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ARTICLE

ABSTRACT
In response to calls to improve the quantitative training of undergraduate biology students, 
there have been increased efforts to better integrate math into biology curricula. One chal-
lenge of such efforts is negative student attitudes toward math, which are thought to be 
particularly prevalent among biology students. According to theory, students’ person-
al values toward using math in a biological context will influence their achievement and 
behavioral outcomes, but a validated instrument is needed to determine this empirically. 
We developed the Math–Biology Values Instrument (MBVI), an 11-item college-level self-
report instrument grounded in expectancy-value theory, to measure life science students’ 
interest in using math to understand biology, the perceived usefulness of math to their life 
science career, and the cost of using math in biology courses. We used a process that inte-
grates multiple forms of validity evidence to show that scores from the MBVI can be used 
as a valid measure of a student’s value of math in the context of biology. The MBVI can be 
used by instructors and researchers to help identify instructional strategies that influence 
math–biology values and understand how math–biology values are related to students’ 
achievement and decisions to pursue more advanced quantitative-based courses.

INTRODUCTION
While the field of biology is becoming increasingly quantitative, undergraduate biol-
ogy education has been comparatively slow to incorporate quantitative skills into the 
curriculum (American Association for the Advancement of Science [AAAS], 2011). 
This, in part, has led to a number of national calls to improve the quantitative training 
undergraduate biology students receive (National Research Council, 2003, 2009; 
Steen, 2005; AAAS, 2011). In response to these calls, there have been efforts to better 
integrate math into biology curricula. Such reforms include incorporating the teaching 
of quantitative skills (e.g., via modules or in-class research experiences) into biology 
courses (Robeva et al., 2010; Speth et al., 2010; Thompson et al., 2010; Colon-Berlingeri 
and Burrowes, 2011; Madlung et al., 2011; Wightman and Hark, 2012; Makarevitch 
et al., 2015; Hoffman et al., 2016), redesigning mathematics courses for biology majors 
to include biology examples (Edelstein-Keshet, 2005; Metz, 2008; Chiel et al., 2010; 
Duffus and Olifer, 2010; Watkins, 2010; Rheinlander and Wallace, 2011; Thompson 
et al., 2013), and designing fully integrated math–biology courses and majors (Depel-
teau et al., 2010; de Pillis and Adolph, 2010; Duffus and Olifer, 2010; Hoskinson, 
2010; Usher et al., 2010; Thompson et al., 2013; Hester et al., 2014). The goal of such 
reforms is to ensure that students develop quantitative skills that will prepare them for 
careers in the field of modern biology.

However, one challenge to quantitative biology education reform is negative stu-
dent attitudes toward math (Colon-Berlingeri and Burrowes, 2011; Thompson et al., 
2013). For example, if students have a negative attitude toward math, they may resist 

Sarah E. Andrews,† Christopher Runyon,‡ and Melissa L. Aikens†*
†Department of Biological Sciences, University of New Hampshire, Durham, NH 03824; 
‡Educational Psychology Department, University of Texas at Austin, Austin, TX 78712

The Math–Biology Values Instrument: 
Development of a Tool to Measure Life 
Science Majors’ Task Values of Using Math 
in the Context of Biology

Cynthia Bauerle,  Monitoring Editor
Submitted March 3, 2017; Revised May 3, 2017; 
Accepted May 9, 2017

DOI:10.1187/cbe.17-03-0043

*Address correspondence to: Melissa L. Aikens 
(melissa.aikens@unh.edu).

© 2017 S. E. Andrews et al. CBE—Life Sciences 
Education © 2017 The American Society for Cell 
Biology. This article is distributed by The American 
Society for Cell Biology under license from the 
author(s). It is available to the public under an 
Attribution–Noncommercial–Share Alike 3.0 
Unported Creative Commons License (http://
creativecommons.org/licenses/by-nc-sa/3.0).

“ASCB®” and “The American Society for Cell 
Biology®” are registered trademarks of The 
American Society for Cell Biology.

CBE Life Sci Educ September 1, 2017 16:ar45



16:ar45, 2	  CBE—Life Sciences Education  •  16:ar45, Fall 2017

S. E. Andrews et al.

learning math or avoid professors who emphasize math or 
courses in which more math is incorporated (Colon-Berlingeri 
and Burrowes, 2011). Negative math attitudes are thought to 
be particularly prevalent among biology students relative to 
other science students. Indeed, many reform efforts have incor-
porated elements specifically to promote positive math attitudes 
in biology students, such as the use of humor (Thompson et al., 
2010) or the use of real-world problems (Matthews et al., 2009, 
2010).

From a theoretical perspective, math attitudes are important 
for the development of students’ quantitative skills because 
they are posited to influence student motivation. According to 
expectancy-value theory of achievement motivation, students’ 
performance (e.g., achievement on quantitative tasks) depends 
on how well they expect to do on a task and the value they 
place on the task (Eccles et al., 1983; Wigfield and Eccles, 2000; 
Eccles and Wigfield, 2002). Students who are confident they 
can successfully do a task are motivated to persist and complete 
the task (Wigfield and Cambria, 2010). However, even if stu-
dents are confident in their ability to complete a task, they will 
not necessarily be motivated to engage in the task unless there 
is some value in it for them (Wigfield and Cambria, 2010).

The personal values a student places on a task, called task 
values, comprise four different constructs: 1) the intrinsic or 
interest value of the task, 2) the utility value of the task, 3) the 
attainment value of the task, and 4) the perceived cost of the 
task (Wigfield and Eccles, 2000). Interest value is the enjoy-
ment a student experiences from engaging in a task (Eccles 
et al., 1983; Wigfield and Eccles, 2000). Utility value is the use-
fulness of a task for a student’s future goals (Eccles et al., 1983; 
Wigfield and Eccles, 2000). Attainment value is the importance 
of doing well on a task for one’s identity (Eccles et al., 1983; 
Wigfield and Eccles, 2000). For example, if being good at math 
is an important part of a student’s identity, then the student will 
have high attainment value for quantitative tasks, because 
successful completion of these tasks will affirm the student’s 
self-identity. Finally, perceived cost involves the negative aspects 
of engaging in a task. Cost includes 1) extra effort required for 
a task, 2) the loss of opportunities that result from engaging in 
a task, and 3) the emotional toll of a task (Eccles et al., 1983; 
Wigfield and Eccles, 2000). These four constructs of task values 
are predicted by expectancy-value theory to affect a student’s 
performance on a task and the courses a student chooses to take 
(Eccles et al., 1983; Wigfield and Eccles, 2000).

