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RESEARCH METHODS

ABSTRACT
We provide a tutorial on differential item functioning (DIF) analysis, an analytic method 
useful for identifying potentially biased items in assessments. After explaining a number 
of methodological approaches, we test for gender bias in two scenarios that demonstrate 
why DIF analysis is crucial for developing assessments, particularly because simply com-
paring two groups’ total scores can lead to incorrect conclusions about test fairness. First, a 
significant difference between groups on total scores can exist even when items are not bi-
ased, as we illustrate with data collected during the validation of the Homeostasis Concept 
Inventory. Second, item bias can exist even when the two groups have exactly the same 
distribution of total scores, as we illustrate with a simulated data set. We also present a brief 
overview of how DIF analysis has been used in the biology education literature to illustrate  
the way DIF items need to be reevaluated by content experts to determine whether they 
should be revised or removed from the assessment. Finally, we conclude by arguing that 
DIF analysis should be used routinely to evaluate items in developing conceptual assess-
ments. These steps will ensure more equitable—and therefore more valid—scores from 
conceptual assessments.

INTRODUCTION
Knowledge assessments that are used to measure students’ understanding of disci-
plinary concepts need to produce valid and reliable scores (Downing and Haladyna, 
2006; American Educational Research Association, American Psychological Associa-
tion, National Council on Measurement in Education [AERA, APA, NCME], 2014). 
This robustness is essential for high-stakes tests used, for example, in college admis-
sions, and it is also essential for drawing inferences about student performance on 
low-stakes assessments, such as those within science classrooms. For example, in biol-
ogy, several concept inventories have been developed that measure what students 
understand about specific core concepts. A variety of methods are used to explore the 
validity of scores during the development of assessment tools (e.g., Libarkin, 2008; 
Adams and Wieman, 2011; Reeves and Marbach-Ad, 2016).

During the process of validation, developers often test for differences in perfor-
mance among two or more groups of students as one way of gathering evidence of the 
presence or absence of test bias, such as whether men and women perform differently, 
whether native speakers of the testing language perform consistently better than oth-
ers, or whether race/ethnicity is linked with performance (Walker and Beretvas, 2001; 
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Walker, 2011). In addition, attending to the performance of 
different groups is critical for equity—assessments should not 
discriminate against any individual (e.g., Libarkin, 2008); 
developers must show that performance on the assessment is 
not related to factors that are irrelevant to the construct being 
tested.

In this paper, we explain how applied data analysis tech-
niques can be used to identify potentially biased, or unfair, test 
items. We define differential item functioning, or DIF, and 
explain the suite of statistical approaches, known as DIF analy-
sis, used to identify DIF items—those test items for which differ-
ent groups of students perform differently. After explaining the 
theory behind DIF analyses and describing some of the most 
common methods, we present two scenarios with real and sim-
ulated data to demonstrate how to conduct several types of DIF 
analysis. The first scenario consists of data from the Homeostasis 
Concept Inventory (HCI; McFarland et al., 2017), which was 
administered to students from a range of institutions throughout 
the United States. The second scenario consists of a simulated 
data set designed to show that the distribution of the total scores 
of two groups can be exactly the same, even when some test 
items are biased against one of those groups. Together, these 
cases show how DIF analyses provide a rich, nuanced under-
standing of how different groups perform on a test.

While some biology education articles have previously 
employed DIF and/or highlighted its importance (e.g., Penfield 
and Lee, 2010; Federer et al., 2016; Romine et al., 2016), many 
of the validation studies of concept inventories have not 
checked for DIF or potential unfairness of items. For example, 
none of the 22 articles in a list of biology concept inventories 
(SABER, n.d.) used DIF analysis to check for potential bias in 
their items. That said, interest in DIF analysis is growing within 
the biology education community. One recent paper by Deane 
et al. (2016) considered item bias, and others have been using 
and advocating for item-level analyses (Neumann et al., 2011; 
McFarland et al., 2017). We, along with others (AERA, APA, 
NCME, 2014; see also Reeves and Marbach-Ad, 2016), argue 
that items flagged as DIF have a strong potential to threaten the 
validity of scores if they are not further investigated, and there-
fore DIF analysis should be performed routinely when develop-
ing conceptual assessments. We conclude this paper by review-
ing recent examples from biology education that used DIF 
analysis.

BACKGROUND
Identifying Achievement Gaps
In the high-stakes testing world, assessment researchers consis-
tently evaluate the fairness of tests and explore the reasons 
behind achievement gaps (e.g., Sabatini et al., 2015; Huang 
et al., 2016). This type of detailed analysis occurs less frequently 
in the low-stakes testing world, and, if present, is typically 
restricted to comparing groups on test total scores (Steif and 
Dantzler, 2005). Differences between groups on total scores 
may be identified graphically with box plots, histograms, or 
density plots, and can also be tested empirically with t tests, 
chi-square tests, or regression models that account for miscella-
neous fixed and random factors (Gelman and Hill, 2007; Moore 
et al., 2015).

In contrast to examining group differences on total scores, 
examining differences at the item level provides clarity as to 

where exactly group differences are located and whether there 
is any pattern in those differences. The simplest item-level anal-
ysis involves comparing the groups on the proportion of exam-
inees who answer the item correctly (this proportion is called 
“difficulty” and denoted as p in psychometric classic test theory 
literature; Allen and Yen, 1979). However, group differences in 
item difficulty can be due to real and important group differ-
ences or may be blurred by the fact that one group has higher 
knowledge of the tested topic overall. Therefore, additional 
analyses are required that consider both the total score and 
individual item performance simultaneously.

DIF analysis encompasses a set of approaches for comparing 
performance of groups on individual items while simultane-
ously considering the students’ potential to score well on the 
test (Holland and Wainer, 1993; Camilli, 2006; Zumbo, 2007; 
Magis et al., 2010). Therefore, DIF analysis is more useful than 
comparing total scores for identifying potential unfairness and 
for assessing the causes of achievement gaps (Zieky, 2003). As 
we will demonstrate, DIF analysis can identify achievement 
gaps that are not revealed when comparing total scores (see 
Case Studies). To our knowledge, DIF analysis has rarely been 
used in the development of low-stakes tests such as concept 
inventories (but see McFarland et al., 2017, for an example of 
DIF analysis).

DIF analysis is conducted by comparing a reference group 
(typically the majority, or normative, group) with a focal group 
(typically the minority, or disadvantaged, group). For example, 
a study probing for bias against women would use men as the 
reference group and women as the focal group. Similarly, when 
testing whether items are biased against a historically under-
represented minority group on an assessment developed in the 
United States, we would consider white students as the refer-
ence group, and we might consider African-American students 
to be the focal group. In a similar vein, native language speak-
ers being assessed would be considered the reference group, 
with language learners as the focal group.

An Item Can Measure More Than What Was Intended
DIF occurs when an item measures more than one underlying 
latent trait and when cognitive differences exist on one of these 
other, so-called secondary, latent traits (Ackerman, 1992; 
Shealy and Stout, 1993; Roussos and Stout, 1996). A latent 
trait (also known as latent knowledge, latent ability, or, more 
generally, latent variable) is an individual’s true knowledge or 
understanding of the construct being measured, and it can be 
estimated but not directly measured. The simplest estimate of 
the latent trait is total score. When developing biology concept 
inventories, for example, the goal is that the items only mea-
sure students’ biological concept knowledge (primary latent 
trait), and that additional cultural knowledge (secondary latent 
trait related to identity) is not necessary to answer items cor-
rectly. In other words, we wish to know whether the items only 
measure students’ knowledge of information relevant to the 
concept. The presence of DIF for a given item would indicate 
that the item may measure a secondary latent trait, either 
alone  (completely missing the target concept) or in concert 
with the primary trait (which requires knowledge of the target 
concept and the secondary concept). For example, suppose a 
student needed both an understanding of the concept of homeo-
stasis and knowledge of difficult English vocabulary (e.g., to 
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understand the phrase “hypertension is characteristic of dia-
betic nephropathy”), that is not essential for understanding the 
concept of homeostasis. Moreover, if the focal group of students 
does not have the requisite knowledge of English, then the focal 
group would be more likely to answer incorrectly compared 
with those in the reference group even if the focal group has the 
same level of homeostasis knowledge as the reference group. 
Moreover, a test containing items exhibiting DIF could in turn 
create inaccurate observed total scores, resulting in inaccurate 
estimation of the focal group’s primary latent trait (e.g., biolog-
ical concepts).

