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ARTICLE

ABSTRACT 
It is widely recognized that the United States needs to attract and retain more people in sci-
ence, technology, engineering, and mathematics (STEM) careers. Intensive undergraduate 
research experiences (UREs) are one of the few strategies shown to improve longitudinal 
student interest and persistence in STEM-related career pathways; however, less is known 
about the underlying process linking activities to positive outcomes. The tripartite integra-
tion model of social influences (TIMSI) provides a framework for understanding the social 
influence processes by which students integrate into STEM careers and culture. The current 
study used a longitudinal design and latent growth curve modeling to examine and predict 
the development of scientific research career persistence intentions over the course of an 
intensive summer URE. The latent growth curve analysis showed that student persistence 
intentions declined and rebounded over the course of the summer. Furthermore, the pos-
itive impact of faculty mentor role modeling on growth trajectories was mediated through 
internalization of science community values. In addition, project ownership was found to 
buffer students from the typical trend of declining and rebounding persistence intentions. 
The TIMSI framework illuminates the contextual features and underlying psychological 
processes that link UREs to student integration into STEM careers and culture.

INTRODUCTION
It is widely recognized that the United States needs to attract and retain more people 
in science, technology, engineering, and mathematics (STEM) careers in order to drive 
innovation and broaden economic prosperity (National Academy of Sciences, National 
Academy of Engineering, and Institute of Medicine [NAS et al.], 2007; Holdren and 
Lander, 2012). At the undergraduate level, national statistics show high attrition from 
STEM majors and career paths (∼50%; Hurtado et al., 2009; Chen, 2013; Olson and 
Riordan, 2012). Even among high-achieving STEM majors, longitudinal evidence indi-
cates that student aspirations to pursue STEM-related research careers lessen as they 
advance toward graduation (Schultz et al., 2011). Although stakeholders and research-
ers have begun to identify a variety of promising curricular and cocurricular strategies 
to support student persistence in STEM (e.g., learning communities, inquiry-based 
curriculum; Russell et al., 2007; Kuh, 2008; Graham et al., 2013; Estrada et al., 2016), 
undergraduate research experiences (UREs) are one of the few strategies shown to 
improve longitudinal interest in STEM-related careers and persistence rates (Nagda 
et al., 1998; Hathaway et al., 2002; Russell et al., 2007; Schultz et al., 2011; Eagan 
et al., 2013; Rodenbusch et al., 2016; National Academies of Sciences, Engineering, 
and Medicine [NASEM], 2017; Hernandez et al., 2018). Thus, engaging students in 
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authentic UREs has become a cornerstone of individual and 
institutional efforts to improve learning and persistence in 
STEM (Lopatto, 2003; Russell et al., 2007; Laursen et al., 2010; 
Linn et al., 2015; Mervis, 2016; NASEM, 2017). Despite grow-
ing evidence of the effectiveness of UREs, less is known about 
the key contextual features of these experiences and the psycho-
logical factors that explain how, why, and for whom UREs 
enhance interest and persistence (NASEM, 2017). Therefore, 
the current study examined the influence of key contextual fea-
tures (e.g., faculty mentor psychosocial support) and psycholog-
ical factors (e.g., scientific identity) that are hypothesized to 
influence the longitudinal growth of STEM career persistence 
intentions.

Characteristics and Benefits of UREs
Undergraduate research experiences vary widely in their goals 
and contextual features (e.g., targeted student population 
[lower division vs. upper division], duration [number of months 
or semesters], intensity [number of hours per week], level of 
project ownership and independence, timing [academic year 
vs. summer], structure [traditional faculty apprenticeship vs. 
course based]; Seymour et al., 2004; Auchincloss et al., 2014; 
Linn et al., 2015; NASEM, 2017). However, the common 
themes that define UREs concern engaging students in authen-
tic scientific practices and in discovery that is of interest to the 
larger scientific community (Seymour et al., 2004; Sadler et al., 
2010; Auchincloss et al., 2014; NASEM, 2017). UREs that 
engage students in authentic practices and discovery are associ-
ated with diverse benefits for learning (e.g., deeper conceptual 
understanding) and higher rates of persistence in STEM majors 
and career pursuits (Lopatto, 2004, 2007; Russell et al., 2007; 
Schultz et al., 2011; Thiry et al., 2012; Eagan et al., 2013; 
Graham et al., 2013; Linn et al., 2015; NASEM, 2017; Hernan-
dez et al., 2018).

Longitudinal experimental and quasi-experimental studies 
have shown that, compared with peers without research expe-
riences, undergraduates who engage in apprenticeship-style 
faculty-mentored UREs are significantly more likely to maintain 
higher aspirations for scientific careers, graduate with STEM 
baccalaureate degrees, enroll in STEM-related graduate pro-
grams, and engage in postbaccalaureate STEM-related careers 
(Nagda et al., 1998; Hathaway et al., 2002; Schultz et al., 2011; 
Eagan et al., 2013; Hernandez et al., 2018). The benefits of 
UREs are particularly pronounced for students who engage in 
multiple high-intensity (10+ hours per week) experiences, such 
as intensive summer research programs (e.g., National Science 
Foundation–funded Research Experience for Undergraduates 
[NSF REU]; Hernandez et al., 2018). The present study focused 
on apprenticeship-style faculty-mentored UREs in the context 
of an intensive summer research experience (i.e., typically 40 
hours per week for 8 weeks).