Indeed, in K–12 environments, task values have been shown 
to affect achievement (Berndt and Miller, 1990; Simpkins et al., 
2006; Lee et al., 2014), course enrollment intentions (Eccles 
et al., 1984; Meece et al., 1990), academic aspirations (Korhonen 
et al., 2016), and plans to attend college (Eccles et al., 2004). 
While postsecondary environments are less studied, there is 
also evidence linking college students’ task values to achieve-
ment (Bong, 2001; Zusho et al., 2003; Hulleman et al., 2010), 
course enrollment intentions (Bong, 2001), plans to attend 
graduate school (Battle and Wigfield, 2003), and career plans 
(Jones et al., 2010). Thus, it is likely that college students’ per-
sonal values of math in a biological context (i.e., math–biology 
task values) will influence their performance on quantitative 
tasks in biology courses and their intentions to further pursue 
quantitative biology, through either additional undergraduate 
course work, graduate study, or a job in a quantitative biology 

field. To determine this empirically, however, there is a need for 
a validated instrument to measure college students’ personal 
values toward the use of math in the context of biology, as no 
such instrument currently exists.

Although an instrument does exist to measure college stu-
dents’ general math task values (Mathematics Value Inventory 
[MVI]; Luttrell et al., 2010), students’ values toward using math 
in the context of biology are likely different from their general 
math task values. Students can have difficulties applying math 
skills to new contexts (Britton, 2002; Hester et al., 2014), which 
may contribute to differing costs associated with engaging in 
general math tasks compared with engaging in math tasks in 
the context of biology. Additionally, students may not under-
stand the specific relevance of math to biology, particularly 
given that few have had experiences using math in biology, 
which may lead to differences in the perceived utility of general 
math versus the utility of math in biology.

We describe here the development of an 11-item college-level 
self-report instrument, which we call the Math–Biology Values 
Instrument (MBVI), intended to measure the values undergrad-
uate life science majors place on using math in the context of 
biology. This instrument uses expectancy-value theory as a 
theoretical framework and is adapted from the existing MVI 
(Luttrell et al., 2010). The MBVI is composed of three compo-
nents of math–biology task values: interest, utility value, and 
perceived cost. In the context of math–biology, interest refers to 
the enjoyment one gets from using math to understand biology, 
utility value refers to the usefulness of math for one’s life sci-
ence career, and perceived cost refers to negative aspects of 
using math in biology courses. Consistent with the recommen-
dations of Reeves and Marbach-Ad (2016), we used a process 
that integrates multiple forms of validity evidence to support 
the use of the MBVI as a measure of undergraduate life science 
majors’ math–biology task values. We believe the MBVI can be 
used by instructors and researchers to help identify instruc-
tional strategies that influence math–biology values and how 
math–biology values are related to students’ achievement and 
their decisions to pursue more advanced quantitative-based 
courses.

METHODS
The MBVI was modeled after the MVI developed and validated 
by Luttrell and colleagues (2010) as a measure of undergrad-
uates’ math task values. The MVI consists of four subscales, 
each containing seven Likert-type response items, that corre-
spond to each of the four task values of expectancy-value the-
ory: interest, utility value, attainment value, and perceived 
cost (Luttrell et al., 2010). Validity evidence was gathered 
using undergraduate non–math majors, and each subscale 
was shown to have high internal consistency (α = 0.91–0.95; 
Luttrell et al., 2010).

We created the initial item pool for the MBVI by modifying 
each of the MVI items in three of the subscales (interest, utility 
value, and perceived cost) to reflect the use of math specifically 
within a biological context (Table 1). Attainment value was 
conceptualized by Eccles and colleagues (1983) as the impor-
tance to one’s identity of doing well on a task, but it did not 
make sense that a student would have a mathematical biology 
identity, especially given that many students have had few, if 
any, experiences using math in biology courses. Instead, we 
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developed items to measure both math attainment value and 
biology attainment value, as we thought both may impact stu-
dents’ achievement on interdisciplinary mathematical biology 
tasks. We created math attainment items rather than use the 
attainment value subscale of the MVI, because the MVI items 
did not necessarily reflect the importance of doing well in math 
specifically for a student’s identity. We developed eight attain-
ment value items that would measure the importance of doing 
well in math for a student’s math identity (e.g., Being good at 
math is an important part of who I am). We also developed 
seven attainment value items that would measure the impor-
tance of doing well in biology for a student’s biology identity 
(e.g., Being good at biology is an important part of who I am). 
Our initial pool of survey items, therefore, consisted of nine 
interest items, seven utility value items, seven cost items, eight 
math attainment value items, and seven biology attainment 
value items for a total of 38 items.

Once we developed the initial items for the MBVI, we used a 
multistep process in line with the recommendations of Reeves 
and Marbach-Ad (2016), who describe five forms of validity 

evidence: evidence based on 1) survey content, 2) response 
processes, 3) internal structure, 4) relations with other vari-
ables, and 5) the consequences of testing. Here we provide ini-
tial validity evidence based on the first four forms of evidence 
(Figure 1). We used expert review to provide evidence that the 
construct measured (e.g., math–biology interest) and the con-
tent of the survey (e.g., the specific math–biology interest items 
on the survey) were aligned (validity evidence based on survey 
content; Reeves and Marbach-Ad, 2016). Think-aloud inter-
views with students were conducted to ensure that students’ 
interpretation of each item on the survey aligned with our defi-
nition of the item’s construct (validity evidence based on 
response processes; Reeves and Marbach-Ad, 2016). To confirm 
empirically that the items indeed represented the constructs 
they are intended to represent (evidence based on internal 
structure; Reeves and Marbach-Ad, 2016), we used exploratory 
and confirmatory factor analyses (EFA and CFA) to show that 
the items for each math–biology task-value construct are highly 
correlated with each other but weakly correlated with items 
from the other constructs. Finally, we provide validity evidence 

based on relations with other variables by 
showing that survey scores are signifi-
cantly related to similar constructs (con-
vergent validity) and are unrelated to 
dissimilar constructs (discriminant valid-
ity; Reeves and Marbach-Ad, 2016).