Fair or Unfair?
Although the presence of DIF is a signal that an item may be 
biased, it does not guarantee that the item is unfair. Rather, the 
presence of DIF indicates the existence of a latent trait besides 
the one of primary interest. Fairness is established subsequently 
if the secondary latent trait that was detected statistically is 
intentionally related to the primary latent trait. It is possible 
that the secondary latent trait is required by the content and the 
test specifications, even if the reference and focal groups per-
form differently.

An example of a situation in which a primary and secondary 
latent trait are both required for a test occurred recently in a 
biology admission test for medical school in the Czech Republic 
(Drabinová and Martinková, 2016; see also Štuka et al., 2012). 
On one item about childhood illnesses, DIF analysis revealed 
that women performed better than men. Content experts 
reviewed the item, and concluded that the difference occurred 
because women in the Czech Republic spend more time with 
children than men and therefore have more experience with 
childhood illnesses (Drabinová and Martinková, 2016). The 
faculty, however, still considered the item to be fair despite the 
gender difference, because medical experts need to be familiar 
with childhood illnesses. In this case, the test writers decided 
that the secondary latent trait, knowledge of childhood ill-
nesses, was related to the primary concept being tested, which 
was biology in medicine.

Other clear examples of fair items that exhibited DIF exist in 
the literature (Doolittle, 1985; Hamilton, 1999; Zenisky et al., 
2004; Liu and Wilson, 2009; Kendhammer et al., 2013). Even if 
the item flagged as DIF is later reviewed and considered fair, 
the act of identifying these gaps in conceptual understanding 
can inform teaching and, subsequently, help educators and pol-
icy makers to reduce such gaps in the future.

The Czech biology medical test shows how critical it is for 
content experts to review whether DIF is the result of unin-
tended secondary latent traits (see also Ercikan et al., 2010). 
Only if the presence of DIF can be attributed to unintended item 
content (e.g., related to cultural background) or some other 
unintended item property (e.g., method of test administration) 
is the item said to be unfair. In such cases, content that is unre-
lated to the concept being tested increases the likelihood an 
individual will answer the item correctly.

Items that have been evaluated with multiple rounds of DIF 
analysis and content expert adjustments can help to decrease 
unfair achievement gaps (e.g., Penfield and Lee, 2010). For 
example, Siegel (2007) demonstrated ways to clarify item 
wording for second language learners so that they were fairly 
tested on the content rather than their language. In other 

words, ensuring that the items are clearly worded bolsters our 
confidence that we are truly assessing what students know. 
Martinello and Wolf (2012) demonstrated three situations in 
which individuals from focal groups responded incorrectly to 
math items that they were able to answer correctly during inter-
views. In one of the examples, a high school student from 
another country who was still learning English (the language of 
the test) did not understand words with multiple meanings the 
same way that native speakers would, particularly when the 
words used in the problem were culture bound. For example, 
the word “tip” can refer to tipping a waiter, but in other circum-
stances it means the top of an object, not a percentage of 
money. Thus, questions that ask students to calculate a tip for a 
waiter can be unfair (Martinello and Wolf, 2012). Some stu-
dents will answer incorrectly even if they can demonstrate the 
knowledge required to do the task, in this case approximating 
the percentage of another number. Unfair items translate into 
unfair reflections of an individuals’ true ability or knowledge, 
and they also have the strong potential to discourage students 
from underrepresented groups from becoming interested in a 
subject (Wright et al., 2016). Thus, using DIF analysis to iden-
tify DIF items that are unfair enables us to reformulate or 
remove them.

METHODS FOR DETECTING DIF
In this section, we review the most commonly used statistical 
methods that have been developed to detect DIF (Holland and 
Wainer, 1993; Millsap and Everson, 1993; Camilli and Shepard, 
1994; Clauser and Mazor, 1998; Magis et al., 2010). We focus 
on methods for tests with dichotomous items, which include 
binary items graded as true (1) or false (0), or as correct (1) or 
incorrect (0), on multiple-choice or free-recall tests. Methods 
for detecting DIF on other types of items (e.g., those graded on 
a rating, ranking, or partial-credit scale) are similar but beyond 
the scope of this paper. Generally speaking, statistically detect-
ing items exhibiting DIF requires that we match students on 
relevant knowledge (e.g., using their total scores on the assess-
ment being evaluated as an estimate of ability, or latent trait), 
and then test whether students who are matched for ability but 
from different groups perform similarly on a given item.

The methods for detecting DIF vary depending on how stu-
dents are matched. Classical methods (e.g., Mantel-Haenszel sta-
tistic and logistic regression) match students based on their total 
scores; methods based on item response theory (IRT) models, 
such as the Wald χ2 test (also known as Lord’s test; Lord, 1980) 
and Raju’s area test, consider student ability as a latent variable 
estimated together with item parameters in the model (Hills, 
1989; Millsap and Everson, 1993; Camilli and Shepard, 1994). 
Generally, IRT methods are computationally more demanding 
and require larger sample sizes. However, IRT methods are more 
precise than others, because they more accurately estimate the 
latent trait instead of using total score as the proxy.

Here, we describe the three most common approaches for 
detecting DIF (Table 1). First, we discuss the Mantel-Haenszel 
χ2 test, which functions well even for very small sample sizes 
(Mantel and Haenszel, 1959) and allows researchers to calcu-
late statistics quickly using basic arithmetic. Second, we 
describe procedures that rely on logistic regression (Zumbo, 
1999), which provides a more precise description of DIF 
compared with the Mantel-Haenszel procedure, and allows for 
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distinguishing between two types of DIF: uniform and nonuni-
form DIF. Finally, we discuss methods based on IRT models 
(Lord, 1980; Raju, 1990; Thissen et al., 1994), which more 
accurately estimate both item characteristics and student abili-
ties but require relatively larger sample sizes.

Mantel-Haenszel χ2 Test: Method for Small Samples
The Mantel-Haenszel test is an extension of the test χ2 for con-
tingency tables (Agresti, 2002) that sorts students into groups 
based on their total scores, k (Mantel and Haenszel, 1959; 
Holland, 1985; Holland and Thayer, 1988). For a given item 
and a given level of total score k, a 2 × 2 contingency table is 
created (Table 2).

Table 2 enumerates the number of students with total score 
k from the reference group who answered the item correctly 
(Ak) and incorrectly (Bk), and the respective number of students 
from the focal group (Ck, Dk). The item is not DIF if the odds of 
answering the item correctly (at a given total score level k) are 
about the same across focal and reference group, that is, if the 
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and compared with a critical value from the χ2 distribution with 
df = 1 to determine the p value (Mantel and Haenszel, 1959; 
Holland and Thayer, 1988). As an alternative, the Mantel-
Haenszel estimate of the odds ratio aMH is sometimes converted 
to a standard metric called the delta scale (Zieky, 1993):

( )∆ = − a2.35ln .MH MH  

In addition, ∆MH can be assigned to one of three categories: 
A—negligible difference, B—moderate difference, or C—large 
difference. At one extreme, category A contains items with ∆MH 
not significantly different from zero (using a test based on the 
normal distribution; see Agresti, 2002), or with small effect 
size, 1MH∆ < . At the other extreme, category C contains the 
items with | |MH∆ significantly greater than one and large effect 
size, 1.5MH∆ ≥ . Category B consists of all other items.

