; typically, a value of 0.06 or less indicates that 
the model has an acceptable fit (Hu and Bentler, 1999).

Checking for Potential Bias.  Test items are intended to assess 
student’s understanding of one topic. If additional knowledge 
unrelated to the content being tested is necessary to answer an 
item correctly, then the item is potentially unfair, biasing against 
certain populations (Martinková et al., 2017b). We assessed the 
items in the HCI to determine whether they were biased with 
respect to gender, ethnicity, and English language status. We 
used differential item functioning (DIF) analysis to compare the 
performance of students from different groups with the same 
ability on different items (Martinková et al., 2017b). More spe-
cifically, we used logistic regression (Zumbo, 1999) to deter-

mine whether items performed differently between: men and 
women; native English speakers and English language learners; 
and students of different race and ethnicity (six categories: 
Asian, Black, Hispanic, white, mixed and other, undisclosed). 
Because we were conducting multiple comparisons (20 for each 
demographic pairing, because there are 20 questions in the 
HCI), we used a Benjamini-Hochberg adjusted p value correc-
tion to account for multiple comparisons when detecting signif-
icance (Benjamini and Hochberg, 1995).

Abstract and Applied Questions.  We used a two-sample t test 
to determine whether students performed differently on the 
subset of questions that assessed students’ understanding of 
abstract questions and their performance on questions applied 
to real-world scenarios.

Human Subjects Approval
All procedures were conducted in accordance with approval 
from the Institutional Review Board at Edmonds Community 
College (IRB2014-1031).

RESULTS
The HCI (Supplemental Material, Homeostasis Concept Inven-
tory) is a concept inventory with 20 multiple-choice questions 
that most students can complete within 20 minutes. The results 
presented below demonstrate that the HCI has been validated 
with and found reliable for a large group of undergraduates 
who were diverse with respect to gender, race/ethnicity, English 
language status, and institution type. The items are of interme-
diate difficulty and discriminate between high- and low-per-
forming students, and we found no evidence for bias with 
respect to gender, race/ethnicity, or English language status.

Validity
We compared the scores of the undergraduate students with 
those of a group of 10 graduate students at a professional school 
who were studying in a field that required an understanding of 
the concept of homeostasis. As expected, the mean score of the 
graduate students (14.50, SD 3.27) was significantly higher 
than the mean total score of the sample of undergraduate stu-
dents (12.13, SD 3.65; two-sample t test, p = 0.024; Figure 1A). 
In a pretest–posttest comparison, a group of 16 undergraduate 
students improved significantly in HCI total score after studying 
homeostasis (paired t test, p = 0.010; Figure 1B). Despite the 
low sample size, a significant mean improvement of 2.31 points 
(SD 3.16) was observed between the pretest and posttest. 
Moreover, this improvement was significantly higher (two-sam-
ple t test, p = 0.048) than the mean change of 0.82 (SD 2.22) 
observed in a group of 45 students who were not explicitly 
taught the concept of homeostasis (Figure 1C). (The group of 
45 students who were naïve to homeostasis was also used in the 
test–retest to calculate reliability.)

The mixed-effects linear regression model indicates that a 
student’s major, year in college, gender, race/ethnicity, and 
English language status all affect total score on the HCI 
(Table  5). For example, the HCI assesses understanding of 
homeostasis for students who are pursuing majors in the life 
sciences and for students pursuing other majors (Figure 2A), 
although life science majors tend to show the best perfor-
mance (Table 5). Keeping all other variables equal, students 
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who indicated they were pursuing life science majors scored 
on average 1 point higher than non–science majors; this differ-
ence was significant (p < 0.001; Table 5). On the other hand, 
in the final mixed-effects model, the intended audience of the 
course—whether it was for life science majors, allied health 
students, or nonmajors—does not predict HCI performance; 
students enrolled in courses intended for life sciences majors 
perform slightly better than students enrolled in courses for 
allied health majors or nonmajors (Figure 2B), but in the 
model, this difference is captured by effect of the student 
major and by variability between the courses. Similarly, 
accounting for the variability between the individual courses, 
institution type also does not affect performance on the HCI 
significantly, despite some trends that are observable in the 
density plot (Figure 2C).