Content Validity: Expert Review
To provide evidence for validity based on 
survey content, we sent our initial items, 
representing five constructs (interest, 
utility value, and perceived cost of math 
in a biology context; attainment value in 
math; and attainment value in biology), 
to six experts in the field of quantitative 
biology and one expert in assessment. 
Experts were provided with definitions of 
each of the five constructs and were asked 
to rate the relevance of each item to the 
construct and the clarity of each item as 
either low, medium, or high. Experts 
could also provide comments on each 
item or suggest additional items that 
would be useful for measuring a particu-
lar construct. On the basis of the com-
ments and suggestions from the expert 
reviewers, we compiled 45 items to test 
with students.

TABLE 1.  Sample items from the MVI and their corresponding modifications to reflect math–biology task valuesa

Construct Math–biology definition Item from MVI Modified item
Interest Enjoyment one gets from using math to 

understand biology
It is fun to do math. It is fun to use math to explore biology.

Utility value The usefulness of math for one’s life 
science career

After I graduate, an understanding of 
math will be useless to me.

After I graduate, an understanding of 
math will be useful to me in a life 
science career.

Perceived cost Negative aspects of using math in 
biology courses

Taking math classes scares me. Taking biology courses that incorporate 
math scares me.

aSample MVI items from Luttrell et al. (2010). The modified items were subsequently sent out for expert review.

FIGURE 1.  Validity evidence framework described by Reeves and Marbach-Ad (2016) and 
the corresponding approaches used to validate the MBVI as a measure of life science 
majors’ values of math in the context of biology.
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Response Process Validity: Student Cognitive Interviews
To provide evidence for validity based on response processes, 
we tested the 45 items created from the expert reviewer com-
ments through in-person think-aloud interviews with under-
graduate life science majors, based on guidance by Willis 
(1999). We split the 45 items into two smaller sets of 22–23 
items; both sets contained similar numbers of items from each 
of the five constructs. This smaller set of items was presented to 
undergraduates in order to avoid student fatigue from answer-
ing all 45 items. Two researchers interviewed a total of 20 
undergraduate life science majors, 10 using the first set of items 
and 10 using the second set of items (see Supplemental Mate-
rial A for additional details). Students were compensated with 
a $25 gift card for participating in the 30- to 60-minute-long 
interviews. This study was approved by the IRB at the Univer-
sity of Texas at Austin (#2015-03-0005).

Validity Evidence Based on Internal Structure and 
Relations with Other Variables: Pilot Survey
Once we refined and narrowed down the MBVI items based on 
expert review and student cognitive interviews, we created a 
pilot survey to gather validity evidence based on internal struc-
ture and relations with other variables. The purpose of the pilot 
survey was threefold: 1) to verify that the items used to mea-
sure the four constructs are interrelated in expected ways (as 
described earlier) via EFA, 2) to establish convergent validity 
using a scale that measures similar constructs, and 3) to demon-
strate discriminant validity using a social desirability scale.

Participants.  Survey invitations were distributed via course list-
servs to introductory biology and upper-level biology courses at 
four institutions (two research universities, one comprehensive 
university, and one primarily undergraduate institution) and 
one community college system in the United States (three in the 
Northeast, one in the Southwest, and one in the South Central 
region). The anonymous survey was administered online 
through Qualtrics. Only students who were at least 18 years old 
and life science majors were eligible to take the survey; students 
self-identified with these criteria to enter the survey. Students 
who completed the survey were compensated with a $10 gift 
card. This study was approved by the IRB at the University of 
New Hampshire (#6389). In total, 228 students responded, rep-
resenting ∼30 different life science majors. Of these 228 respon-
dents, we removed 19 from the data set because they had miss-
ing data; using a missing-data technique (i.e., imputation or full 
information maximum likelihood) did not provide additional 
useful information for the exploratory analysis. We also removed 
two students because they provided the same response to all 
items on the survey, including positively and negatively worded 
items (e.g., “It is/would be fun to use math to understand 
biology” and “Trying to use math to understand biology causes/
would cause me anxiety”). This resulted in a final sample of 207 
students (see Table 2 for complete demographics).

Measures.  The pilot survey contained the following mea-
sures: the MBVI, a math task-values survey (Eccles et al., 
1983; Fredricks and Eccles, 2002), the Marlowe-Crowne 
Social Desirability Scale (MCSDS; Crowne and Marlowe, 
1960), and a demographic questionnaire, each of which is 
described in detail.

TABLE 2.  Demographics of the life science majors used in the EFA 
(n = 207) and CFA (n = 206)a

Description EFA n (%) CFA n (%)
Gender
  Male 49 (24) 46 (22)
  Female 154 (74) 157 (76)
  Other 1 (<1) 3 (1)

Race
  American Indian or Alaska Native 6 (3) 2 (1)
  Asian 18 (9) 26 (13)
  African American or Black 9 (4) 21 (10)
  Native Hawaiian or other Pacific Islander 4 (2) 1 (0.5)
  White 165 (78) 152 (74)
  Other 9 (4) 6 (3)

Ethnicity
  Hispanic or Latinx 35 (17) 13 (6)
  Not Hispanic or Latinx 157 (76) 183 (89)

Year in college
  First year 55 (27) 128 (62)
  Second year 31 (15) 37 (18)
  Third year 45 (22) 34 (16)
  Fourth year 63 (30) 3 (1)
  Fifth year or greater 11 (5) 4 (2)

Honors status
  Honors 33 (16) 27 (13)
  Not in honors 170 (82) 173 (84)

Institution type
  Research university 112 (54) 151 (73)
  Comprehensive 43 (21) 55 (27)
  Primarily undergraduate institution 11 (5)
  Community college system 27 (13)
aStudents could select “Prefer not to respond” to any question and could select 
more than one race, thus percentages might not sum to 100%.

The MBVI was prefaced by a definition of math (“For the pur-
poses of this survey, math includes arithmetic, algebra, calculus, 
and statistics”) and contained a total of 25 Likert-type items 
related to four constructs: interest in using math to understand 
biology, utility value of math for a life science career, cost of 
incorporating math into biology courses, and attainment value 
of math (Supplemental Table B1). Each item had a seven-point 
response scale ranging from “strongly disagree” to “strongly 
agree.” Each item also contained options for “I don’t know” and 
“Prefer not to respond.” We intentionally included several items 
that were similar to one another to see whether there were 
empirical differences between the item performances. That is, 
we wanted to see whether the items, although similar in word-
ing and/or meaning, functioned differently in practice.