Significance testing of MH
2χ  or ∆MH results in making multiple 

comparisons, because every item on the instrument is tested. 
Therefore, to avoid inflating the type I error rate beyond the 
nominal level (i.e., minimizing false discoveries of DIF), Kim 
and Oshima (2013) recommended using the Benjamini-Hoch-
berg p value correction, a sequential multiple comparison pro-
cedure employing the Dunn-Šidák adjusted critical p value 
computation (Benjamini and Hochberg, 1995). This procedure 
maximizes power while controlling the false discovery rate to 
the nominal value (typically 5%).

Methods Using Logistic Regression: Looking Closer at 
Item Functioning
Another method for detecting DIF for binary-scored items (i.e., 
1 = correct and 0 = not correct) proposed by Swaminathan and 
Rogers (1990) uses logistic regression to model each item indi-
vidually (see also Zumbo, 1999; Agresti, 2002; Magis et al., 
2010). This method predicts the probability that student i 
answers item j correctly (i.e., Yij = 1), conditional on the total 
score Xi as follows:

( )= =
+ − β + βP Y X

e
1| 1

1ij i X( * )j j i0 1 �
(Model 1)

TABLE 1.  An overview of the methods for detecting DIF presented in this study

Method Strengths Limitations
Classical methods
  Mantel-Haenszel χ2 test Easy to calculate by hand Not always able to detect nonuniform DIF

Can handle small sample sizes
  Logistic regression
    Two-parameter Able to capture nonuniform DIF Does not account for guessing
    Three-parameter Accounts for guessing Some convergence issues can be observed
IRT-based methods

Three-parameter logistic (3PL) IRT Wald test More precisely estimates latent ability Requires large sample size (N > 500 in each group)

TABLE 2.  Contingency table for one item and level of total score 
equal to k

Correct 
answer

Incorrect 
answer Total

Reference group Ak Bk Ak + Bk

Focal group Ck Dk Ck + Dk

Total Ak + Ck Bk + Dk Nk = Ak + Bk + Ck + Dk



CBE—Life Sciences Education  •  16:rm2, Summer 2017	 16:rm2, 5

DIF Analysis for Conceptual Assessments

The two parameters β0j, β1j, describe properties of item j, and 
they are estimated from the model. Parameter β0j is an inter-
cept, that is, the probability of answering the item correctly for 
students with a total score of zero (note that if the total score is 
centered or standardized around zero, then the intercept would 
indicate the probability of answering the item correctly for stu-
dents with an average total score). Parameter β1j represents the 
effect of the total score on the intercept (again, the interpreta-
tion of this effect depends on how the total score is scaled), that 
is, β1j is the effect on the probability of answering each particu-
lar item correctly for each one-unit increase in the total score. 
Note that the model parameters are typically estimated by tak-
ing the natural log of the odds of the probability of answering 
the item correctly, and thus the estimated parameter values 
given in most software outputs are typically in “logits,” result-
ing in the model name, “logistic” regression. The estimated 
logistic regression line relating the total score to the probability 
of answering the item correctly is often called the item charac-
teristic curve.

To test for DIF, the linear term β0j + β1j * Xi in the logistic 
regression model 1 needs to be extended by allowing the 
parameters to differ by group, Gi, as follows:

P Y X G
e

1| , 1
1

ij i i X G X G* * * *j j i DIFj i DIFj i i0 1 0 1
( )= =

+ ( )− β + β + β + β

� (Model 2)

The new parameters β0DIF j, β1DIF j describe the potential differ-
ences in intercept and slope values between the focal and refer-
ence groups (Gi). If neither of these parameter estimates is 
statistically significant, it is concluded that there is no DIF pres-
ent in the item (Figure 1A). Estimates of the slopes and inter-
cepts in a logistic regression model are often estimated using 
iterative weighted least squares (Agresti, 2002). The signifi-
cance of the parameters involving differences between groups 
(and thus the detection of DIF) is performed either by compar-
ing the more complex model (which allows groups to differ on 

the intercept, Figure 1B, or intercept and slope, Figure 1C) with 
the simpler model (which constrains groups to have the same 
intercept and slope, Figure 1A) using a likelihood ratio test or 
by conducting a Wald test on each estimate (see Agresti, 2002). 
In either case, the Benjamini-Hochberg correction for multiple 
comparisons would need to be applied to determine the critical 
p value for detecting DIF.

Uniform and Nonuniform DIF.  The logistic regression model 
allows us to distinguish between two types of DIF: uniform DIF, 
which affects students at all levels of the total score in the same 
way (Figure 1B), and nonuniform DIF, which affects students in 
specific ranges of the total score inconsistently (Figure 1C). If 
groups only differ significantly on the intercept, that is, if β0 DIF j 
is nonzero, then the item is said to have uniform DIF. With uni-
form DIF, the item characteristic curves for the two groups have 
the same shape and do not cross (Figure 1B). Such items favor 
one group over another group across the entire range of the 
total score, albeit less so at the extreme ends of the total score 
distribution.

However, if groups differ on their slopes (i.e., if β1 DIF j is 
nonzero), the item is said to have nonuniform DIF. When 
items have nonuniform DIF, the item characteristic curves for 
different groups have different shapes, and these curves cross 
(Figure 1C). Such items favor one group within a specific 
range of the total score, and then, at some point along the 
total score distribution, the difference flips to favor the other 
group.

Shifting from Logistic Regression toward IRT Models
The Two-Parameter Model Reparameterized.  Before 
explaining IRT models, it is helpful to describe how the basic 
two-parameter logistic regression model for an item (model 1) 
can also be fitted using different set of parameters:

( )= =
+ ( )− −

P Y Z
e

1| 1
1

ij i a Z bj i j

�
(Model 3)

FIGURE 1.  Characteristic curves for reference (blue solid) and focal (yellow dashed) group. (A) The shape and placement of the curves are 
identical, so there is no DIF. (B) The item shows uniform DIF between the reference and focal group. (C) The item shows nonuniform DIF 
between the reference and focal group: the reference group has the advantage below the total score of 14, and the focal group has the 
advantage for total scores above 14.
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Model 3 differs from model 1 in two ways. First, the stan-
dardized total score, Zi, is always used instead of the total score 
Xi, which makes changes in all parameter estimates that had 
relied on the total score to become reinterpreted in terms of 
standard deviations from the mean total score (note that the 
total score could also be scaled in standard deviations in model 
1). Second, and more crucially, instead of the parameters β0j, β1j 
used in logistic regression, two different parameters, aj, bj, are 
estimated. The parameters bj and aj describe the difficulty and 
discrimination of item j, respectively. In this new model, the 
terms “difficulty” and “discrimination” are used slightly differ-
ently than they are usually used in classic measurement theory 
research (Allen and Yen, 1979), although conceptually they are 
similar. The difficulty term, bj, is the standardized total score-
that is needed to answer item j correctly with 50% probability. 
In addition, bj is the inflection point on the item characteristic 
curve (Figure 2). The discrimination term, aj, is the slope of the 
curve at the inflection point. We follow the same procedures to 
test the significance of these terms as was described for the 
other logistic regression models, using a likelihood ratio test or 
a Wald test.