There is a growing list of contextual features of UREs associ-
ated with beneficial outcomes (Hunter et al., 2007; Lopatto, 
2007; Sadler et al., 2010; Thiry et al., 2011, 2012); however, 
mentorship support and project ownership are increasingly seen 
as essential for enhancing student interest and persistence in 
STEM career pathways (Lopatto, 2003; Pfund et al., 2006, 2016; 
Hanauer et al., 2012; Hanauer and Dolan, 2014; Hernandez 
et al., 2016; NASEM, 2017). Although definitions of mentorship 
vary, in undergraduate contexts, “mentorship” can be defined as 

a developmental relationship between a more experienced per-
son (mentor) and a less experienced person (protégé), wherein 
the mentor provides support to enhance the protégé’s profes-
sional development and integration into the field (Jacobi, 1991; 
Eby et al., 2007; Crisp and Cruz, 2009). Studies of faculty– 
student mentoring relationships have shown that support can be 
operationalized in a variety of ways: psychosocial support (e.g., 
counseling), instrumental support (e.g., providing opportu-
nities for skill development, learning, and advancement), role 
modeling (e.g., providing inspiration by being a relevant and 
attainable example of success), coauthoring experiences (e.g., 
collaborative presentations or publications), and overall rela-
tionship satisfaction (Jacobi, 1991; Lockwood and Kunda, 1997; 
Paglis et al., 2006; Eby et al., 2013; Hernandez et al., 2016; 
Pfund et al., 2016). Project ownership has been broadly defined 
as student perceptions of agency, personal responsibility, and 
commitment to and identification with a project (Hanauer et al., 
2012). A recent linguistic analysis of undergraduate STEM stu-
dents’ discussions of their research projects revealed that project 
ownership entailed making connections between scientific 
inquiry and personal history, agency (i.e., support seeking) and 
mentorship, excitement toward inquiry, overcoming challenges, 
and expressions of satisfaction with personal scientific achieve-
ment (Hanauer et al., 2012; Hanauer and Dolan, 2014). Both 
mentorship support and project ownership have been associated 
with beneficial outcomes, such as gains in science identity and 
persistence intentions (Hanauer and Dolan, 2014; Linn et al., 
2015; Estrada et al., 2018).

The benefit of engaging in UREs is increasingly clear; how-
ever, the developmental processes that link UREs and contex-
tual features to persistence outcomes is not well understood 
(NASEM, 2017). This gap in the literature is due, in part, to the 
fact that much of the URE literature has been focused on effec-
tiveness rather than process. More specifically, much of the 
extant literature has focused on changes in outcomes measured 
at the end or long after the URE, rather than on the develop-
mental processes that occur within the context of the URE 
(Lopatto, 2007; Adedokun et al., 2014; Fakayode et al., 2014; 
Fuchs et al., 2016; Hernandez et al., 2018). Furthermore, social 
science theories of motivation and persistence have only 
recently begun to inform and describe the developmental pro-
cesses linking URE activities to beneficial outcomes through 
changes in psychological processes (Lent et al., 1994; Estrada 
et al., 2011; Graham et al., 2013; Wang and Degol, 2013; 
NASEM, 2017). A theory-driven and developmental process–
focused approach can extend our understanding of the underly-
ing psychological processes linking activities to outcomes.

Developmental Process of Integrating into STEM 
Careers and Culture
The tripartite integration model of social influences (TIMSI) 
describes the developmental process by which students inte-
grate into STEM careers and culture (Estrada et al., 2011, 
2018). TIMSI extends Kelman’s social influence theory of how 
individuals socialize into social groups (or systems) to STEM 
careers and culture (Kelman, 2006; Estrada et al., 2011). Kel-
man’s social influence theory posits that individuals socialize 
into a group through three distinct processes: compliance (i.e., 
adhering to rules and norms to garner rewards and avoid pun-
ishment), identification (i.e., constructing a social identity that 
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incorporates the activities of the group), or internalization (i.e., 
adopting and sharing the values of the group; Kelman, 2006). 
The TIMSI model operationalizes these processes in terms of 
science efficacy, science identity, and internalizing scientific 
community values, respectively (Estrada et al., 2011). Science 
efficacy describes individuals’ confidence that they can success-
fully execute scientific practices and thereby receive rewards in 
academic settings (Bandura, 1977; Estrada et al., 2011). Sci-
ence identity describes the degree to which individuals see 
themselves as scientists, that is, the psychological centrality of 
the scientist social identity (Chemers et al., 2011; Estrada et al., 
2011). Internalization of science community values represents 
the degree to which individuals authentically value the objec-
tives of the scientific community (e.g., scientific discovery; 
Estrada et al., 2011). The process of socializing into a group 
develops over time, and thus, the social influence and integra-
tion processes need to be measured over time.

Faculty-mentored research experiences can function as 
influence agents to integrate students into STEM careers and 
culture (Estrada et al., 2011, 2018; Hernandez et al., 2016). 
That is, UREs and mentors can draw students into STEM careers 
and culture through the provision of experiences and support 
that encourage students to internalize the norms, behaviors, 
attitudes, identity, and values of the scientific community 
(Bauer and Green, 1994; Thiry and Laursen, 2011; Kardash 
and Edwards, 2012; Woodcock et al., 2015). A preponderance 
of empirical research has shown positive associations between 
science self-efficacy, science identity, scientific community 
values, and STEM persistence (Byars-Winston et al., 2010; 
Chemers et al., 2011; Estrada et al., 2011, 2018; Graham et al., 
2013; Merolla and Serpe, 2013; Robnett et al., 2015). Among 
studies that included all three social influence processes, evi-
dence typically shows that science identity and science commu-
nity values uniquely predict persistence (Estrada et al., 2011, 
2018; Hanauer et al., 2016). However, little empirical research 

has examined the impact of URE contextual features on STEM 
persistence through changes in science efficacy, science identity, 
and science community values (i.e., the TIMSI social influence 
processes or mediators; Estrada et al., 2018). To date, one study 
has examined the impact of mentorship support on postbacca-
laureate persistence in a STEM career, finding that the impact of 
mentorship was mediated through science identity (Estrada 
et al., 2018). Research questions and hypotheses about the 
direct effects of mentorship support and project ownership in 
the context of the URE on integration into STEM careers and 
culture, as well as their indirect effects on integration through 
the social influence processes of science efficacy, identity, and 
community values, have yet to be empirically tested.