A math task-values instrument developed by Eccles and 
colleagues (1983) was included to establish convergent valid-
ity. This instrument was chosen because it contains measures 
of interest, utility value, and attainment value in a similar 
domain. The math task-values instrument has been used 
extensively on K–12 students and has been shown to be a 
valid measure of task values (Eccles et al., 1993; Wigfield 
et al., 1997; Fredricks and Eccles, 2002). It is composed of 
seven Likert-type items measuring students’ personal values 
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toward math: three items measuring interest, two items mea-
suring utility value, and two items measuring attainment value 
(Eccles et al. 1983, Fredricks and Eccles 2002; Supplemental 
Table B2). All items were on a seven-point scale with an option 
to select “Prefer not to respond.” Each subscale showed high 
internal consistency (interest: n = 207, α = 0.94; utility value: 
n = 205, α = 0.88; attainment value: n = 206, α = 0.83).

To determine whether students’ responses were affected by 
social desirability bias (a tendency to give responses that pres-
ent themselves in a more favorable light) and establish discrim-
inant validity, we used Crowne and Marlowe’s (1960) Social 
Desirability Scale (MCSDS). The MCSDS is a 33-item, true–
false scale designed to assess whether respondents are answer-
ing truthfully (low score) or in a more socially desirable way 
(high score; Supplemental Table B3). Students could also select 
“Prefer not to respond.” Internal consistency and validity 
evidence for the use of the MCSDS as a measure of social desir-
ability bias has been established in many studies (Beretvas 
et al., 2002; for a review, see Paulhus, 1991) and is commonly 
used to support discriminant validity of self-report measures 
(Lent et al., 2003; Luttrell et al. 2010; Reysen et al., 2013; 
Bhalla et al., 2016; Doran et al., 2016). The MCSDS showed 
good internal consistency (n = 152; α = 0.80).

The final portion of the survey consisted of 13 items on stu-
dents’ demographic characteristics (gender, race, and ethnicity) 
and their academic backgrounds (institution, year in college, 
major, pre-professional status, number of college math courses 
taken, number of college biology courses taken, current college 
grade point average [GPA], honors program status, and career 
aspirations). Students were not required to complete open-
ended questions, and for all multiple-choice questions, students 
had the option to select “Prefer not to respond.”

Validity Based on Internal Structure.  A series of EFAs were 
conducted in the statistical program R (R Core Team, 2016) to 
determine the relationships among the MBVI items. Although 
our sample size might be considered small for EFA, smaller 
sample sizes (<300) may be adequate if there are at least four 
items per factor and factor loadings are greater than |0.60| 
(Worthington and Whittaker, 2006). In our pilot survey, the 
interest, utility value, and cost factors each had at least four 
items, and the factor loadings were generally greater than 
|0.60| (Supplemental Table C1). The EFAs were performed 
using principal axis factoring with an oblimin rotation (“psych” 
R package; Revelle, 2016). We used this approach to identify 
the least number of common factors to explain the covariance 
among the items while still allowing the items to load on all the 
potential factors.

Validity Based on Relations with Other Variables.  Students’ 
values of math in the context of biology should be similar to 
their values of math in general. Therefore, we used a math 
task-values instrument (Eccles et al. 1983; Fredricks and 
Eccles, 2002) to establish convergent validity. We used Pear-
son’s correlations to examine the relationship between the 
interest subscales of the MBVI and the math task-values instru-
ment and the utility value subscales of the MBVI and the math 
task-values instrument. We ended up dropping all of the 
attainment value items from the MBVI based on the results of 
the EFA (see Results); thus we did not use the attainment value 

subscale of the math task-values instrument. We expected 
there to be strong positive correlations between the MBVI and 
math task-value interest and utility subscale scores, which 
would indicate that they are measuring similar constructs 
and provide evidence for convergent validity (Reeves and 
Marbach-Ad, 2016). The math task-value instrument did not 
contain a cost subscale. However, cost has been shown to have 
a negative relationship with both interest and utility value; 
correlations between cost and interest are strong and nega-
tive, whereas those between cost and utility value are more 
moderate and negative (Trautwein et al., 2012; Gaspard et al., 
2015). Therefore, we calculated the correlation between the 
cost subscale of the MBVI and the interest and utility value 
subscales of the math task-values instrument to establish 
validity of the cost subscale. Subscale scores were created by 
summing the scores of all items on each subscale.

We used the MCSDS (Crowne and Marlowe, 1960) to 
establish discriminant validity. Socially desirable responses 
were coded as “1” and summed to create a total MCSDS score. 
The cost items on the MBVI were reverse scored, and all items 
were subsequently summed to create a total MBVI score for 
each student. We used Pearson’s correlation to examine the 
relationship between students’ MCSDS total scores and their 
MBVI total scores. A nonsignificant correlation between the 
MBVI and the MCSDS would indicate that the MBVI is not 
confounded with social desirability bias and would provide 
evidence of discriminant validity (Paulhus, 1991).

Additional Validity Based on Internal Structure: CFA
As an additional step to provide validity evidence based on 
internal structure, we performed CFA on the final MBVI survey, 
consisting of 11 items on three subscales (interest, utility value, 
and perceived cost), using a second, independent sample of stu-
dents. This is a prudent step in instrument validation to ensure 
that the initial EFA results were not sample dependent. In addi-
tion, we wanted to ensure that the final 11 items on the MBVI 
functioned similarly in isolation as they had when administered 
alongside the 14 culled MBVI items. The sample for this fol-
low-up study consisted of 206 life science majors from three 
universities (one research university from the Northeast, one 
research university from the Mid-Atlantic region, and one com-
prehensive university from the Mid-Atlantic region; see Table 2 
for demographic information of participants); these data are 
the first time points in a larger, longitudinal study examining 
change in math–biology values. Students were recruited 
through survey invitations sent to introductory biology course 
listservs and compensated with a $5 gift card for completion of 
the survey. This study was approved by the IRB at the University 
of New Hampshire (#6507).