The Three-Parameter Model: Accounting for Guessing.  The 
two-parameter logistic regression models discussed so far 
(models 1 and 3) did not account for the possibility that stu-
dents may correctly answer an item simply by guessing, which 
is an expected behavior, especially for multiple-choice tests. To 
account for guessing, we can extend the two-parameter model 
(model 3) to include a guessing parameter, cj, as follows:

( ) ( )= = + −
+ ( )− −

P Y Z c c
e

1| 1 1
1

ij i j j a Z bj i j

�
(Model 4)

Technically speaking, the guessing parameter, cj, actually 
captures pseudo-guessing, which takes into account the proba-
bility of choosing each of the alternative response options (also 
known as distractors) rather than assuming an equal probabil-
ity across all option choices. As before, the parameters bj and aj 
again describe the difficulty and discrimination of jth item, 
respectively. In the item characteristic curve, the new pseu-
do-guessing parameter, cj, is represented by the lower asymp-
tote (Figure 3). Note that, for the case where cj is assumed to be 
0, the model reduces to the previous two-parameter logistic 
regression, model 3.

As with our original two-parameter logistic regression that 
tested for DIF (model 2), we can test the effect of group mem-
bership, Gi, on item parameters to determine the presence of 
DIF by adding the parameters aDIF j and bDIF j to the three-param-
eter logistic model 4 as follows (Drabinová and Martinková, 
2016):

( ) ( )= = + −
+ ( )( ) ( )− + − +

P Y Z G c c
e

1| , 1 1

1
ij i i j j a a G Z b b G* *j j i i j j iDIF DIF

� (Model 5)

The new parameters bDIF j and aDIF j are the differences in diffi-
culty and discrimination, respectively, between the focal and 
reference group, and parameter cj accounts for the possibility of 
guessing on the jth item. These parameters are estimated using 
the nonlinear least-squares method, and DIF for each item is 
detected with an F-test of the submodel (i.e., the model without 
group membership included) or using likelihood ratio tests 
(Dennis et al., 1981); as with the other models, the Benjami-
ni-Hochberg correction for multiple comparisons can be applied 
to control for type I error inflation.

FIGURE 2.  Characteristic curve of logistic regression model 3. The 
line representing the probability of a student answering the item 
correctly is plotted against the standardized total score (Z

i
). 

Parameter b represents difficulty (location of inflection point); 
parameter a is discrimination (slope).

FIGURE 3.  Characteristic curve of three-parameter logistic 
regression model 4. The guessing parameter (c) is the probability 
that item is guessed without necessary knowledge, and it is 
represented as the lower asymptote. The inflection point now 
occurs at the standardized total score, where the probability of the 
correct answer is (1 + c)/2.
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IRT Models: Assuming a Latent Trait
IRT models, sometimes called latent trait models, are similar to 
logistic regression models in that they also predict the probabil-
ity of a student answering an item correctly as a function of 
both the student ability and the item parameters. However, IRT 
models are more precise, in that students’ true knowledge 
(theta) is considered latent—or unobserved—because it fol-
lows some distribution (e.g., normal) and can only be estimated 
from performance on observed indicators, in this case items.

The three-parameter logistic IRT model 6 (also called the 3PL 
IRT model) is analogous to the three-parameter logistic regres-
sion model 4, with θ representing the true, unobserved construct 
level and replacing Z (the standardized observed total score) as

( ) ( )= θ = + −
+ ( )− θ −

P Y c c
e

1| 1 1
1

ij i j j a bj i j

�
(Model 6)

The interpretation of the item parameters aj, bj, and cj, 
remains the same as in the three-parameter model 4. However, 
in IRT models, θ has a specific distribution that is estimated 
together with item parameters.

Extending IRT Models to Test for DIF.  As with the logistic 
regression approaches we outlined in models 2 and 4, in IRT 
models, interactions between group membership G and item 
parameters bDIF j and aDIF j can be added to the model to test for 
DIF. The parameters are then estimated jointly for all items 
simultaneously; this is often done using marginal maximum 
likelihood (Magis et al., 2010), although other estimation algo-
rithms are possible. Commonly, likelihood ratio tests are used to 
test whether the model that allows groups to differ on item 
characteristics fits better than the simpler model that constrains 
groups to have the same item characteristics (Thissen et al., 
1994). In addition, the Wald χ2 test of differences in parameters 
between groups (Figure 4A) or Raju’s test (Figure 4B) of the 
differences in areas between groups’ characteristic curves (Raju, 
1988, 1990) can be used to evaluate the presence of DIF. We use 
the Wald test in the case studies presented in this paper and 
then apply the Benjamini-Hochberg critical p value correction 
for multiple comparisons.

Other IRT Models.  There are other IRT models as well. First, if 
the guessing parameter of model 6 is fixed at cj = 0, then the 
model reduces to what is called a two-parameter IRT model, for 
which logistic regression model 3 is a proxy. Second, if the dis-
crimination parameter is fixed at aj = 1, in addition to con-
straining the guessing parameter to 1, then model 6 reduces to 
a (one-parameter) Rasch model (Rasch, 1960). Each of these 
two simpler models can also be extended to account for DIF just 
as outlined above.

Rasch models have recently received a great deal of attention 
in biology education research, including the recommendation 
that they be used more frequently for assessment development 
(Boone, 2016). The biggest advantage of Rasch models, like 
other IRT models, over the classical test theory models (using 
only total scores) is that they allow us to estimate the relation-
ship between student ability and all item difficulties. Moreover, 
this relationship can be visualized using a type of graph known 
as a person-item map (also called the Wright map).

Although we agree with Boone (2016) in advocating for use 
of person-item maps (and, in fact, have included a person-item 
map in our analysis of the HCI; McFarland et al., 2017), we also 
acknowledge the limits of the one-parameter IRT model: con-
straining all items to have the same discrimination levels and 
disallowing for guessing. Hence, we describe the three-
parameter IRT model in this paper to afford researchers with a 
more flexible model that not only provides more information 
about discrimination and guessing parameters but also allows 
us to know whether groups differ on these parameters.

Choosing a Model with Sample Size in Mind
One limitation of IRT models is that they require a relatively 
large sample size. For example, it is recommended that data be 
collected for 500 students in the reference group and 500 stu-
dents in each of the focal groups for fitting and calibrating items 
parameters in the three-parameter IRT model (Kim and Oshima, 
2013). Nevertheless, as already mentioned, the strength of 
two- or three-parameter IRT models is that they can allow for 
additional information, such as discrimination and guessing, 
to be estimated and used to inform assessment development 

FIGURE 4.  IRT methods for detecting DIF. (A) Wald χ2 statistic is based on differences in parameter estimates for the two groups. (B) Raju’s 
test is based on area between IRT characteristic curves for the two groups.
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(Holland and Wainer, 1993; Camilli, 2006; Zumbo, 2007; 
Magis et al., 2010).

Software Options
DIF testing using logistic regression analysis (e.g., models 2 and 
5) can be carried out in a variety of widely available general 
statistical analysis software, such as R (R Core Team, 2016), SAS 
(SAS Institute, 2013), SPSS (IBM, 2013), STATA (StataCorp, 
2015), and others. For DIF analysis within an IRT model, there 
are several commercially available packages, including Winsteps 
(Linacre, 2005), IRTPRO (Cai et al., 2011), and ConQuest (Wu 
et al., 1998); for other psychometric software, see www.crcpress 
.com/Handbook-of-Item-Response-Theory-Three-Volume-Set/
Linden/p/book/9781466514393. Although each of these soft-
ware packages has its own strengths, we note that the Rasch 
(one-parameter) IRT models are limited to testing uniform DIF 
due only to their simpler nature (a two-parameter model would 
be required to test nonuniform DIF). As such, software that esti-
mates two-parameter IRT models is required for testing nonuni-
form DIF. We also note that the cost of commercially available 
software can sometimes be a barrier to researchers. Thus, in 
this paper, we illustrate examples using a freely available and 
flexible interactive online interface application called Shiny-
ItemAnalysis (Martinková et al., 2017), which was developed 
within the freely available statistical software environment, 
R (R Core Team, 2016) and its libraries (e.g., difR, by Magis 
et al., 2016; difNLR by Drabinová et al., 2017). The Shiny appli-
cation provides a Web-based graphical user interface that 
makes it straightforward for users to work with R. The Shiny-
ItemAnalysis package makes use of that interface to provide an 
easy to implement, user-friendly software for test and item 
analysis, including detection of DIF (Martinková et al., 2017). 
We also provide R code for examples from this paper in the 
Supplemental Material.