Current Study
The current study was designed to examine the processes by 
which students are drawn into STEM careers and culture, while 
also attending to methodological and theoretical limitations in 
the extant research. Specifically, the current study used longitu-
dinal design within the context of intensive summer UREs 
(SUREs) to measure changes in STEM career persistence inten-
tions over the course of the experience. In addition, the current 
study was guided by the TIMSI model to assess the psychologi-
cal processes that link URE contextual features to student 
integration into STEM careers and culture (i.e., persistence 
intentions). The present study addresses the following TIM-
SI-informed research questions and hypotheses.

1. How do scientific research career persistence intentions 
change over the course of an intensive summer research 
experience (i.e., times 1, 2, and 3)?

2. To what degree do the qualities of faculty mentorship, project 
ownership, science self-efficacy, science identity, and scientific 
community values (measured at time 2) predict final scien-
tific persistence intentions (time 3) and growth in persistence 

intentions? On the basis of TIMSI, we 
hypothesized that faculty mentorship 
support, project ownership, science 
self-efficacy, science identity, and sci-
ence community values would all be 
positively correlated with scientific 
research career persistence intentions.

3. To what degree are the effects of faculty 
mentorship support and project owner-
ship on scientific persistence intentions 
mediated through science self-efficacy, 
science identity, or science community 
values (controlling for initial levels of 
efficacy, identity, and values)? On the 
basis of TIMSI, and as shown in Figure 1 
(a paths), we hypothesized that faculty 
mentorship support and project owner-
ship would positively predict the TIMSI 
social influence processes (i.e., media-
tors) of science self-efficacy, identity, 
and community values over and above 
baseline levels of each (i.e., predict 
changes in efficacy, identity, and val-
ues). Furthermore, as shown in Figure 1 
(a × b mediated effect), we hypothesized 

FIGURE 1. Conceptual model relating mentor supports and project ownership to 
scientific career persistence intentions through changes in scientific efficacy, science 
identity, and science community values. a-paths:  the effect of mentor supports and 
project ownership (contextual features) on science efficacy, identity, and values (media-
tors), controlling for initial levels of science efficacy, identity, and values; b-paths: the 
effects of the science efficacy, identity, and values on the growth in science career 
persistence intentions (outcome), controlling for mentor support and project ownership; 
ab: the effects of mentorship and project ownership on growth in science career 
persistence intentions through their impact on science efficacy, identity, and values (not 
shown); and c-paths: the effects of mentorship and project ownership on growth in 
science career persistence intentions, controlling for science efficacy, identity, and values; 
T1: measurement occurred at time 1 (typically week 1 of 8), T2: measurement occurred at 
time 2 (typically week 4 of 8), T3: measurement occurred at time 3 (typically week 8 of 8).
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that the positive effect of faculty mentorship support and 
project ownership on scientific career persistence intentions 
would be mediated through identity and values.

METHODS
Participants and Procedures
Two hundred three undergraduate students at a U.S. university 
participated in the study (59.6% female; median age = 20 
years; 4.9% African American, 8.9% Asian, 2.5% Hispanic, 
71.9% white non-Hispanic, 11.8% other). Most participants 
were students of the host institution (87%), and most were 
either rising seniors or rising juniors (47.8 and 37.4%, respec-
tively). Students self-reported majoring in a variety of STEM 
disciplines across the life sciences (e.g., animal science, biology, 
immunology, neuroscience; 36%), physical sciences (e.g., 
chemistry, geology, physics; 29%), social sciences (e.g., psychol-
ogy, political science; 8%), and computer science and engineer-
ing (e.g., aerospace, mechanical; 27%).

Participants were in the following programs for their sum-
mer research experience: a Cancer Institute research experience 
(2.5%), a McNair summer research experience (9.9%), NSF 
REUs for Nanotechnology (12.3%) and Chemistry 9.9%), a 
state-funded SURE (55.5%), or a local summer undergraduate 
research internship (10.3%). All programs provided financial 
support in the form of a stipend. However, the programs varied 
(slightly) in terms of their length (8–10 weeks) and in the types 
and intensity of supports they provided for student research 
experiences. Each program offered some degree of support for 
team-building activities, mentoring workshops and support 
from program managers, networking events, and scientific 
communication opportunities (e.g., communication training 
and judged poster presentations). For example, the REU Nano-
technology program emphasized accountability of research 
progress through weekly group meetings facilitated by Web 
conferencing. Other programs, such as SURE, offered partici-
pants a variety of opportunities for specific trainings (e.g., 
responsible conduct of research, scientific search engines) and 
career mentoring seminars.

Students were assessed at the beginning, midway, and end 
of their SURE (approximately weeks 1, 4, and 8 of the summer 
experience). Questionnaires were administered when students 
attended group meetings for their respective programs. At each 
time point, participants completed paper-and-pencil question-
naires that assessed the quality and characteristics of their 
research and mentoring experiences with their faculty mentors 
(e.g., project ownership, psychosocial support), science career 
persistence intentions, science self-efficacy, science identity, sci-
ence community values, and demographics. Participants also 
completed several measures unrelated to the current study 
(e.g., university belonging). Participation was voluntary, and 
participants did not receive any compensation. All procedures 
were approved by the local university’s institutional review 
board.

Measures
Outcome

Scientific career persistence intentions (Woodcock et al., 
2015): This is a two-item scale that measures student intent 
to pursue a science career. Participants responded to the 

following items: “To what extent do you plan to pursue a 
science-related graduate degree?” and “What is the likeli-
hood of you obtaining a science-related undergraduate 
degree?” on a scale from 1 (definitely will not) to 10 (defi-
nitely will). A composite score was created by averaging all 
items together, such that higher scores indicated greater 
intent to pursue a science career.