More evidence of the validity of the HCI is the fact that post-
baccalaureate students performed significantly higher than 
freshmen (mean difference 2.29, SD 0.63, p < 0.001). How-
ever, women performed significantly lower than men (mean 
difference of 0.77, SD 0.26, p 0.003), Hispanic and Black stu-
dents performed significantly lower than white students (mean 
difference of 1.38, SD 0.41 between Hispanic and white, mean 
difference of 2.28, SD 0.52 between Black and white, p < 0.001 
for both), and English language learners performed lower 
(mean difference of 1.53, SD 0.34, p < 0.001). This result 
inspired subsequent analysis to determine whether the HCI is 
biased with respect to gender, ethnicity, and English language 
status.

Reliability
Test–retest reliability was assessed for a sample of 45 master’s 
students enrolled in a course that did not teach homeostasis. 
The Pearson correlation coefficient of the test–retest was 0.77 
with a 95% confidence interval of 0.62–0.87, a value consid-
ered to be satisfactory for low-stakes exams (Nunnally and 
Bernstein, 1994). Cronbach’s alpha, used to measure internal 

FIGURE 1.  Students with different levels of experience perform on the HCI as expected. The horizontal midline in box plots is the median, 
and the top and bottom of each box represent one quartile from the median. Data beyond the end of whiskers are outliers. (A) Graduate 
students with more exposure to homeostasis perform better than undergraduates (two-sample t test, p = 0.024). (B) Undergraduates 
perform better on the HCI after receiving instruction (paired t test, p = 0.010). (C) Undergraduates who received instruction about 
homeostasis had higher gains (measured as the difference in pre–post scores from the sample in B) than master’s students from a 
professional school studying an unrelated life science field who were naïve to the concept (two-sample t test, p = 0.048). Sample sizes for 
each comparison are described in Table 2.
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TABLE 5.  Final linear mixed-effects model for total score with the 
demographic variables ordered in terms of how they impact 
interpretation of the validity of the HCI (as opposed to Table 3)a

Parameter Model-based estimate
Intercept 12.32 ± 0.62***
Major pursued
(reference category: Other)
  Life Sciences 1.01 ± 0.269***
Year
(reference category: Freshman)
  Sophomore 1.00 ± 0.549+

  Junior 0.01 ± 0.552
  Senior 0.26 ± 0.586
  Postbaccalaureate 2.29 ± 0.630***
Gender
(reference category: Male)
  Female −0.77 ± 0.259**
  NA −1.77 ± 0.820*
Race/ethnicity
(reference category: White)
  Asian −0.48 ± 0.386
  Black −2.28 ± 0.523***
  Hispanic −1.38 ± 0.411***
  Mixed and other −0.75 ± 0.461
  NA −2.31 ± 0.631***
English as first language
(reference category: Yes)
  English as second language −1.53 ± 0.335***
aThe differences between school types were not significant after accounting for 
hierarchical structure with random effects. p values: +<0.1; *<0.05; **<0.01; 
***<0.0001.

consistency, was 0.72 with 95% confidence intervals of 0.69 
and 0.75, indicating a satisfactory level of internal consis-
tency of the HCI (Nunnally and Bernstein, 1994). We discuss 
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our additional analysis of reliability using TIF in the section 
on Item Analysis, as it relies on the results of the IRT 
analysis.

Item Analysis
The items on the HCI show a wide range of item difficulty and 
high values of discrimination, indicating that the HCI can be 
used to assess a broad spectrum of undergraduate physiology 
students (Figure 3). Low discrimination (slightly lower than 
0.2) was observed only on the most difficult item, item 17, 
which tests misconception about how the control center oper-
ates. Item 7 had discrimination slightly higher than 0.2.