The CFA was conducted using the “lavaan” R package for 
structural equation modeling (Rosseel, 2012) with maximum-
likelihood robust estimation to correct for any nonnormality in 
the data. Additionally, full information maximum likelihood 
was used to handle any missing responses to the 11 MBVI items. 
Although our sample size is small, the guidelines provided by 
Wolf and colleagues (Wolf et al., 2013) suggest that only 150 
participants are needed for a three-factor model with three or 
four indicators per factor with average standardized factor 
loadings of 0.80 (the average from our championed EFA model 
was 0.88).
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RESULTS
Validity Based on Internal Structure: EFA
We hypothesized that a four-factor solution would appropri-
ately fit the data in accordance with item development. We 
used several different measures to determine the number of 
factors presented in the data: the Kaiser-Guttman criterion (also 
known as the “eigenvalues-greater-than-one” criterion), paral-
lel analysis, optimal coordinates, and the acceleration factor, all 
from the “nFactors” R package (Raiche and Magis, 2015). The 
last two criteria are based on mathematical characteristics of 
the implied scree plot, and all four statistics aim to provide a 
suggested number of factors based on nonvisual analysis of the 
data. The Kaiser-Guttman, parallel analysis, and optimal coor-
dinates criterion all indicated that a three-factor solution would 
best describe the data. The only dissenting information was 
provided by the acceleration factor, which indicated that only 
one factor was necessary, but this criterion has been demon-
strated to consistently provide underfactored solutions (Ruscio 
and Roche, 2012).

On the basis of these results and our theoretical develop-
ment of the MBVI, we examined solutions for one-factor, 
two-factor, three-factor, and four-factor EFA solutions. While we 
were mainly interested in examining the multidimensional 
solutions, it is prudent to examine more parsimonious explana-
tions of the data to see whether theoretically defensible factor 
solutions emerge that adequately explain the variance in the 
observed items.

The results from the one-factor EFA showed that all items had 
generally strong loadings (Supplemental Table C1; also see Sup-
plemental Table C2 for the correlation matrix of all items used in 
the EFA). The perceived cost items all had negative loadings, 
which is consistent with their theoretical relationship to the 
other items (i.e., a high score for perceived cost represents a 
negative attitude, while a high score for interest, utility value, 
and math attainment value represents a positive attitude). While 
the one-factor solution had generally acceptable factor loadings 
above traditional cutoff values of 0.32 (Tabachnick and Fidell, 
2001) or 0.50 (Osborne and Costello, 2009), we felt that inter-
preting the scale as a single dimension masked more nuanced 
and fine-grained constructs responsible for the item responses. 
In addition, the one-factor solution only extracted 50% of the 
variance in the items, and we felt that more item variance could 
be explained by the inclusion of additional factors.

The two-factor solution revealed more of this nuanced rela-
tionship between the items, as all (and only) perceived cost 
items strongly positively loaded on the second identified factor 
(Supplemental Table C1). The first factor was characterized by 
the interest, utility value, and math attainment value items, 
with the math attainment value items loading less strongly 
(0.58–0.63) than the rest of the items on the first factor (0.67–
0.82). All perceived cost items loaded strongly on the second 
factor (0.68–0.90). This solution offered a more interpretable 
and meaningful result (interest–utility value–math attainment 
value and perceived cost) and was also able to explain more of 
the variance in the items, with 63% of the variance explained, 
but we thought that the first factor could be further divided to 
provide more information to researchers about the constructs 
underlying the observed responses.

The three-factor solution was similar to the two-factor 
solution in that perceived cost constituted the second factor 

(loadings of 0.67–0.94; Supplemental Table C1). The third fac-
tor now consisted of all of the utility value items (loadings of 
0.66–0.88), with the math attainment value items hanging 
together with the interest items on the first factor. While these 
two constructs constituted the first factor, there were distinct 
differences in their factor loadings. The loadings for interest 
remained high (0.78–0.95), but the loadings for math attain-
ment value were lower than all other items (0.53–0.60). Again, 
the three-factor solution accounted for more variance in the 
observed items (70%) than the two-factor solution.

The four-factor solution mirrored the three-factor solution 
apart from the math attainment value items now constituting 
their own factor (Supplemental Table C1). The factor loading 
for the third math attainment value item (Atn3) was very high 
(0.94), with the other two items loading less strongly (0.62, 
0.73). The strength of all other factor loadings in the four-factor 
solution were nearly identical to the three-factor solution (most 
changed by no more than |0.02|), except for four interest items 
(Int1–Int3 and Int5), which changed by no more than |0.07|. 
The inclusion of the fourth factor accounted for an additional 
3% of the variance in the items (for a total of 73%).

After examining all the factor solutions, we proceeded with 
scale refinement, considering only items from the first three 
dimensions: interest, utility value, and perceived cost. While 
the math attainment value items represented an interesting 
aspect of the MBVI, they were developed to assess students’ 
math identity (as opposed to math–biology), and thus did not 
function as well as the other items. The third math attainment 
item (Atn3 in Supplemental Table C1) loaded strongly on the 
fourth factor in the four-factor solution but did not load as 
strongly in any of the other solutions. Importantly, while Atn3 
had a high factor loading in the four-factor solution, the other 
math attainment items only had moderately strong loadings, 
suggesting that the math attainment factor was primarily 
defined by Atn3 and the other math attainment items did not 
correlate as strongly as desired with that item (Supplemental 
Table C1). Retaining only Atn3 was not adequate for construct 
representation, and we did not wish to develop additional 
math attainment items to pilot for scale inclusion, so we chose 
not to pursue including information about math attainment 
value on the MBVI.

We now had an indication that all items selected to represent 
the constructs of interest, utility value, and perceived cost func-
tioned well in practice, as evidenced by their high factor load-
ings on their respective factors and extremely low cross-factor 
loadings. With the exclusion of the math attainment value 
items, we now had 22 items in total, some of which were 
extremely similar to one another. As such, we decided to choose 
those items for each construct that were most representative of 
that construct and eliminate the items that were less represen-
tative. Doing so would also reduce the overall number of items 
for the MBVI, making it less burdensome on the survey taker. 
We did not select the items for the final MBVI by choosing those 
items that loaded most strongly on their respective factors. 
Instead, the theory behind the item development and construct 
representation were used as the guiding principles for scale 
refinement. This resulted in a final set of 11 items: four repre-
senting interest, four representing utility value, and three repre-
senting perceived cost (Table 3; bolded items in Supplemental 
Table B1). The solution for this final three-factor EFA showed 
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high loadings for all three factors; the lowest loading was 0.77 
(Uty3), with an average factor loading of 0.88 across all items 
(Table 3). This solution accounted for 79% of the variance in 
the final 11 scale items. Additionally, all three factors demon-
strated good reliability, with Cronbach’s alpha values ranging 
from 0.91 (utility value) to 0.95 (interest; Table 3).

