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ARTICLE

ABSTRACT
Given the centrality of data visualizations in communicating scientific information, in-
creased emphasis has been placed on the development of students’ graph literacy—the 
ability to generate and interpret data representations—to foster understanding of do-
main-specific knowledge and the successful navigation of everyday life. Despite prior liter-
ature that identifies student difficulties and methods to improve graphing competencies, 
there is little understanding as to how learners develop these skills. To gain a better reso-
lution of the cognitive basis by which individuals “see” graphs, this study uses eye tracking 
(ET) to compare the strategies of non–science undergraduates (n = 9), early (n = 7) and 
advanced (n = 8) biology undergraduates, graduate students (n = 6), and science faculty 
(n = 6) in making sense of data displays. Results highlight variation in how individuals direct 
their attention (i.e., fixations and visual search patterns) when completing graph-based 
tasks as a function of science expertise. As research on the transition from novice to expert 
is crucially important in understanding how we might design curricula that help novices 
move toward more expert-like performance, this study has implications for the advance-
ment of new strategies to aid the teaching and learning of data analysis skills.

INTRODUCTION
Graphical displays of data are becoming increasingly prevalent in today’s society, given 
innovations in communication and how complex data sets are generated and analyzed 
(National Science Board, 2016). Given the value of graphs in effectively communicat-
ing quantitative data (Tufte, 1983), graphical literacy (or the ability to generate and 
interpret graph data; Fry, 1981) is widely recognized as a core competency in under-
graduate education (e.g., National Council of Teachers of Mathematics [NCTM], 
2000; Association of American Medical Colleges [AAMC], 2009). This competency is 
particularly crucial in the science, technology, engineering, and mathematics [STEM] 
disciplines, as major and nonmajor students are regularly asked to make sense of and 
use graphical representations to succeed in their course work and research (e.g., 
McDermott et al., 1987; Speth et al., 2010; Angra and Gardner, 2017). More broadly, 
there is critical need for students to develop these skills both to communicate within 
their careers and to act on quantitative data in their daily lives to inform personal 
decision making and opinions on public policy as educated citizens (Padilla et al., 
1986; American Association for the Advancement of Science [AAAS], 2011).

One’s ability to generate or interpret graphs is widely held as a core competency in 
undergraduate education (e.g., NCTM, 2000; AAMC, 2009; AAAS, 2011). However, it 
has been well-documented that college students demonstrate deficiencies in under-
standing and using this form of data (as reviewed by Glazer, 2011). Prior studies 
report on a range of common issues mitigating science and non–science undergradu-
ates’ abilities in deriving meaning from graphs generated by themselves or others 
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(or graph comprehension; Friel et al., 2001), including proper 
variable identification, appropriate use of common graph con-
ventions, interpreting mathematical functions (e.g., slope 
height), scaling, translating abstract graph data to real-world 
concepts, and conceiving data relationships (McDermott et al., 
1987; Bowen et al., 1999; Kozhevnikov et al., 2007; Picone 
et al., 2007; Speth et al., 2010; Maltese et al., 2015). Given this, 
it is understandable that students often struggle when faced 
with graph data, as such obstacles limit appropriate progress 
through the hierarchical steps involved in graph reading: 
1) reading the data, 2) reading between the data, and 3) read-
ing beyond the data (Curcio, 1987). In fact, extant research 
indicates that the less expertise a learner possesses in data anal-
ysis, the more prone he or she is to errors in the lower steps of 
this hierarchy, as graph comprehension is assumed to develop 
gradually through practice (Friel et al., 2001; Sharma, 2006).