CASE STUDIES
We use two data sets to provide context for and illustrate the 
use of DIF analysis for flagging potentially biased items. These 
case studies were selected to emphasize the fact that inferences 
about test fairness based on total scores alone may be mislead-
ing. In both case studies, the conclusions that would have been 
drawn solely from comparing test scores between different 
groups differ from the conclusions drawn from DIF analysis. 
Our examples purposefully illustrate two extremes to explain 
why analyzing total scores is not sufficient for assessing fair-
ness. At one extreme, using a DIF analysis of the HCI (McFarland 
et al., 2017), we observe a gap in total scores between two 
groups even though there is no DIF. At the other extreme, we 
employ a simulated data set to illustrate a case in which the 
distribution of total scores of two groups is exactly the same, 
but DIF exists. The simulated data set is a particularly powerful 
example because it shows that it is theoretically possible to 
detect DIF even when the distribution of total scores of two 
groups is exactly the same. This outcome is admittedly improb-
able, but considering this theoretical possibility helps explicate 
the strength of DIF analysis. This section ends with a brief over-
view of other studies that have used DIF analysis in biology, 
including a discussion of how this result leads to the reformula-
tion of items and, therefore, an assessment that is more equitable 
and fair.

Case 1: HCI Data Set
The first data set was collected during the final validation of 
the HCI (McFarland et al., 2017) and illustrates that finding a 
difference in total score between two groups does not neces-
sarily indicate item bias. The HCI is a 20-item multiple-choice 
instrument designed to measure undergraduate student 
understanding of homeostasis in physiology. The HCI was val-
idated with a sample of 669 undergraduate students, out of 
whom 246 identified themselves as men, 405 identified them-
selves as women, and the rest did not respond to this question 
(McFarland et al., 2017). While the overall sample of 669 stu-
dents is large, we knew that the sample sizes of the two sub-
groups might be small enough (ns < 500; in each group n < 
500) that IRT models would be underpowered.

In the HCI data set, we observed a statistically significant 
gender gap in total scores, with men performing better 
(two-sample t test p < 0.01; Figure 5A). The average total score 
was 12.70 for men (SD = 3.74) and 11.92 for women (SD = 
3.55). However, subsequent analysis using the Mantel-Haenszel 
test, the logistic regression, and the Wald test based on a 
three-parameter IRT model revealed no significant DIF items 
(see Supplemental Table 1). We therefore concluded that the 
HCI test is fair and that the difference between the groups on 
the total score was due to differences in how women and men 
understand the concept being targeted (i.e., a true achievement 
gap), rather than differences in additional content necessary to 
understand the items. In other words, the gender gap in the 
total score represents a real difference in understanding, not 
items that unfairly favor men over women.

This case study also provides an example of how it can be 
challenging to fit a three-parameter IRT model to a small sam-
ple. For men (n = 246), the initial model yielded unusually 
large standard errors for parameter estimates for item 17. This 
was a particularly difficult item based on a common miscon-
ception (see also McFarland et al., 2017). But the large stan-
dard errors were more likely due to the fact that the sample 
size was relatively small for such a complex IRT model. In the 
end, we removed item 17 and then were able to get a good fit 
with the model.

Case 2: Simulated Data Set
The second data set is a simulated data set of 1000 men and 
1000 women taking a 20-item, binary test inspired by Graduate 
Management Admission Test (GMAT; Kingston et al., 1985, p. 
47). This data set was designed to illustrate that DIF items may 
be present even when different groups have exactly the same 
distributions of total scores. We generated a data set in which 
the distribution of total scores was identical for men and women 
(Figure 5B), even though they performed differently on the first 
two items of the test. The way in which we constructed this 
data set (see Supplemental Tables 2 and 3) guaranteed that 
item 1 would have uniform DIF (Figure 6A) and item 2 would 
have nonuniform DIF (Figure 6B). The Mantel-Haenszel test, 
the logistic regression models, and the IRT models all flagged 
the first two items correctly as DIF (Supplemental Table 4).

Note that this example illustrates item characteristic curves 
that distinguish between uniform and nonuniform DIF. We spe-
cifically used the three-parameter logistic regression (model 5) 
to generate these curves (Figure 6 and Supplemental Table 4), 
because we wanted to take into account guessing, as guessing 

www.crcpress.com/Handbook-of-Item-Response-Theory-Three-Volume-Set/Linden/p/book/9781466514393
www.crcpress.com/Handbook-of-Item-Response-Theory-Three-Volume-Set/Linden/p/book/9781466514393
www.crcpress.com/Handbook-of-Item-Response-Theory-Three-Volume-Set/Linden/p/book/9781466514393
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was incorporated into the simulation (see Supplemental Tables 
5 and 6). As can be seen in Figure 6, A and B, respectively, item 
1 shows uniform DIF and item 2 shows nonuniform DIF.

Comparing the Two Cases
Comparing total scores in the HCI data set suggests there is a 
difference between men and women in overall test performance 
(Table 3). However, none of the DIF methods detected any item 
that functioned differently for women and men. We therefore 
concluded that the difference in total scores was due to a real 
gap in how men and women understand the concepts being 
tested. In contrast, the analysis of the simulated data set demon-
strated that, even with exactly the same distribution of total 
scores for both groups, the test still had items that were not 
functioning the same way for the two groups (Table 3). Only 

DIF analysis (rather than total score testing) was necessary to 
detect this hidden bias. If this had been a real data set, addi-
tional item analysis with content experts would be crucial for 
determining whether the flagged items were fair or unfair.

DIF Analysis in Biology and Beyond: A Brief Review of 
Other Examples
The statistical detection of DIF is only the first step in evaluat-
ing the potential measurement bias. To illustrate the necessity 
of content experts’ review of the items tagged as DIF, we 
briefly describe other studies in the biology education litera-
ture in which DIF analysis has been used to identify problem-
atic items.

In one study, Federer et al. (2016) explored the relationship 
between the way men and women answered open-ended 

FIGURE 5.  Histograms of total score by gender. Men (reference group, blue), women (focal group, yellow). (A) HCI data set. Men achieve 
higher scores on the HCI as confirmed by statistical tests. (B) Simulated data set based on GMAT item parameters. Distribution of total 
scores is exactly the same for men and women.

FIGURE 6.  Item characteristic curves for reference (blue) and focal (yellow) group by three-parameter logistic regression model 5 for items 
1 and 2 in simulated data set. Dots represent the proportion of correct answers on item by the men (reference group, blue) and women 
(focal group, yellow). Horizontal lines represent the estimate of the guessing parameter, c. (A) Uniform DIF is detected in item 1.  
(B) Nonuniform DIF is detected in item 2.
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questions about natural selection. They used the Mantel- 
Haenszel test to detect DIF and found that women performed 
better on questions requiring them to apply key concepts to 
new situations. They acknowledged that the causes of differ-
ences in gender performance are complex and need further 
study, while also showing evidence that the instrument they 
developed had little gender bias.