Social Influence Processes (Mediators)

Science self-efficacy (Chemers et al., 2011): This is a five-
item scale that assesses confidence and abilities to function 
as a scientist. Participants rated their confidence that they 
could complete a series of scientific tasks (e.g., “Use techni-
cal science skills”; the complete list of items is provided in 
the Supplemental Material) on a scale from 1 (not at all 
confident) to 5 (absolutely confident). A composite score 
was created by averaging all items together, such that higher 
scores indicated greater science self-efficacy.
Science identity (Chemers et al., 2011): This is a three-item 
scale that assesses the extent to which individuals think of 
themselves as scientists. Participants responded to the items 
(e.g., “I have come to think of myself as a scientist”; the 
complete list of items is provided in the Supplemental Mate-
rial) on a scale from 1 (strongly disagree) to 5 (strongly 
agree). A composite score was created by averaging all items 
together, such that higher scores indicated greater science 
identity.
Science community values (Estrada et al., 2011): This is a 
four-item scale that assesses the extent to which individuals 
value science. Participants rated the degree to which state-
ments were like themselves (e.g., “A person who thinks dis-
cussing new theories and ideas between scientists is 
important”; the complete list of items is provided in the Sup-
plemental Material) on a scale from 1 (not at all like me) to 
5 (very much like me). A composite score was created by 
averaging all items together, such that higher scores indi-
cated greater science values.

URE Contextual Features

Faculty mentorship role modeling (Hoyt et al., 2012):. 
This four-item scale was adapted to the current summer 
research context to assess the extent to which individuals 
identified their faculty mentor as a role model (e.g., “I 
identify with the life of my mentor”). Participants 
responded to items on a scale from 1 (strongly disagree) 
to 5 (strongly agree). A composite score was created by 
averaging all items together, such that higher scores indi-
cated identification of their faculty mentor as a role 
model.
Faculty mentorship satisfaction (Ensher and Murphy, 
1997): This three-item scale assesses the extent to which 
individuals were satisfied with their faculty mentoring rela-
tionship (e.g., “My mentor met my expectations”; the com-
plete list of items is provided in the Supplemental Material). 
Participants responded to items on a scale from 1 (strongly 
disagree) to 5 (strongly agree). A composite score was cre-
ated by averaging all items together, such that higher scores 
indicated greater satisfaction with the faculty mentoring 
relationship.
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Faculty psychosocial and instrumental mentorship sup-
port (Dreher and Ash, 1990; Hernandez et al., 2016): The 
faculty mentorship psychosocial support subscale consisted 
of four items (e.g., “To what extent has your mentor encour-
aged you to talk openly about anxieties and fears?”), while 
the instrumental support subscale consisted of six items 
(e.g., “To what extent has your mentor helped you improve 
your writing skills?”; the complete list of items is provided in 
the Supplemental Material). Participants responded to the 
items on a scale from 1 (not at all) to 5 (a very large extent). 
The items were averaged together to create subscales scores; 
higher scores indicated greater faculty mentor psychosocial 
or instrumental support.
Project ownership (I. Hernandez and A. Woodcock, per-
sonal communication): This nine-item scale assesses the 
extent to which individuals perceive ownership of and inde-
pendence in the conduct of their research project (i.e., “Was 
I in control of my research project?”). This scale emphasizes 
the agency and mentorship facets of the ownership con-
struct (a complete list of item contents is provided in the 
Supplemental Material). Participants responded to items on 
a scale from 1 (not at all) to 5 (to a very large extent). A 
composite score was created by averaging all items together, 
such that higher scores indicated greater ownership over the 
research project.
Demographics: Participants were also asked to provide 
demographic information (e.g., age, gender, URE program).

Missing Data, Nesting, Statistical Assumptions, 
and Model Fit
The response rate varied slightly across the three survey admin-
istrations; see Table 1. Descriptive analysis showed that 65.5% 
of participants completed all three surveys, 28.6% completed 
two surveys, and 5.9% completed one survey. Missing data 
analyses were conducted to identify the missing data mecha-
nism (i.e., missing completely at random [MCAR], missing at 
random, or not missing at random; Enders, 2010, 2011). Little’s 
MCAR test (Little, 1988) revealed that the data were missing 
completely at random, χ2(73) = 77.55, p = 0.34; therefore, our 
analysis plan proceeded using maximum-likelihood estimation 
without adjustments for missing data (e.g., auxiliary variables; 
Enders, 2010).

These data were collected from students nested within sev-
eral different SURE programs (e.g., Cancer Institute). Nested 
data structures can violate the assumption of independent 
errors, as evidenced in intraclass correlations (ICCs), which 
results in biased model estimates (Raudenbush and Bryk, 
2002). A preliminary analysis revealed that between 7 and 17% 
of the variability in scientific persistence intentions was 
accounted for by summer programs (i.e., ICCtime 1 = 0.07, ICCtime 2 
= 0.13, ICCtime 3 = 0.17). Therefore, the nesting variable repre-
senting the six URE programs was recoded into a set of five 
dummy-coded variables and entered into all statistical models 
to control for nesting (Cohen et al., 2003). In addition, all con-
tinuous predictor and control variables were centered in sub-
stantive analyses.

Preliminary data screening, statistical assumption checking, 
and missing data analysis were conducted in SPSS v. 23. Out-
lier analysis using leverage values, Studentized deleted residu-
als, and Cook’s D values indicated no extreme outlier cases 

(Judd et al., 2009). In addition, residual diagnostics indicated 
that the assumptions of linearity, normality of residuals, and 
homoscedasticity were met.

All subsequent data analyses were conducted in a structural 
equation modeling (SEM) framework using maximum-likeli-
hood estimation in Mplus v. 7.4 (Muthén and Muthén, 1998–
2017). The SEM framework offers distinct advantages over 
other multivariate statistical methods for assessing the fit of 
theoretically derived hypotheses to data. SEM allows the 
researcher to specify the conceptual or theoretical model and 
provides a variety of indicates that describe the adequacy of the 
model–data fit. The various indices of model–data fit allow 
researchers to evaluate the degree to which the data speak 
against the model (Kline, 2016). For example, the present study 
will test the model–data fit of our conceptual model (Figure 1), 
wherein the social influence processes and contextual features 
predict scientific persistence intentions over time. In addition, 
the SEM framework allows for direct comparisons of alternative 
(nested) models based on their model–data fit. For example, 
the present study will compare the model fit of the conceptual 
model versus an alternative (null) model, wherein the social 
influence processes and contextual features do not predict sci-
entific persistence intentions over time.