IRT models provided more accurate estimates of student 
abilities and more detailed description of items. The item-per-
son map (Figure 4) shows that the inventory captures the whole 
population of students, except for a few students in the highest 
category of ability. However, only a small proportion of stu-
dents who we tested performed at an ability that high, indicat-
ing that this instrument is appropriate for college-level under-
standing of homeostasis.

We used a likelihood-ratio test to determine that the 
three-parameter model is the best-fitting IRT model for the HCI, 
so parameters describing discrimination, difficulty, and guess-
ing are all necessary. The resulting model fits three parameters 
to each of the 20 items in the HCI (60 parameters total; see 
Supplemental Table 2; the standard errors for all 60 parameters 
and model fit indices indicated good model fit). Although 
guessing might be expected to be significant for a multi-
ple-choice instrument, the guessing parameter was large for 
only a few of the items (see Supplemental Table 2). Discrimina-
tion and difficulty fell within the desired range for all questions, 
except for item 17.

We also used a TIF to assess the reliability of the HCI. We 
present these results here, rather than in the Reliability section 
of the Results, because TIF makes use of the three-parameter 
IRT model. In IRT models, student ability is normalized, so 
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FIGURE 2.  Density plots comparing total scores on the HCI for different demographic groups. Density plots are read like histograms, 
where density is analogous to proportion. Each graph shows a range of scores, indicating that the HCI can assess how students from each 
of these demographic groups understand the concept of homeostasis. (A) Student major. Students pursuing life science majors scored 
higher than students pursuing other majors (see Table 5; p < 0.001). (B) Course audience. Students enrolled in physiology courses for 
science majors scored higher than students in courses for allied health students or in courses for nonmajors (but in the final mixed-effects 
model, this difference is captured by student major and thus not significant). (C) Type of institution. The students in our sample who 
attended doctoral universities (highest research activity [R1]) tended to perform better than those at master’s colleges and universities 
(MCU), and baccalaureate colleges: arts and sciences focus (BCAS). Students from associate’s colleges (AC) show a bimodal distribution, 
and the higher mode is comparable to performance of students at R1 institutions. The final model accounts for the fact that courses are 
different, which encompasses the difference among institutions.

FIGURE 3.  Difficulty, which is represented as the proportion of 
students who answered the item correctly, and discrimination for 
the 20 questions in the HCI. The items are arranged by percent 
correct, with the most frequently incorrect on the left, and the 
most frequently correct on the right. The horizontal line represents 
a discrimination of 0.2, which is usually considered the minimum 
discrimination for items to be included in a concept inventory 
(Nunnally and Bernstein, 1994). However, since item 17 tests a 
critical misconception about how the body responds to the 
complete cessation of a signal from the sensor, we felt it was 
essential to include it in the HCI.
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that ability is described as SDs from the average (Jorion et al., 
2015). The item characteristic curve is a way to summarize 
the difficulty, discrimination, and guessing for each item 
(Figure 5A) in order to describe the information provided by 
individual items (Figure 5B) and the whole test (Figure 5C). 
For example, item 13, which assesses how students under-
stand the role of an effector, has particularly high discrimina-
tion for students of average ability, and therefore provides 
highest information about these students. The location of the 
peak of the TIF and the spread of that peak indicate that the 
HCI is most reliable for students whose abilities range from −1 
to 1 (Figure 5C).

Structural Analyses
The tetrachoric correlations heat map (Figure 6) showed that 
items 7 and 17 have low correlation with other items; they are 
also items that are difficult and have low discrimination. 
Clusters of items correspond to different concepts in the HCF 
(Figure 6, Supplemental Table 1). For example, three items (4, 
9, and 20) correlated strongly with one another. These three 
items address the key concept that the body is constantly work-
ing to maintain homeostasis; a common misconception is that 
the body only tries to establish homeostasis after a perturbation 
(McFarland et al., 2016). These results indicate that the items 
are measuring a unidimensional construct of homeostasis, 
although items 7 and 17 have smaller correlation coefficients.