In another study focusing on evolution, Smith et al. (2016) 
developed an instrument to assess the extent to which high 
school and college students accept the theory of evolution. 
Their initial instrument included 14 statements in which stu-
dents used a four-point rating to indicate their agreement. Two 
of their items were flagged as DIF, one of which was removed 
from the next iteration of the instrument. However, the other 
flagged item (“Evolution is a scientific fact.”) was retained, 
because it helped distinguish among high school and college 
students. Smith et al.’s (2016) decision to keep one DIF item 
emphasizes that the statistical analysis must be paired with 
evaluation by content experts.

In a somewhat older study, Sudweeks and Tolman (1993) 
used the Mantel-Haenszel test to detect DIF and also consulted 
with content experts to identify potential gender-biased items 
for a 78-item multiple-choice test of scientific knowledge for 
fifth graders in Utah. The content experts found that one item 
was potentially biased, because they felt that one of the dis-
tractors might favor girls. However, this item was not flagged 
by DIF analysis. In contrast, the statistical analysis identified 
eight items as easier for boys and one item that was easier 
for girls (different than the one flagged by content experts). On 
the basis of these findings, the authors argued that items 
require both statistical and content expert analyses for devel-
oping assessments.

The consequences of unfair test items can be quite serious. 
Noble et al. (2012) responded to reports of achievement gaps 
in a statewide science assessment for fifth graders in Massa-
chusetts, a form of high-stakes testing that resulted from the 
federal “No Child Left Behind” legislation. As part of their 
study, they tested DIF on a subset of six items that were 
flagged by experts by comparing observed item performance 
with content knowledge ascertained using interviews of chil-
dren who took the test. Logistic regression revealed that five 

of the six items were indeed exhibiting DIF (p < 0.01). Stu-
dents from low-income households and students who were 
English language learners were more likely to answer these 
items incorrectly compared with students from higher-in-
come households or students who were native speakers—
even when these focal groups had demonstrated in inter-
views that they correctly understood the science content. 
Thus, the authors concluded these test five items were unfair 
and needed to be revised.

In addition to being used to develop and improve instru-
ments, DIF analysis can also be employed to study changes 
over time among cohorts of a population. As one example, 
Romine et al. (2016) used logistic regression to detect small 
differences across time in an assessment of health science 
interest for middle school students. Three of the items flagged 
for DIF revealed distinct wording differences compared with 
other items on the assessment. Indeed, most of the items 
asked students what they thought of the science they were 
already engaged in currently, whereas the items flagged for 
DIF asked students to indicate whether they wanted to spend 
more time learning science.

In summary, we strongly urge researchers to adopt DIF 
analysis as part of their routine practice in developing and 
improving assessments. In addition, we urge researchers to 
combine statistical analysis with context expertise to best 
understand whether DIF-flagged items are fair or unfair. This 
procedure helps ensure that instruments are more fair and 
equitable when they are first published and, further, that 
other research using these instruments is also more fair and 
equitable.

CONCLUSION
In this paper, we argue that DIF analysis is a critical part of 
developing both large- and small-scale educational tests, 
because it can be used to assess test fairness and therefore test 
claims about validity. Comparing the total scores of different 
groups is helpful to explore how different groups perform, but 
it is not sufficient for determining fairness. Differences in true 
scores might exist even in a test that is fair (case study 1). More-
over, potential unfairness of items can be hidden and not 
revealed by total score analysis (case study 2).

TABLE 3.  Comparison of case studies

HCI Simulated data set
Total scores Difference No difference

Men: 12.70, SD = 3.74 Men: 11.60, SD = 3.11
Women: 11.92, SD = 3.55 Women: 11.60, SD = 3.11
p < 0.01 (two-sample t test) p > 0.99 (two-sample t test)

DIF
Mantel-Haenszel No DIF items (p > 0.05 for all items) DIF detected in item 1 (p < 0.01) and in item 2 (p < 0.01)

Method does not distinguish between uniform and 
nonuniform DIF.

Logistic regression (model 5) No DIF items (p > 0.05 for all items) Uniform DIF detected in item 1 (p < 0.01)
Nonuniform DIF detected in item 2 (p < 0.01)

IRT Wald test (model 6) No DIF items (p > 0.05 for all items) Uniform DIF detected in item 1 (p < 0.01)
Nonuniform DIF detected in item 2 (p < 0.01)

Fairness No potential unfairness detected To be determined by content experts
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We have also provided a brief tutorial of some of the most 
common methods for DIF analysis, and this tutorial is sup-
plemented with selected R code and an interactive online 
application (Supplemental Material; Martinková et al., 2017, 
see also https://shiny.cs.cas.cz/ShinyItemAnalysis). As with 
any active area of research, more methods are available and 
new methods are still being proposed (e.g., Magis et al., 
2014; Berger and Tutz, 2016). Deciding which method to use 
depends on sample sizes and assumptions about items. 
Closer guidance may be provided by simulation studies in 
which data sets are generated thousands of times. This 
approach allows the properties of different DIF detection 
methods to be compared with respect to their power and 
type I error rate (e.g., Swaminathan and Rogers, 1990; 
Narayanan and Swaminathan, 1996; Güler and Penfield, 
2009; Kim and Oshima, 2013; Drabinová and Martinková, 
2016). Studies like these have demonstrated that the Man-
tel-Haenszel method works particularly well for small sam-
ple sizes but, as expected from its formula, does not always 
detect nonuniform DIF (Swaminathan and Rogers, 1990; 
Drabinová and Martinková, 2016). In our opinion, the 
methods that are based on regression are particularly appeal-
ing, because they are more flexible in detecting both nonuni-
form and uniform DIF and, unlike the Mantel-Haenszel 
method, also provide parameter estimates (Zumbo, 1999). 
Finally, IRT models have an added advantage of providing 
more precise estimates of latent traits, but they may be diffi-
cult to fit for sample sizes less than 500 students per group 
(e.g., Kim and Oshima, 2013).

We wish to reemphasize here that items flagged as DIF only 
have the potential to be unfair; an expert review is required (for 
methods, see, e.g., Ercikan et al., 2010; Adams and Wieman, 
2011) to determine whether the differences in performance 
among groups are due to factors related to the concept being 
tested, or whether they are instead “unfair” and related to a 
secondary latent trait, such as cultural, curricular, or lan-
guage-related knowledge.

While DIF analysis is ubiquitous in large-scale assess-
ment, it has been used rarely as a check for fairness in devel-
oping and using low-stakes tests that are used daily in all 
levels of education. However, developing fair tests is a value 
that all educators should aspire to in order to ensure that 
tests are not only accurate for student feedback, but also for 
informing modifications to teaching. Moreover, fair tests are 
necessary to promote and retain underrepresented groups 
in science, technology, engineering, and mathematics fields 
(Rauschenberger and Sweeder, 2010; Creech and Sweeder, 
2012; Legewie and DiPrete, 2014). In short, DIF analysis 
should have a routine role in all our efforts to develop 
assessments that are more equitable measures of scientific 
knowledge.

ACKNOWLEDGMENTS
This research was supported by Czech Science Foundation grant 
number GJ15-15856Y and by National Science Foundation 
grant number DUE-1043443. We thank Ross H. Nehm, Roddy 
Theobald, Mary Pat Wenderoth, and two anonymous reviewers 
for their valuable feedback.

REFERENCES
Ackerman, T. A. (1992). A didactic explanation of item bias, item impact, and 

item validity from a multidimensional perspective. Journal of Educational 
Measurement, 29, 67–91.

Adams, W. K., & Wieman, C. E. (2011). Development and validation of instru-
ments to measure learning of expert‐like thinking. International Journal 
of Science Education, 33, 1289–1312.

Agresti, A. (2002). Categorical data analysis. Hoboken, NJ: Wiley-Interscience.

Allen, M. J., & Yen, W. M. (1979). Introduction to measurement theory. 
Monterey, CA: Brooks/Cole.