Model fit was assessed using a variety of indices, including the 
chi-square goodness of fit test (χ2), root-mean-square error of 
approximation (RMSEA; i.e., a parsimony index), the compara-
tive fit index (CFI; i.e., an incremental index), and the standard-
ized root-mean-square residual (SRMR; i.e., an absolute fit 
index). Consistent with current standards, we evaluated model 
fit indices relative to recommended cutoff values (Hu and Bentler, 
1999): RMSEA values at or below 0.05 (or nonsignificant p-value 
for close fit [pClose] test), CFI values at or above 0.95, and SRMR 
values at or below 0.08 indicated good model-data fit.

Finally, we implemented a Bonferroni correction on the basis 
of the number of outcome variables in our models to evaluate 
the statistical significance of parameter estimates (alpha level = 
0.05/5 = 0.01). We took this precaution to control the type I 
error rate, as it has been shown that large structural equation 
models with many parameters and exploratory analyses can 
inflate the type I error rate (Green and Babyak, 1997; Cribbie, 
2000).

RESULTS
Persistence Intentions Exhibit Quadratic Growth over 
Summer UREs
Before testing hypotheses, we examined the descriptive statis-
tics for changes in scientific career persistence intentions over 
time. The average level of persistence intentions declined from 
time 1 (M = 7.67) to time 2 (M = 7.46), then bounced back in 
time 3 (M = 7.64). The pattern of decline followed by rebound 
indicated a quadratic growth trend, which we modeled in SEM.

Structural equation model 1 (SEM 1) was designed to for-
mally address research question 1 (i.e., the degree to which 
persistence intentions change over the course of a summer 
research experience). We used latent growth curve analysis to 
model the pattern of decline followed by a rebound in scientific 
career persistence intentions over time (i.e., analysis of linear 
and quadratic growth trends), while statistically controlling for 
any potential differences across summer programs (i.e., con-
trolling for nesting of students within programs). The results 
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showed that the model (SEM 1) adequately fitted the data, 
χ2(69) = 115.83, p < 0.001, RMSEA = 0.06, pClose = 0.23, CFI = 
0.95, SRMR = 0.06.

The latent growth curve analysis formally tested the trends 
identified from the descriptive statistics. Consistent with the 
descriptive statistics, the latent growth curve revealed that stu-
dents’ persistence intentions exhibited a statistically significant 
decline from the beginning to the midpoint of the SURE (Figure 
2, Intentions Linear Growth Slope = 0.96), followed by a statis-
tically significant rebound from the midpoint to the end of sum-
mer (Figure 2, Intentions Quadratic Growth Slope = 0.46). By 
the end of the SURE, students reported persistence intentions 
had basically returned to where they were at time 1 (Figure 2, 
Intentions Intercept = 7.35 on a 1–10 scale). The analysis also 
revealed that students exhibited significant variability in how 
much their persistence intentions declined from time 1 to time 
2 (Figure 2, Intentions Linear Growth Slope = 0.41) and signif-
icant variability in their end of summer persistent intentions 
(Figure 2, Intentions Intercept = 3.94).

Scientific Community Values Influence Final Summer 
Persistence Intentions
Next, we addressed research question 2, concerning the predic-
tive utility of scientific mediators and contextual features. We 
hypothesized that the scientific mediators and contextual fea-
tures at time 2 would be significantly and positively correlated 
with persistence intentions at time 3. Partially consistent with 
our hypothesis, students with higher levels of scientific identity, 
higher levels of scientific community values, higher satisfaction 
with their faculty mentors, and higher perceptions of their 
faculty mentors as role models also reported higher levels of 
persistence intentions (see Table 1). The bivariate correlations 
between persistence intentions at time 3 and some of the 
scientific mediators and contextual features at time 2 were 

small to moderate in magnitude using Cohen’s proposed met-
rics for interpreting magnitude of correlations (i.e., small = 
0.10, medium/moderate = 0.30, large = 0.50; Cohen, 1992).

To formally test our research question about the predictive 
utility of the scientific mediators and contextual features, we 
compared the model–data fit of two additional nested structural 
equation models (i.e., SEM 2 and SEM 3). To begin, we tested 
the model–data fit of our conceptual model (Figure 1; SEM 2), 
which hypothesized that students’ science self-efficacy, science 
identity, science community values (Figure 1, Mediators), expe-
riences of faculty mentorship support, and project ownership at 
time 2 (Figure 1, Contextual features) would predict scientific 
career persistence intention at time 3. The model fit statistics 
indicated that SEM 2 provided acceptable fit to the data, χ2(73) 
= 121.56, p < 0.001, RMSEA = 0.06, pClose = 0.24, CFI = 0.91, 
SRMR = 0.06 (parameter estimates shown in Table 2). Next, we 
tested the model–data fit of a null model (SEM 3), which 
hypothesized that neither the mediators nor the contextual fea-
tures would predict scientific career persistence intention (Figure 
1, b paths and c paths = 0). If the null model (SEM 3) did not 
worsen model fit compared with the conceptual model (SEM 2), 
we could conclude that the scientific mediators and contextual 
features provide no predictive utility in explaining growth in per-
sistence intentions. The model fit statistics indicated that the 
null model (SEM 3) did not provide acceptable fit to the data, 
χ2(91) = 161.43, p < 0.001, RMSEA = 0.06, pClose = 0.11, CFI = 
0.87, SRMR = 0.08, and had significantly worse model fit com-
pared with the conceptual model, Δχ2(18) = 39.87, p = 0.002. 
Consistent with our expectations, a comparison of the model- 
data fit of the conceptual model versus the null model revealed 
that students’ science self-efficacy, science identity, science com-
munity values, experiences of faculty mentorship support, and 
project ownership are important factors in explaining growth in 
scientific career persistence intention over time.