Convergent and Discriminant Validity
The MBVI utility value subscale had a strong positive correlation 
with the math task-value utility items (r = 0.52, p < 0.001, n = 
205). An even stronger correlation was observed between the 
interest items on the two scales (r = 0.69, p < 0.001, n = 207). 
Cost scores from the MBVI were strongly negatively correlated 
with math interest scores (r = −0.61, p < 0.001, n = 205) and 
moderately negatively correlated with math utility value scores 
(r = −0.33, p < 0.001, n = 205). These results demonstrate that 
the MBVI interest and utility value items are positively related to 
items of a similar type in a less specific context, and the MBVI 
cost items are negatively correlated with interest and utility value 
as predicted, thus providing evidence of convergent validity.

The correlation between MCSDS total scores and MBVI total 
scores was low and not significant (r = 0.05, p = 0.51, n = 152). 
This indicates that students’ responses to the MBVI were not 
confounded by social response bias and provides evidence of 
discriminant validity.

CFA
The chi-square test of model fit was significant (χ2(41) = 79.34, 
p = 0.003), but this test is known to reject correct models with 
sample sizes as low as 200 (Jöreskog and Sörbom, 1993). Thus, 
we consulted four supplemental fit indices to determine whether 
our hypothesized model was a plausible explanation of the rela-
tionships observed in the data. All of these fit indices indicated 
acceptable model fit. The confirmatory fit index (0.98) and the 
Tucker-Lewis index (0.97) were both above the suggested cutoff 
values of 0.95 (Hu and Bentler, 1999). Additionally, the root-
mean-square error of approximation (Steiger and Lind, 1980; 
Steiger, 1990) was 0.07, and the standardized root-mean-square 
residual (Jöreskog and Sörbom, 1981; Bentler, 1995) was 0.06, 
both of which were at or below their suggested cutoffs (0.07 and 
0.08, respectively; Hu and Bentler, 1999; Steiger, 2007). Because 
the model had adequate fit, the model parameters could then be 
meaningfully interpreted. As can been seen in Figure 2, the stan-
dardized factor loadings were similar (within ± |0.06|) to what 
was observed in the EFA. The only exceptions were Int6, which 
increased from 0.83 to 0.93, Cst6, which decreased from 0.91 to 
0.66, and Cst8, which increased from 0.79 to 0.88. Given that 
the CFA model had acceptable model fit and that the factor load-
ings were generally the same in the CFA result as the EFA result, 
this provides additional supporting validity evidence for the 
internal structure of the MBVI.

TABLE 3.  Factor loadings from the final three-factor solution from the EFA (n = 207)a

Itemb

Factorc

I II III Mean (SD)
I.  Interest
    Int2: Using math to understand biology intrigues/would intrigue me. 0.88 0.05 0.05 4.76 (1.78)
    Int6: It is/would be fun to use math to understand biology. 0.83 −0.01 −0.07 4.33 (1.82)
    Int7: Using math to understand biology appeals/would appeal to me. 0.95 −0.01 −0.01 4.62 (1.82)
    Int8: Using math to understand biology is/would be interesting to me. 0.96 −0.01 0.01 4.75 (1.80)

II. Utility value
    Uty3: Math is valuable for me for my life science career. 0.07 0.77 −0.03 5.75 (1.26)
    Uty4: It is important for me to be able to do math for my career in the life sciences. 0.02 0.87 0.00 5.76 (1.28)
    Uty5: An understanding of math is essential for me for my life science career. −0.04 0.89 0.02 5.54 (1.44)
    Uty6: Math will be useful to me in my life science career. −0.02 0.85 −0.01 5.76 (1.17)

III. Perceived cost
    Cst6: I have/would have to work harder for a biology course that incorporates math than 

for one that does not.
0.06 0.07 0.91 4.63 (1.93)

    Cst7: I worry/would worry about getting worse grades in a biology course that 
incorporates math than one that does not.

0.02 −0.06 0.93 4.20 (2.05)

    Cst8: Taking a biology course that incorporates math intimidates/would intimidate me. −0.14 −0.03 0.79 3.81 (2.03)
Mean factor scored 4.61 5.70 4.21

Mean factor SD 1.69 1.15 1.86
PVEe 0.31 0.26 0.22
CVEe 0.31 0.57 0.79

Cronbach’s alpha 0.95 0.91 0.92
Factor correlations

I —
II 0.62 —

III −0.51 −0.27 —

aSee Supplemental Table B1 for items on the initial survey that were not retained.
bItem abbreviations (e.g., Int2) correspond to the CFA factor model in Figure 2.
cFactor loadings greater than |0.50| are bolded; loadings less than |0.50| are in italics.
dMean factor score (and associated SD) is the mean score of all observed responses for the items on that factor.
ePVE, proportion of variance explained by the factor; CVE, cumulative variance explained.
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DISCUSSION
The field of biology is becoming increasingly quantitative, 
leading to major reform efforts geared toward increasing the 
quantitative skills of undergraduate biology majors. Expectancy-
value theory suggests that students’ personal values toward a 
task are an important predictor of achievement (Eccles et al., 
1983; Wigfield and Eccles, 2000; Eccles and Wigfield, 2002). 
Thus, understanding students’ values toward the use of math in 
the context of biology is an important step in the process of 
developing effective quantitative reforms. While instruments 
exist to measure undergraduates’ math task values (e.g., Luttrell 
and colleagues’ [2010] MVI), and some researchers have mea-
sured students’ math–biology or math–science attitudes with 
single items (Elliott et al., 2001; Matthews et al., 2009, 2010; 
Thompson et al., 2010), there is no validated instrument 
designed to measure multiple constructs of undergraduate stu-
dents’ values toward math in the context of biology specifically. 
Our goal was therefore to develop such an instrument to mea-
sure undergraduate life science majors’ personal values toward 
using math in the context of biology. A multistep approach to 
survey development and validation resulted in the 11-item 
MBVI that can be used to measure three constructs of math–
biology task values: interest, utility value, and perceived cost. 
We believe that the MBVI can be used by instructors and 
researchers to help identify instructional strategies that influ-
ence math–biology task values and to help understand how 
math–biology task values relate to students’ achievement and 
behavioral outcomes, such as the decision to pursue more 
advanced quantitative-based courses.