The exploratory factor analysis supported the heat map find-
ings; that is, that the instrument exhibited unidimensionality. 
Specifically, the lowest BIC was obtained from the one-factor 
model (Supplemental Material, R Code), and the root-mean-
square error of approximation for the one-factor model was 0.04.

Lack of Bias
Although the mixed-effects linear model uncovered differences 
in how different demographic groups performed on the total 
score of the HCI, results of the DIF analysis suggest that no 
individual item is biased: no item functions differently for stu-
dents who have the same latent ability but are from different 
groups (see Supplemental Table 3). There is no DIF with respect 
to gender, ethnicity, or English language status. These results 
indicate that the HCI is fair and that the difference between 
groups in total score is not due to any cultural biases in the 
wording of the questions.

Abstract and Applied Questions
The mean score of the students on the abstract questions of the 
HCI (0.67, SD 0.14) was not significantly different from the 
mean score of the related questions about real-life scenarios 
(0.56, SD 0.17; paired t test, p = 0.13; Figure 7). More items of 
each type are necessary to determine how abstract and applied 
questions relate to difficulty.

FIGURE 4.  Item-person map. The left panel describes the 
distribution of student abilities, as determined with a one-
parameter IRT model; values are arranged from the most able at 
the top to least able at the bottom. The items in the right panel are 
organized from the most difficult at the top to the least difficult at 
the bottom. Here, difficulty is defined as ability level, so a student 
of this ability has 50% probability of answering the item correctly. 
For the students in our sample, we found a range of item 
difficulties in the HCI, from item 3 (frequently correct) to item 17 
(frequently incorrect).
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DISCUSSION
The HCI is a 20-question multiple-choice instrument, and we 
present evidence showing that the total scores in our sample 
population are valid and reliable for assessing undergraduates’ 
understanding of homeostasis. Questions in the HCI are based 
on the critical components and constituent ideas identified in 
the HCF, which the physiologists on the project team previously 
developed and validated (McFarland et al., 2016). The ques-
tions on the HCI were refined through an extensive and iterative 
process (Table 1). The range of experts and students with whom 

we worked helped us minimize sampling bias and ensured that 
the HCI can be used to assess student understanding across 
institutional and geographic differences. The questions in the 
HCI address what faculty indicated were the most important 
critical components and constituent ideas in the HCF.

We have presented evidence of the validity of the HCI on the 
total scores of a wide range of students across the undergraduate 
curriculum. A TIF generated from the best-fitting IRT model indi-
cates it is most reliable for students performing in the middle of 
our student sample. Therefore, the HCI can assist instructors as 
they help undergraduate students learn how homeostatic mech-
anisms operate in an integrated manner. Instructors can also use 
the HCI to identify common misconceptions and errors in stu-
dents’ understanding and to assess the effectiveness of their 
teaching methods. Future modifications to the HCI may include 
development of a few more-challenging questions so that the 
test can better assess the full spectrum of undergraduates.

The questions on the HCI show a range of item difficulty and 
reasonably high values of discrimination. Only one question, item 
17, falls below the generally accepted level of 0.2 for discrimina-
tion. We retained this question in the HCI because it tests stu-
dents’ understanding of how the magnitude of the neural signal 
of the sensory input impacts the size and nature of the error mes-
sage generated by the integrator. This result points out a major 
weakness in the students’ understanding of how the control cen-
ter integrates incoming sensory information. Both high- and 
low-performing students missed this item, indicating that it is a 
difficult concept for everyone in a class. Nonetheless, this constit-
uent idea is critical for understanding how homeostatic processes 
work, and it is necessary to assess how well undergraduates can 
apply their conceptual understanding of homeostatic systems.