FIGURE 2. Results of the latent growth curve model of scientific research career peristence intentions (SEM 1). Values outside parentheses 
represent estimates of growth in science career persistence intentions (i.e., latent intercept = 7.35 = average persistence intentions at time 
3; linear slope = 0.96 = decline in persistence intentions from time 1 to time 2; quadratic slope = 0.46 = rebound in persistence intentions 
from time 2 to time 3); values inside parentheses represent variances of the estimate of growth in science career persistence intentions; 
italicized values represent residual variance in persistence intentions at each time point; and values on paths represent how time was 
coded to model growth over time in SEM. All other variables in the analysis were allowed to correlate with growth parameters but are not 
shown in this diagram for the sake of parsimony. **, p ≤ 0.01; ***, p ≤ 0.001.
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FIGURE 3. Project ownership predicts growth of scientific career persistence intentions. 
Growth trends modeled with project ownership at the average (i.e., mean of project 
ownership), below average (1 SD below average), and above average (1 SD above average).

Our second hypothesis related to predictive utility was that 
science self-efficacy, identity, and community values would act 
as mediators and would be the only factors to significantly pre-
dict persistence intentions. If our hypothesis was accurate, the 
structural regression coefficients for science self-efficacy, iden-
tity, and community values would be positive and statistically 
significant, while the faculty mentoring and project ownership 
coefficients would be nonsignificant. We inspected the statisti-
cal significance of the structural regression coefficients to 
determine the pattern of uniquely predictive mediators and 
contextual features. Partially consistent with our hypothesis, 
students’ internalization of scientific community values 
uniquely and positively predicted their end-of-summer scien-
tific research career persistence intentions, when we controlled 
for the other predictors (Table 2, science community values 
predicts the intercept of persistence intention b = 1.41). Incon-
sistent with our hypothesis, students’ ownership of their proj-
ects directly affected the pattern of growth in their intentions 
to persist in science (Table 2; e.g., project ownership negatively 
predicts linear decline in persistence intentions b = −1.55). 
Figure 3 shows the growth trajectories for students of low, 
average, and high levels of project ownership. Higher levels of 
project ownership (dotted line) were associated with high and 
steady persistence intentions, whereas low levels of project 
ownership (solid line) were associated with the typical decline 
and rebound in persistence intentions. There were no signifi-
cant differences between those with low, average, or high 
project ownership at either the beginning or end of the sum-
mer experience—only a difference in the growth trajectory 
(i.e., decline and rebound).

Role Modeling Supports Persistence Intentions through 
Scientific Community Values
Next, we addressed research question 3 (i.e., degree to which 
the quality of faculty mentorship and project ownership 

influences persistence intentions indirectly through scientific 
mediators). Consistent with expectations, the bivariate correla-
tions showed that, at time 2, students with higher levels of fac-
ulty mentorship support and higher levels of project ownership 
reported higher levels of science self-efficacy, science identity, 
and internalization of scientific community values (i.e., contex-
tual features exhibited small-to-moderate bivariate correlations 
with the scientific mediators; Table 1).

However, we hypothesized that faculty mentorship support 
and project ownership would predict the scientific mediators 
over and above baseline levels of science self-efficacy, identity, 
and community values. To formally test our hypothesis, we 
compared the model–data fit of two additional nested struc-
tural equation models (i.e., SEM 2 and SEM 4). As described 
earlier, our conceptual model (SEM 2) hypothesized that the 
qualities of faculty mentorship support and project ownership 
would predict science self-efficacy, science identity, or science 
community values when controlling for baseline levels of the 
scientific mediators. Therefore, we tested the model–data fit of 
a null model (SEM 4), which hypothesized that neither the 
qualities of faculty mentorship support nor project ownership 
would predict science self-efficacy, science identity, or science 
community values (Figure 1, a-paths = 0). If the null model 
(SEM 4) did not worsen model fit compared with the conceptual 
model (SEM 2), we could conclude that the contextual features 
do not improve the prediction of the scientific mediators over 
and above baseline levels of the scientific mediators. The model 
fit statistics indicated that the null model (SEM 4) did not pro-
vide acceptable fit to the data, χ2(88) = 193.15, p < 0.001, 
RMSEA = 0.08, pClose = 0.002, CFI = 0.81, SRMR = 0.09, and 
significantly worsened model fit compared with the conceptual 
model (SEM 2), Δχ2(15) = 71.59, p < 0.001. Consistent with 
our expectations, a comparison of the model-data fit revealed 
that students’ experiences of faculty mentorship support and 
project ownership are important factors in explaining science 

self-efficacy, science identity, and science 
community values over and above their 
initial science self-efficacy, science identity, 
and science community values.

Our second mediational hypothesis 
was that faculty mentorship support and 
project ownership would increase stu-
dents’ scientific career persistence inten-
tions, because those factors increased sci-
ence identity and science community 
values. If our hypothesis was accurate, the 
various types of faculty mentorship sup-
port and project ownership would have 
statistically significant indirect effects on 
persistence intentions through science 
identity and community values. Partially 
consistent with our hypothesis, student 
perceptions of their faculty mentors as 
inspirational role models positively 
affected science identity and internaliza-
tion of science community values (Table 2; 
e.g., role modeling predicts values (T2) b = 
0.23). Furthermore, students with higher 
levels of scientific community values had 
higher levels of scientific research career 
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FIGURE 4. Mediation model showing the positive effect of faculty mentor role modeling on science career persistence intentions at the 
end of summer through its positive influence on science community values. a-path: positive effect of faculty mentor role modeling on 
science community values (controlling for baseline levels of values); b-path: positive effect of science community values on science career 
persistence intentions at the end of summer (controlling for all other predictors in the model); c-path: total effect role modeling on 
persistence intentions (not controlling for other factors in the model); c′-path: direct effect of role modeling on persistence intentions 
(controlling for all other factors in the model); a × b: indirect or mediated positive effect of faculty mentor role modeling on science career 
persistence intentions at the end of summer through its positive influence on science community values; nonsignificant paths and 
contrast-coded indicators of program not included in this diagram for the sake of parsimony. ***,  p < 0.001.

persistence intentions at the end of the SURE. Consistent with 
best practices, we formally tested the statistical significance of 
the indirect effect of faculty role modeling on persistence inten-
tions through scientific community values using a bootstrap-
ping procedure with 10,000 repetitions to construct percentile 
confidence intervals around the mediated effect shown in 
Figure 4 (Shrout and Bolger, 2002; MacKinnon et al., 2007). 
The mediation analysis revealed that faculty role modeling had 
a statistically significant positive indirect effect on students’ 
end-of-summer scientific research career persistence intentions 
through science community values (Figure 4, a × b = 0.32, and 
confidence intervals do not include 0).