Math–Biology Task-Value Constructs
The MBVI has strong validity evidence in support of its use to 
measure three math–biology task values: interest, utility value, 
and perceived cost. In addition, each of these factors was shown 
to have strong internal consistency via Cronbach’s alpha. We 
provided evidence for content validity of the MBVI by ground-
ing the development of our initial math–biology task-value 
items for the MBVI in expectancy-value theory (Eccles et al., 

1983), adapting them from a carefully val-
idated existing inventory of math task val-
ues (MVI; Luttrell et al., 2010), and sub-
jecting them to expert and student review. 
A series of EFAs combined with qualitative 
refinement grounded in theory resulted in 
a three-factor version of the MBVI that 
showed high factor loadings and extremely 
low cross-factor loadings. CFA on an 
independent sample of students indicated 
that this three-factor model was accept-
able. Thus, although some studies have 
found that interest and utility value factor 
as a single construct in their surveys (e.g., 
Eccles et al., 1984; Perez et al., 2014), 
our survey is able to differentiate between 
interest and utility value as well as per-
ceived cost.

The interest subscale of the MBVI mea-
sures the enjoyment one gets from using 
math to understand biology. Interest is 
related to intrinsic motivation (Eccles et al., 

1983; Eccles and Wigfield, 2002); that is, the motivation to 
engage in a task is derived from within, rather than from exter-
nal pressures or rewards (Ryan and Deci, 2000). This type of 
motivation is posited to lead to deep-level learning (Ryan and 
Deci, 2000). Indeed, research has demonstrated that students 
with an interest in a topic are more likely to answer higher-order 
cognitive skill questions correctly (Schiefele, 1991), take a mas-
tery goal approach to learning (Harackiewicz et al., 2008), and 
engage in deep-level learning strategies (Schiefele, 1991; Krapp, 
1999). Thus, it is likely that interest in using math to understand 
biology would promote achievement on quantitative biology 
tasks, but future research is needed to understand the nature of 
this relationship.

The utility value subscale of the MBVI measures the useful-
ness of math specifically for a student’s life science career. This 
aligns with the conceptualization of utility value as the useful-
ness of a task for a future goal (Eccles et al., 1983). Although 
we considered framing utility value in terms of the usefulness 
of math for a students’ life science major, there was little vari-
ability in student responses to these items in the cognitive 
interviews. Students viewed math as important to their 
life science majors simply because they were required to take 
math courses to fulfill their major requirements. However, if 
utility value is framed within the context of a student’s life 
science career, students are more likely to consider the per-
sonal relevance of math, which can act as a source of extrinsic 
motivation. Interestingly, we found high mean scores for util-
ity value (5.70 on a seven-point scale) among biology majors. 
In studies that have used a single item to measure students’ 
utility value toward math in the context of science, others 
have also found that undergraduates tend to believe that math 
is useful for biology (Thompson et al., 2010) or science in 
general (Elliott et al., 2001, Matthews et al., 2009, 2010). 
Though past studies have found utility value influences stu-
dent performance (Bong, 2001; Cole et al., 2008; Hulleman 
et al., 2010), it is unclear the extent to which math–biology 
utility value positively affects biology students’ performance 
on quantitative tasks.

FIGURE 2.  Standardized factor loadings of the CFA on the second, independent sample of 
students (n = 206). The factor variances were set to 1.00 to identify each model. Abbrevia-
tions (e.g., Int2) correspond to the items in Table 3.
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Three items on the MBVI measure the perceived cost of using 
math in biology courses. Item Cst6 asks students about extra 
effort required for biology courses that incorporate math, and 
items Cst7 and Cst8 measure students’ negative emotions about 
using math in biology courses. Thus, the perceived-cost sub-
scale incorporates two of the three dimensions that make up 
cost according to Eccles and colleagues (1983): extra effort 
required for a task and the psychological cost of a task. How-
ever, the MBVI does not distinguish between these different 
dimensions within the construct of cost. Recent research has 
raised a concern that items intended to measure the cost of 
extra effort may not adequately distinguish between general 
effort, which may have positive connotations (e.g., some stu-
dents thrive on and appreciate “hard work”), and true cost, 
which is perceived negatively (Flake et al., 2015). Although 
item Cst6 focuses on working harder rather than on “too much 
work,” as suggested by Flake and colleagues (2015), it loads 
strongly on the factor with both cost items that use negative 
language (e.g., “worry” and “intimidate”; Table 3 and Figure 2). 
High positive correlations between item Cst6 and items Cst7 
and Cst8 (0.81 and 0.73, respectively; Supplemental Table C2) 
demonstrate that students worried about using math in biology 
courses also perceive doing math in biology courses will take 
extra effort. However, future research could explore the possi-
bility of testing the addition of more perceived cost items that 
are framed with negative language to better align with the neg-
ative connotation of cost.

We found a strong correlation between our math–biology 
interest and utility value constructs (Table 3), similar to other 
studies (Luttrell et al., 2010; Gaspard et al., 2015). However, a 
high appreciation for the usefulness of math to biology is not 
necessarily enough to promote interest in math. For example, 
Matthews and colleagues (2009) found that students with low 
GPAs were often frustrated when they could not understand the 
math used in an interdisciplinary science course, which led to 
boredom and disinterest (“cycle of disengagement”), even if 
they understood the importance of math in science. While the 
authors did not measure perceived cost directly, the feelings of 
frustration and being overwhelmed by the workload and fast 
pace of the course described by students suggest that cost was 
a factor (Matthews et al., 2009). In the current study, perceived 
cost was negatively correlated to both math–biology interest 
and utility value. While correlation does not equal causation, 
this does suggest that minimizing the cost experienced by stu-
dents could lead to increased interest in and utility of math–
biology. Taken together, these data highlight the value of an 
instrument that can be used to measure multiple constructs of 
math–biology task values.