When drafting the first set of questions for the HCI, our proj-
ect team intentionally created two types of questions: those 
using abstract representation of variables in the stem and those 
providing a real-world context (Supplemental Table 1). Because 
students encounter both types of questions when learning 
homeostasis, we were interested to know whether one repre-
sentation was more challenging than other (as in Nehm et al., 
2012a; Prevost et al., 2013; Weston et al., 2015). For example, 
items 13 and 14 from the HCI both assess understanding of the 
role of effectors on regulated variables (Supplemental Material, 
Homeostasis Concept Inventory); item 13 is abstract and item 
14 is an applied example in which the sweat gland is presented 
as an effector that can change body temperature, the regulated 
variable. Experts are used to working with this concept in both 
abstract and applied conditions. Because we did not want to 
assume that students would be equally capable with both types 
of questions, we included examples of each. In the HCI, we 
found no significant difference between question types.

Equity and Diversity in Validation
Equity and diversity are critical issues in undergraduate educa-
tion. However, unconscious, implicit bias exists in science, tech-
nology, engineering, and mathematics (STEM) education. 
Because concept inventories are developed by the STEM commu-
nity, it is important that the validation process includes tests to 
ensure that the individual items are free of bias regarding gender, 
ethnicity, and English language status. Although women scored 
lower than men, Black and Hispanic students scored lower than 
whites, and English language learners scored lower than native 

FIGURE 6.  Tetrachoric correlation heat map. The items are ordered 
into clusters based on how correlated they are with each other. 
Items 4, 9, and 20 form a cluster; items 7 and 17 do not cluster with 
any other items; and the rest of the items cluster together.
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speakers, DIF analysis indicated that no individual item is unfair. 
In other words, no item functions differently for students who 
have the same latent ability but are from different demographic 
groups, and therefore we conclude that the items do not incorpo-
rate cultural biases that would impact different constituents’ per-
formance on the test. This finding provides a new challenge for 
discipline-based education researchers more generally: when we 
develop concept inventories, we need to analyze the potential 
bias of individual items (perform a DIF analysis, see Martinková 
et al., 2017b) to explain the observed results.

Men and women with the same latent ability should have the 
same score on the HCI. However, men and women performed 
differently on the HCI. Similar discrepancies in academic perfor-
mance on exams have been observed between males and 
females taking introductory biology exams (Wright et al., 2016). 
In their study, Wright et al. (2016) found that the genders per-
formed equally on questions of lower cognitive levels (Dirks 
et al., 2014), but males outperformed women on questions at 
higher cognitive levels. Social factors such as test anxiety and 
stereotype threat may explain this difference in test perfor-
mance. Moderate levels of test anxiety are beneficial to exam 
performance, but high levels negatively impact performance 
(Maloney et al., 2014). Excessive worrying occupies more of the 
individual’s working memory, thus limiting cognitive resources 
to solve exam problems. Some research supports the idea that 
females have higher test anxiety than males (Stenlund et al., 
2017). Stereotype threat is invoked when an individual encoun-
ters a problem that societal norms has deemed challenging for 
the group to which he or she identifies (Steele et al., 2002; Sha-
piro and Neuberg, 2007). The classic example is females’ lower 
performance than academically matched males on math exams. 
Homeostasis is a challenging concept and is taught in a STEM 
course; both of these factors may have been at play while 
students were taking the HCI (Shapiro and Williams, 2012).

We recommend that students from all institutions of higher 
learning be routinely included in the development and valida-
tion of concept inventories. A thorough suite of statistical tools 
must also be employed when determining the validity and reli-
ability of the inventory, as it is critical that we ensure the inven-
tory is free of bias against any demographic group. Only when 
we fully understand the limitations of each inventory will we be 
able to make the proper inferences from the results.