DISCUSSION
The current study used a longitudinal design to measure devel-
opmental growth in students’ scientific career persistence 
intentions over the course of a single intensive summer appren-
ticeship-style faculty-mentored research experience. In addi-
tion, the current study used the TIMSI model to examine the 
psychological processes that link URE activities to student inte-
gration into STEM careers and culture. Student growth trends 
over the summer did not conform to a simple narrative of con-
tinuous growth toward a scientific career. Rather, students’ 
growth was more erratic, defined by declines and rebounds. 
Furthermore, faculty mentor support and student ownership 
over their research projects related to growth in science career 
persistence intentions differently. Project ownership directly 
supported growth in student aspirations to pursue scientific 
careers; however, faculty mentorship support operated in a 
more nuanced way. Faculty mentor support helped students to 
internalize scientific community values and to see themselves 
as “scientists,” and these values and self-beliefs in turn galva-
nized their commitment to a scientific career.

A key finding from this research was that student intentions 
to pursue scientific careers declined and then rebounded over 
the course of the SURE (i.e., a quadratic developmental growth 
trend). This finding is novel, in part, because the SURE litera-
ture has relied heavily on posttest only or pre–post research 
designs to identify “gains” over the summer (e.g., Lopatto, 
2004, 2007; Fuchs et al., 2016; Kolber et al., 2016). However, 
the posttest only and pre–post designs have many well-estab-
lished methodological and statistical limitations to detect 

developmental processes or change over time via gain scores 
(Cronbach and Furby, 1970; Shadish et al., 2002; Maxwell and 
Delaney, 2004). Adding one or more intermediate measures 
between pretest and posttest allows researchers to detect and 
describe patterns of individual growth over time (Chan, 1998; 
Venter et al., 2002). In the present study, for example, it would 
have been impossible to document the drop in persistence 
intentions followed by a rebound in persistence intentions 
under a pre–post design. A simple gain score analysis (i.e., Mgain 
= Mposttest – Mpretest = 7.64 – 7.67 = −0.03; Table 1) would have 
revealed nothing about the pattern of growth that took place 
over the summer. Researchers interested in describing and 
explaining the role that research experiences play in developing 
the next generation of scientific professionals should strongly 
consider adding intermediate time points to their study design 
(at least one intermediate time point, but three intermediate 
time points would maximize statistical power; Maxwell, 1998; 
Venter et al., 2002).

The decline in persistence intentions from the first time 
point to the midpoint of summer was surprising and concern-
ing, as one of the goals of SUREs is to promote scientific research 
careers. However, several factors may help to explain and miti-
gate the decline. It is possible that the social and interpersonal 
dynamics involved in transitioning into a new research lab with 
a new faculty mentor and lab coworkers caused turbulence that 
initially dampened students’ interest in science careers. It is also 
possible that the first half of the SUREs involve particularly 
challenging and ambiguous aspects of authentic scientific 
research (e.g., reading background literature, defining a 
research problem with an unknown solution that is of interest to 
the scientific community, learning new protocols and equip-
ment to carry out the research). In addition, authentic research 
is accompanied by setbacks, experiments that do not work as 
planned, equipment or instruments that break and hold up the 
experiment, and the need for supplies that have been ordered 
and have not yet arrived. Often students experience these set-
backs in the middle of their project (time 2). Students new to 
research often do not realize that research is made up of lots of 
experiments that do not work but culminates in the one or two 
experiments that do work. The challenges and ambiguities in 
authentic research may initially dampen students’ enthusiasm 
for scientific careers. By contrast, the second half of the SUREs 
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may involve research processes that reinvigorate enthusiasm for 
scientific careers (e.g., gaining traction on discovery through 
iteration, mastery of new protocols and equipment, sharing 
research results at an end-of- summer poster presentation). 
Aspects of our findings hint at support for this explanation.

If challenges and ambiguity in research define the first half 
of the URE, then students with higher levels of research readi-
ness should be better able to take ownership of their research 
projects and resolve the initial challenges. Prior research has 
shown that students engaged in challenging and ambiguous 
aspects of authentic research report lower project ownership 
than students engaged in more structured research projects 
with a known solution (i.e., research lab vs. traditional lab; 
Hanauer and Dolan, 2014). Consistent with this explanation, 
our data showed that students with high levels of science 
self-efficacy at the start of the SURE reported higher project 
ownership at the midpoint of the SURE (r = 0.27). Furthermore, 
students with high levels of project ownership at the midpoint 
of the SURE did not experience a drop in persistence intentions 
(Figure 3). Thus, students who begin the summer with higher 
levels of research readiness may be better prepared to take 
ownership of a project, resolve the challenges and ambiguity of 
the research project, and thus avoid the initial decline in their 
persistence intentions. More study is needed to substantiate this 
potential explanation for the initial decline in persistence 
intentions.

The beneficial effects of having high levels of project owner-
ship also point to a potential area for intervention. That is, 
enacting policies and procedures that support students’ project 
ownership may improve short-term outcomes (such as avoiding 
a decline in persistence intentions) and long-term persistence 
in scientific research careers (Hanauer et al., 2017). Any inter-
ventions aimed at supporting students’ project ownership will 
need to be sensitive to the qualities that define ownership. Sci-
ence students’ perceptions of ownership are defined by five 
qualities: making connections between one’s personal history 
and scientific inquiry; agency and mentorship; excitement; 
overcoming challenges; and expressions of personal scientific 
achievement (Hanauer et al., 2012; Hanauer and Dolan, 2014). 
Recent research has shown that the five elements of project 
ownership may be subsumed by two global factors of owner-
ship defined by students’ positive emotions toward the research 
project and their degree of agency over the research (Hanauer 
et al., 2017). Thus, interventions aimed at improving students’ 
levels of project ownership should take into account students’ 
sense of agency (task choice, personal sense of responsibility) 
and support in overcoming challenges, as well as emphasizing 
relevance of the project to the larger scientific community.