Limitations
Although we have made an effort to thoroughly validate the use 
of the MBVI as a measure of life science majors’ math–biology 
values, there are some limitations to this study. Participants in 
both surveys were mostly white (78 and 74%, respectively), 
non-Hispanic (76 and 89%, respectively), female (74 and 76%, 
respectively), and enrolled in a research university (54 and 
73%, respectively). The low numbers of male students and 
Hispanic/Latinx, Black, and other underrepresented minority 
(URM) students in our populations did not allow us to test the 
validity of the math–biology task-value constructs on students 

from a diverse range of backgrounds. Thus, while understanding 
the math–biology task values of people with diverse back-
grounds is critical for designing quantitative biology courses 
that meet the needs of diverse learners, we caution readers 
against interpreting MBVI scores obtained from populations not 
represented by the research presented here without first gather-
ing validity evidence from those populations (e.g., by perform-
ing CFA). This will be particularly vital for readers intending 
to use the MBVI in conjunction with measuring behavioral 
outcomes (e.g., performance or persistence in quantitative biol-
ogy). As survey validation is a continuous process, we believe 
that this is an excellent opportunity for further research that 
would build upon the work presented here and help accumu-
late additional validity evidence.

Another limitation is that our definition of math encom-
passed arithmetic, algebra, calculus, and statistics. Owing to 
this all-encompassing definition, the MBVI is unable to tease 
apart potentially different attitudes toward different types of 
math. For example, students might believe that statistics and 
data-interpretation skills are very useful to their careers in the 
life sciences but might not understand how calculus is rele-
vant. The cost associated with applying basic arithmetic to a 
biological context is also likely to be different from the cost 
associated with applying calculus in a biological context, par-
ticularly for students who did not take calculus in high school. 
Modifications to the definition of math given at the beginning 
of the MBVI could be made to focus on a particular type of 
math, such as statistics; alternatively, the word “math” in each 
item could be replaced with a particular type of math (e.g., 
Statistics is valuable for me for my life science career). How-
ever, any modifications to the MBVI would require evidence 
that the resulting survey functions as a valid measure of 
undergraduates’ value of that math subdiscipline in the con-
text of biology.

In addition to these theoretical considerations, further work 
is needed to demonstrate that the MBVI is predictive of student 
achievement (e.g., performance on quantitative tasks). Prior 
research has shown that math task values can affect college stu-
dents’ achievement (Bong, 2001; Zusho et al., 2003; Hulleman 
et al., 2010). While it is therefore likely that students’ math–
biology task values may similarly influence their performance 
on quantitative tasks in biology courses, explicitly linking task 
values and achievement was beyond the scope of this study. 
Thus, we caution readers against use of the MBVI as a proxy for 
predicting students’ achievement on quantitative tasks. How-
ever, we are currently in the process of investigating the extent 
to which students’ math–biology task values relate to their 
achievement by administering the MBVI to introductory biology 
students and collecting grades on quantitative assignments. 
Collecting such information on the predictive nature of the 
MBVI will help establish criterion-related validity evidence (i.e., 
consequences of testing as discussed by Reeves and Marbach-
Ad, 2016) and provide additional information relevant to the 
use of the MBVI.

Implications for Educators and Researchers
The MBVI can be a useful tool for both educators and research-
ers. Instructors of courses with significant quantitative compo-
nents could give the MBVI to students early in the semester to 
gauge their attitudes toward math; scores could then be used 
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to inform the approach taken to incorporating quantitative 
skills into the course. For example, if student scores on the 
interest subscale are low, instructors could focus on providing 
students with novel, challenging quantitative tasks and allow-
ing students to interact with each other as they solve these 
tasks to generate interest (Renninger and Hidi, 2011). Addi-
tionally, humor has been found to increase the interest of 
students in a task if they have low interest in the subject mat-
ter (Matarazzo et al., 2010). Similarly, instructional strategies 
to reduce math anxiety, such as expressive writing (Park et al., 
2014) or the activities being developed through the Biology 
Students Math Attitudes and Anxiety Program (https://
qubeshub.org/groups/biomaap), can be incorporated into 
courses in which student cost scores are high. If utility value 
scores are low, instructors could think creatively about how to 
frame quantitative skills in contexts that would be relevant for 
students pursuing particular life science careers. For example, 
data and results from clinical trials could be used to teach 
statistics to pre-medicine students. Alternatively, utility value 
interventions, in which students write about how course 
material is personally relevant (e.g., Hulleman et al., 2010), 
could be employed; these short interventions have been 
shown to increase students’ perceptions of the usefulness of a 
course, their interest in a course, and their performance in a 
course (Hulleman and Harackiewicz, 2009; Hulleman et al., 
2010; Harackiewicz et al., 2016).

Educators and researchers can also use the MBVI to assess 
the efficacy of quantitative biology reforms. Reforms should 
aim to engender more positive attitudes toward math, in addi-
tion to developing students’ quantitative skills (Aikens and 
Dolan, 2014), especially given that students will continue to 
encounter math in their college biology course work. Changes 
in values could be assessed through pre- and posttests with the 
MBVI. Additionally, understanding the specific roles of interest, 
utility value, and cost in student achievement, as well as how 
malleable each of these constructs is over a semester, would 
provide insight into which values to focus curricular materials 
around to maximize gains in student performance. Because the 
MBVI contains only 11 items and can be completed in less than 
10 minutes, it can easily be administered to address both cur-
ricular assessment questions or more complex research ques-
tions aimed at determining why an intervention works.

This study serves as the initial validation for the use of the 
MBVI to investigate undergraduate life science majors’ math–
biology task values. The survey measures students’ interest in 
using math to understand biology, the perceived usefulness of 
biology to their life science careers, and the cost of using math 
in biology courses, which are predicted to influence students’ 
performance on quantitative tasks and their decisions to enroll 
in quantitative courses (Eccles et al., 1983; Wigfield and 
Eccles, 2000). Future research should aim to provide addi-
tional validity evidence, particularly for use with populations 
not represented by the research presented here (e.g., URM 
students). Additionally, combining the MBVI with an existing 
math attainment scale (e.g., Fredricks and Eccles, 2002; 
Conley, 2012) and a measure of students’ expectancies of suc-
cess on quantitative biology problems would help determine 
the relationship of each of these attitudes to student perfor-
mance on quantitative tasks and decisions to enroll in quanti-
tative courses.
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