American Educational Research Association, American Psychological 
Association, National Council on Measurement in Education. (2014). 
Standards for educational and psychological testing. Washington, DC.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A 
practical and powerful approach to multiple testing. Journal of the Royal 
Statistical Society: Series B, Statistical Methodology, 57, 289–300.

Berger, M., & Tutz, G. (2016). Detection of uniform and nonuniform differen-
tial item functioning by item-focused trees. Journal of Educational and 
Behavioral Statistics, 41, 559–592.

Boone, W. J. (2016). Rasch analysis for instrument development: Why, when 
and how? CBE—Life Sciences Education, 15, rm4.

Cai, L., Thissen, D., & du Toit, S. (2011). IRTPRO [Software manual]. Version 
2.1, Skokie, IL: Scientific Software International. Retrieved January 24, 
2016, from www.ssicentral.com/irt/index.html

Camilli, G. (2006). Test fairness. In: Brennan R. & National Council on Mea-
surement in Education (Eds.), Educational measurement (pp. 220–256). 
Westport, CT: Praeger.

Camilli, G., & Shepard, L. A. (1994). Methods for identifying biased test items. 
Thousand Oaks, CA: Sage.

Clauser, B. E., & Mazor, K. M. (1998). Using statistical procedures to identify 
differentially functioning test items. Educational Measurement: Issues 
and Practice, 17, 31–44.

Creech, L. R., & Sweeder, R. D. (2012). Analysis of student performance in 
large-enrollment life science courses. CBE—Life Sciences Education, 11, 
386–391.

Deane, T., Nomme, K., Jeffery, E., Pollock, C., & Birol, G. (2016). Development 
of the Statistical Reasoning in Biology Concept Inventory (SRBCI). CBE—
Life Sciences Education, 15, ar5. doi: 10.1187/cbe.15-06-0131: 10.1187/
cbe.15-06-0131

Dennis, J. E., Gay, D. M., Walsh, R. E., & Rice, J. (1981). An adaptive nonlinear 
least-squares algorithm. ACM Transactions on Mathematical Software, 7, 
348–368.

Doolittle, A. E. (1985). Understanding differential item performance as a con-
sequence of gender differences in academic background. Paper pre-
sented at the Annual Meeting of the American Educational Research 
Association, Chicago, IL.

Downing, S. M., & Haladyna, T. M. (2006). Handbook of test development. 
Hillsdale, NJ: Lawrence Erlbaum.

Drabinová, A., & Martinková, P. (2016). Detection of differential item function-
ing with non-linear regression: Non-IRT approach accounting for guess-
ing. Retrieved May 11, 2017, from http://hdl.handle.net/11104/0259498

Drabinová, A., Martinková, P., & Zvára, K. (2017). difNLR: Detection of Dichot-
omous Differential Item Functioning (DIF) and Differential Distractor 
Functioning (DDF) by Non-Linear Regression Models, R package version 
1.0.0. Retrieved May 11, 2017, from https://CRAN.R-project.org/package 
=difNLR

Ercikan, K., Arim, R., Law, D., Domene, J., Gagnon, F., & Lacroix, S. (2010). 
Application of think aloud protocols for examining and confirming 
sources of differential item functioning identified by expert reviews. 
Educational Measurement: Issues and Practice, 29, 24–35.

Federer, M. R., Nehm, R. H., & Pearl, D. K. (2016). Examining gender differences 
in written assessment tasks in biology: a case study of evolutionary ex-
planations. CBE—Life Sciences Education, 15, ar2.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/
hierarchical models. New York: Cambridge University Press.

Güler, N., & Penfield, R. D. (2009). A comparison of the logistic regression 
and contingency table methods for simultaneous detection of uniform 
and nonuniform DIF. Journal of Educational Measurement, 46, 314–329.

http://hdl.handle.net/11104/0259498
https://CRAN.R-project.org/package=difNLR
https://CRAN.R-project.org/package=difNLR


16:rm2, 12	  CBE—Life Sciences Education  •  16:rm2, Summer 2017

P. Martinková et al.

Hamilton, L. S. (1999). Detecting gender-based differential item functioning 
on a constructed-response science test. Applied Measurement in 
Education, 12, 211–235.

Hills, J. R. (1989). Screening for potentially biased items in testing programs. 
Educational Measurement: Issues and Practice, 8, 5–11.

Holland, P. W. (1985). On the study of differential item performance without 
IRT. In Proceedings of the 17th Annual Conference of the Military Testing 
Association (282–287).

Holland, P. W., & Thayer, D. T. (1988). Differential item performance and the 
Mantel-Haenszel procedure. In: Wainer H., & Braun H. I. (Eds.), Test 
validity (pp. 129–145). Hillsdale, NJ: Lawrence Erlbaum.

Holland, P. W., & Wainer, H. (1993). Differential item functioning. Hillsdale, 
NJ: Lawrence Erlbaum.

Huang, X., Wilson, M., & Wang, L. (2016). Exploring plausible causes of differ-
ential item functioning in the PISA science assessment: language, curric-
ulum or culture. Educational Psychology, 36, 378–390.

IBM. (2013). IBM SPSS statistics for Windows. Version 22.0. Armonk, NY.

Kendhammer, L., Holme, T., & Murphy, K. (2013). Identifying differential per-
formance in general chemistry: Differential item functioning analysis of 
ACS general chemistry trial tests. Journal of Chemical Education, 90, 
846–853.

Kim, J., & Oshima, T. C. (2013). Effect of multiple testing adjustment in differ-
ential item functioning detection. Educational and Psychological Mea-
surement, 73, 458–470.

Kingston, N., Leary, L., & Wightman, L. (1985). An exploratory study of the 
applicability of item response theory methods to the Graduate Manage-
ment Admission Test. ETS Research Report Series, 1985(2), i–56.

Legewie, J., & DiPrete, T. A. (2014). The high school environment and the 
gender gap in science and engineering. Sociology of Education, 87, 
259–280.

Libarkin, J. (2008). Concept inventories in higher education science. Paper 
presented at: National Research Council Promising Practices in Under-
graduate STEM Education Workshop 2 (October 13–14, Washington, DC).

Linacre, J. M. (2005). Rasch dichotomous model vs. one-parameter logistic 
model. Rasch Measurement Transactions, 19(3), 1032. 

Liu, O. L., & Wilson, M. (2009). Gender differences in large-scale math as-
sessments: PISA trend 2000 and 2003. Applied Measurement in Educa-
tion, 22, 164–184.

Lord, F. (1980). Applications of item response theory to practical testing 
problems. Hillsdale, NJ: Erlbaum.

Magis, D., Beland, S., & Raiche, G. (2016). difR: Collection of methods to de-
tect dichotomous differential item functioning (DIF) in psychometrics. 
R package Version 4.7. Retrieved May 11, 2017, from https://CRAN.R 
-project.org/package=difR

Magis, D., Beland, S., Tuerlinckx, F., & De Boeck, P. (2010). A general frame-
work and an R package for the detection of dichotomous differential 
item functioning. Behavior Research Methods, 42, 847–862.

Magis, D., Tuerlinckx, F., & De Boeck, P. (2014). Detection of differential item 
functioning using the lasso approach. Journal of Educational and Behav-
ioral Statistics, 40, 111–135.

Mantel, M., & Haenszel, W. (1959). Statistical aspects of the analysis of data 
from retrospective studies of disease. Journal of the National Cancer In-
stitute: Monographs, 22, 719–748.

Martinello, M., & Wolf, M. K. (2012). Exploring ELL’s understanding of word 
problems in mathematics assessments: the role of text complexity and 
student background knowledge. In Celedón-Pattichis S., & Ramirez N. 
(Eds.), Beyond good teaching: Strategies that are imperative for English 
language learners in the mathematics classroom. Reston, VA: National 
Council of Teachers of Mathematics.