Limitations and Future Work
The HCI, like any concept inventory, can always be improved. 
Others have emphasized the ever-changing nature of concept 
inventories by including version numbers in the names of their 
instruments (e.g., Price et al., 2014; Newman et al., 2016). Our 
analysis of the HCI revealed that some items will require atten-
tion in the future. Item 17, for example, was not correlated with 
any of the other items in the instrument, was difficult, and did 
not discriminate between lower and higher abilities very well. 
Despite this, we decided to retain the item in this version of the 
HCI, because it helps us assess how students understand the 
way different components interact in the system that regulates 
blood pressure. Additional interviews and questions on this 
topic should be developed in the future, but these additional 
steps were beyond the scope of this first HCI.

It should also be noted that items 4, 9, and 20 formed a clus-
ter in the tetrachoric correlation heat map (Figure 6), which 

could have been due to either their format or their content. The 
distractors for these questions all included combinations of possi-
ble answers, for example, low concentration, high concentration, 
either, both. This style, sometimes referred to as type K questions, 
can be misleading to students, and therefore answers may not 
align to conceptual understanding (Haladyna and Downing, 
1989; Libarkin, 2008). We included the questions in this first HCI, 
because all three items measure the same challenging, yet essential, 
key concept that homeostasis is functioning all the time. None-
theless, the fact that these items cluster together in our statistical 
analysis suggests that they may need future attention as well.

Future iterations of the HCI may also need items to be 
revised so that each assesses only one part of the HCF (McFar-
land et al., 2016) at a time. For example, item 17 may be so 
challenging because it assesses three different ideas about the 
role of a control center, the way the control center interacts 
with the sensor, and the way it changes the effectors (Supple-
mental Table 1). As another example, item 20 includes two 
different concepts, one pertaining to the role of sensors, and the 
other pertaining to the fact that the body is constantly working 
to maintain homeostasis. Of course, the challenge with this 
kind of revision is that the instrument would become longer; 
we prioritized building a short instrument that is easy and quick 
to administer in a class or as a short homework assignment.

Finally, these limitations also speak to some of the chal-
lenges of using closed-response tests. The questions are 
always the same, students can become familiar with them, 
and their usefulness diminishes over time (Nehm et al., 
2012a). Answers can also be readily available, and conse-
quently some authors have chosen not to publish their con-
cept inventory questions (e.g., Deane et al., 2016). Also of 
concern is the fact that students’ open-ended responses can 
expose more nuanced detail about how students understand 
challenging and fundamental concepts than can closed-re-
sponse questions (Prevost et al., 2013). Open-ended responses 
also help students practice communicating their understand-
ing of challenging scientific concepts in ways that professional 
scientists do, rather than breaking them into artificially dis-
crete pieces of information (Nehm et al., 2012b). The draw-
back, of course, is that administering and grading open-ended 
response questions is time-consuming.

Despite these limitations, concept inventories are valuable 
tools for helping biology instructors gain a sense of what their 
students understand and helping instructors tailor their teaching 
to their student populations (D’Avanzo, 2008). They are also 
incredibly helpful when instructors and researchers use them to 
measure what students have learned and to detect concepts that 
are particularly challenging to teach (D’Avanzo, 2008; Smith and 
Knight, 2012). On the other hand, concept inventories are con-
strained by the quality of the procedures used to assess the valid-
ity of scores (Jorion et al., 2015; Reeves and Marbach-Ad, 2016). 
For this reason, we worked with a particularly diverse student 
body during the development of the HCI (Tables 2 and 3; see 
also Abraham et al., 2014) and conducted extensive item-level 
analyses to assess the fairness of these items with our diverse 
population (Supplemental Table 3; Martinková et al., 2017b).

Implications for Teaching and Learning
The HCI can be used across undergraduate physiology courses 
and at all types of undergraduate institutions. The instrument 
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targets the most essential constituent ideas that make up the 
core concept of homeostasis. Most students can complete the 
HCI within 20 minutes, so instructors can administer it easily 
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