Another key finding from this study concerned the mecha-
nisms by which faculty mentors draw students into science 
careers. Informed by the TIMSI model, we hypothesized that 
faculty mentorship support would support growth in per-
sistence intentions through the development of science self-effi-
cacy, science identity, and science community values (Figure 1; 
Estrada et al., 2011, 2018). However, the longitudinal TIMSI 
model revealed that faculty mentors primarily socialize stu-
dents into science careers and culture through role modeling (as 
opposed to other types of mentorship support). That is, stu-
dents who viewed their faculty mentors as more inspirational, 
in terms of identifying with a mentor’s life and work, developed 

a stronger commitment to scientific community values—even 
after controlling for the students’ levels of commitment to sci-
ence community values at the start of the summer experience. 
This finding aligns with research showing that role models 
inspire aspirants by providing an example of the attitudes, 
norms, and behaviors required to achieve similar success 
(Lockwood et al., 2002). This finding also has implications for 
faculty mentors and URE programs, as the role modeling litera-
ture has identified several attributes of role modeling that pro-
mote inspiration, motivation, and persistence.

Role models are most effective and motivational when they 
are relevant (e.g., similar domain of shared interest [science 
career], similar gender), when their success is perceived to be 
attainable by identifiable pathways (Lockwood and Kunda, 
1997, 1999; Lockwood et al., 2002; Lockwood, 2006), when 
they normalize struggle and promote effort to achieve success 
in STEM (Shin et al., 2016), and when they communicate 
that STEM careers are compatible with communal values (i.e., 
helping others; Clark et al., 2016). Therefore, we expect that 
faculty mentors who intentionally talk about their journeys into 
their scientific careers would be most likely to be inspirational 
role models (e.g., highlights from their personal histories: simi-
larities they share with their mentees, where they started, how 
they achieved success, challenges they overcame through 
effortful development of new skills, how their work helps peo-
ple). Therefore, faculty mentors and URE program organizers 
may wish to intentionally design conversations and activities 
that highlight the similarities between mentors and mentees, 
stress the relevance of the work to the mentees’ future career 
aspirations, emphasize the pathways to attain similar success, 
normalize the struggle and the processes to overcome chal-
lenges, underscore the importance of effort (rather than bril-
liance) in achieving success, and demonstrate how their work 
helps people. These conversations and activities need not all 
come from the faculty mentor; conversations and activities may 
be equally influential coming from other potential role models 
who are slightly farther ahead of the mentee on the path to a 
scientific career—postdocs, graduate students, and even more 
advanced undergraduate researchers. For example, summer 
research coordinators for the present study are implementing 
activities such as the mentor biography and setting mentor–
mentee expectations and research expectations to improve 
opportunities for role modeling and mentorship (Branchaw 
et al., 2010).

Although the present study addressed a number of theoretical 
and methodological gaps in the literature, there are limitations 
that require further study. For example, the present study focused 
on SURE participants enrolled in six distinct summer programs 
at one research-intensive university and used only self-reported 
measurements. Further study is needed to determine whether 
the same pattern of growth and stability of the effects on growth 
hold across multisemester or yearlong cocurricular or course-
based undergraduate research experiences. To date, other stud-
ies of course-based and cocurricular research experiences have 
not tracked developmental growth in persistence intentions 
within the bounds of the URE (Lopatto, 2007; Adedokun et al., 
2014; Fakayode et al., 2014; Fuchs et al., 2016; Hernandez et al., 
2018). In addition, limited evidence from one study that tracked 
science majors over three academic years showed a similar qua-
dratic pattern in persistence intentions, one marked by an overall 
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decline followed by a leveling off or slight rebound (Schultz et 
al., 2011). An additional limitation concerns the measurement of 
the outcome. Specifically, the current study operationalized per-
sistence intentions in terms of students’ aspirations to pursue a 
science career, while other studies have emphasized aspirations 
to pursue a research career. It is possible that this slight variation 
in focus on science versus research may have influenced some 
aspects of the findings. For example, prior work on the TIMSI 
model has shown that science identity, not science community 
values, was the most influential predictor of persistence inten-
tions (Estrada et al., 2011, 2018). Further study will be needed 
to determine whether contextual features of the URE, the opera-
tionalization of persistence intentions, or other salient factors 
are the source of variability across the research literature. Related 
limitations concern the need to determine the degree to which 
these findings hold across a broader array of sources of mentor-
ship support, types of summer programs, institutions, and 
methods of measurement. In particular, students involved in the 
current summer research programs likely received various types 
of support (psychosocial, instrumental, networking, etc.) from 
persons other than their faculty research mentors (program staff, 
graduate students, peers). More research is needed to better 
understand how support received from a network of mentors 
relates to beneficial outcomes. In addition, the present study only 
consisted of undergraduates engaged in a SURE. Further coun-
terfactual evidence and evaluation of the TIMSI model would 
benefit from measuring the same processes in comparison sam-
ples of students engaged in low-intensity SUREs and among stu-
dents not engaged in SUREs.

In summary, the present study was informed by the TIMSI 
model and addressed three research questions concerning 
changes in scientific career persistence intentions over time 
within a single intensive SURE. Our analysis showed that stu-
dents tended to exhibit a swing (i.e., decline and rebound) in 
their persistence intentions over the course of the summer. 
However, students with high levels of project ownership exhib-
ited steady persistence intentions, while those with lower proj-
ect ownership experienced the downward and upward swing. 
Most importantly, the analysis revealed that faculty mentor role 
modeling increased students’ internalization of science commu-
nity values, and those values in turn increased students’ scien-
tific career persistence intentions.
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