Martinková, P., Drabinová, A., Leder, O., & Houdek, J. (2017). ShinyItemAnaly-
sis: test and item analysis via Shiny. R package Version 1.1.0. Retrieved May 
11, 2017, from https://CRAN.R-project.org/package=ShinyItemAnalysis

McFarland, J. L., Price, R. M., Wenderoth, M. P., Martinková, P., Cliff, W., Michael, 
J., Modell, H., & Wright, A. (2017). Development and validation of the ho-
meostasis concept inventory. CBE—Life Sciences Education, 16, ar35.

Millsap, R. E., & Everson, H. T. (1993). Methodology review: statistical 
approaches for assessing measurement bias. Applied Measurement in 
Education, 17, 297–334.

Moore, D., Notz, W., & Fligner, M. A. (2015). The basic practice of statistics. 
New York: Freeman.

Narayanan, P., & Swaminathan, H. (1996). Identification of items that show 
nonuniform DIF. Applied Psychological Measurement, 20, 257–274.

Neumann, I., Neumann, K., & Nehm, R. (2011). Evaluating instrument quality 
in science education: Rasch-based analyses of a nature of science test. 
International Journal of Science Education, 33, 1373–1405. doi: 10.1080/ 
09500693.2010.511297

Noble, T., Suarez, C., Rosebery, A., Oçonnor, M. C., Warren, B., & Hudicourt- 
Barnes, J. (2012). “I never thought of it as freezing”: How students answer 
questions on large-scale science tests and what they know about 
science. Journal of Research in Science Teaching, 49, 778–803.

Penfield, R. D., & Lee, O. (2010). Test-based accountability: potential benefits 
and pitfalls of science assessment with student diversity. Journal of 
Research in Science Teaching, 47, 6–24.

Raju, N. S. (1988). The area between two item characteristic curves. Psycho-
metrika, 53, 495–502.

Raju, N. S. (1990). Determining the significance of estimated signed and 
unsigned areas between two item response functions. Applied Psycho-
logical Measurement, 14, 197–207.

R Core Team (2016). R: A language and environment for statistical comput-
ing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved 
May 11, 2017, from www.R-project.org

Rasch, G. (1960). Probabilistic models for some intelligence and attainment 
tests. Chicago: University of Chicago Press.

Rauschenberger, M. M., & Sweeder, R. D. (2010). Gender performance differ-
ences in biochemistry. Biochemistry and Molecular Biology Education, 
38, 380–384.

Reeves, T. D., & Marbach-Ad, G. (2016). Contemporary test validity in theory 
and practice: a primer for discipline-based education researchers. CBE—
Life Sciences Education, 15, rm1.

Romine, W. L., Miller, M. E., Knese, S. A., & Folk, W. R. (2016). Multilevel 
assessment of middle school students’ interest in the health sciences: 
Development and validation of a new measurement tool. CBE—Life 
Sciences Education, 15, ar21.

Roussos, L., & Stout, W. (1996). A multidimensionality-based DIF analysis par-
adigm. Applied Psychological Measurement, 20, 355–371.

Sabatini, J., Bruce, K., Steinberg, J., & Weeks, J. (2015). SARA reading compo-
nents tests, rise forms: technical adequacy and test design. ETS Research 
Report Series, 2015(2), 1–20.

SABER. (n. d.). Biology concept inventories and assessments. Retrieved 
January 24, 2016, from http://saber-biologyeducationresearch.wikispaces 
.com/DBER-Concept+Inventories

SAS Institute. (2013). SAS 9.4 language reference concepts. Cary, NC.

Shealy, R., & Stout, W. (1993). A model-based standardization approach that 
separates true bias/DIF from group ability differences and detects test 
bias/DTF as well as item bias/DIF. Psychometrika, 58, 159–194.

Siegel, M. A. (2007). Striving for equitable classroom assessments for linguis-
tic minorities: Strategies for and effects of revising life science items. 
Journal of Research in Science Teaching, 44, 864–881.

Smith, M. U., Snyder, S. W., & Devereaux, R. S. (2016). The GAENE—General-
ized Acceptance of EvolutioN Evaluation: development of a new mea-
sure of evolution acceptance. Journal of Research in Science Teaching, 
53, 1289–1315.

StataCorp (2015). Stata statistical software. Release 14. College Station, TX.

Steif, P. S., & Dantzler, J. A. (2005). A statics concept inventory: development 
and psychometric analysis. Journal of Engineering Education, 94, 363–
371.

Štuka, Č., Martinková, P., Zvára, K., & Zvárová, J. (2012). The prediction and 
probability for successful completion in medical study based on tests 
and pre-admission grades. New Educational Review, 28, 138–152.

Sudweeks, R. R., & Tolman, R. R. (1993). Empirical versus subjective proce-
dures for identifying gender differences in science test items. Journal of 
Research in Science Teaching, 30, 3–19.

Swaminathan, H., & Rogers, J. H. (1990). Detecting differential item 
functioning using logistic regression procedures. Journal of Educational 
Measurement, 27, 361–370.

https://CRAN.R-project.org/package=difR
https://CRAN.R-project.org/package=difR
https://CRAN.R-project.org/package=ShinyItemAnalysis


CBE—Life Sciences Education  •  16:rm2, Summer 2017	 16:rm2, 13

DIF Analysis for Conceptual Assessments

Thissen, D., Wainer, H., & Wang, X. B. (1994). Are tests comprising both 
multiple-choice and free-response items necessarily less unidimension-
al than multiple-choice tests? An analysis of two tests. Journal of Educa-
tional Measurement, 31, 113–123.

Walker, C. M. (2011). What’s the DIF? Why differential item functioning anal-
yses are an important part of instrument development and validation. 
Journal of Psychoeducational Assessment, 29, 364–376.

Walker, C. M., & Beretvas, S. N. (2001). An empirical investigation demon-
strating the multidimensional DIF paradigm: A cognitive explanation for 
DIF. Journal of Educational Measurement, 38, 147–163.

Wright, C. D., Eddy, S. L., Wenderoth, M. P., Abshire, E., Blankenbiller, M., 
& Brownell, S. E. (2016). Cognitive difficulty and format of exams pre-
dicts gender and socioeconomic gaps in exam performance of stu-
dents in introductory biology courses. CBE—Life Sciences Education, 
15, ar23.

Wu, M. L., Adams, R. J., & Wilson, M. R. (1998). ConQuest [computer software], 
Camberwell, Victoria: Australian Council for Educational Research.

Zenisky, A. L., Hambleton, R. K., & Robin, F. (2004). DIF detection and inter-
pretation in large-scale science assessments: informing item writing 
practices. Educational Measurement, 9, 61–68.

Zieky, M. (1993). Practical questions in the use of DIF statistics in test devel-
opment. In Holland P. W. & Wainer H. (Eds.), Differential item functioning 
(pp. 337–347). Hillsdale, NJ: Erlbaum.

Zieky, M. (2003). A DIF primer. Princeton, NJ: Educational Testing Service. 
Retrieved January 24, 2016, from www.ets.org/s/praxis/pdf/dif_primer.pdf

Zumbo, B. D. (1999). A handbook on the theory and methods of differential 
item functioning (DIF): Logistic regression modeling as a unitary frame-
work for binary and Likert-type (ordinal) item scores. Ottawa ON: 
Directorate of Human Resources Research and Evaluation, Department 
of National Defense. Retrieved January 24, 2016, from http://faculty 
.educ.ubc.ca/zumbo/DIF/handbook.pdf

Zumbo, B. D. (2007). Three generations of differential item functioning (DIF) 
analyses: Considering where it has been, where it is now, and where it is 
going. Language Assessment Quarterly, 4, 223–233.