Examining differences in problem solving between experts 
and novices is key to helping novice learners move toward more 
expert-like performance (Hmelo-Silver, 2004).1 Prior research 
suggests that experts use prior knowledge structures to perceive 
and recognize patterns and problem-solving behaviors in a 
domain that allows them to “see” a problem differently from 
how novices do (Chi et al., 1981; National Research Council 
[NRC], 2000). Taking a closer look at expertise in graph 
comprehension, a large body of research demonstrates that the 
ability to make sense of and use graph data and learn interpre-
tive skills is strongly influenced by one’s prior knowledge and 
experience with the content/context of the graph (e.g., Bowen 
et al., 1999). As an example, Roth and Bowen (2001) used 
various interpretation tasks and interviews to evaluate the 
graphing competencies of practicing scientists when confronted 
with unfamiliar data from outside their respective areas of 
expertise. On the basis of the common difficulties demonstrated 
by the scientists (e.g., interpretative errors due to misreading 
signs), Roth and Bowen found that graph comprehension is 
tightly connected to one’s embodied understanding of the 
domain and its representational practices.

In relation to representational practices, existing studies on 
graphing expertise examined how design characteristics may 
affect the cognitive processes that underlie data interpretation 
(e.g., Zacks and Tversky, 1999; Goldberg and Helfman, 2011; 
Kosslyn, 2006). In one such set of studies, Ali and Peebles 
(2011), Peebles (2013), and Peebles and Ali (2015) gathered 
think-aloud data from participants of various backgrounds in 
psychology as they completed pen-and-paper tasks to test the 
influence of graph format on diagrammatic reasoning. The 
authors found that graph type (line vs. bar) affected novices’ 
abilities to draw appropriate inferences from the data, whereas 
experts demonstrated comparable performance levels for both 
formats. Similarly, in comparison to novices, experts were not 
affected in their interpretation by other graph features such as 
the relative sizes of effects (Peebles, 2013). These results may be 
due to experts having more developed pattern-recognition pro-
cesses than their novice counterparts, allowing them to more 
rapidly and correctly draw inferences from graph data indepen-
dent of format (Peebles, 2013; Peebles and Ali, 2015). In con-
trast, due to incomplete prior knowledge structures, novice 

graph interpretation is characterized as relying on the use of 
surface features (e.g., graph type, color) constraining the trans-
fer of information to new representations (Kozma and Russell, 
1997; Kosslyn, 2006).

However, despite the valuable insight lent by this type of 
work, data gathered on graph interpretation using pen-and-
paper tasks and retrospective accounts can be constrained by a 
number of factors (e.g., incomplete recall). In response, several 
studies used eye tracking (ET) as a tool to more directly evalu-
ate the underlying cognitive processes involved in making sense 
of graphics (e.g., Mayer, 2010; Stofer, 2016). ET technology 
captures one’s point of gaze (POG) as it shifts over time and 
space, providing insight into a subject’s attentive behavior 
(Duchowski, 2002). Two common eye-movement metrics are 
used for this: fixations and saccades. A fixation is a time interval 
(often established between 100 and 200 milliseconds) that the 
POG remains relatively stable as the viewer is interpreting given 
information in a scene (Rayner, 1998). The duration of fixation 
acts as an indicator to the cognitive complexity of the presented 
information for the viewer, whereas the number of fixations and 
total gaze time within a region suggests its perceived impor-
tance (Henderson and Hollingworth, 1998). Saccades are rapid 
eye movements between locations. While the viewer processes 
no information during these voluntary movements, the sequence 
of fixations by location over time and space provides insight into 
strategic approaches used in problem solving (Duchowski, 
2002, 2007). As one naturally directs one’s attention (or the 
concentration of mental activity) to interpret an image, a close 
link exists between eye-movement metrics and cognitive pro-
cesses (e.g., Jacob and Karn, 2003; Duchowski, 2007). In this 
way, as noted by Mayer (2010), ET offers “a unique opportu-
nity” to gather evidence on how people learn and think within 
a wide range of graphics, including scientific data visualizations 
such as maps (Ooms et al., 2014; Stofer, 2016), textbook pic-
tures (Slykhuis et al., 2005), animations (de Koning et al., 
2010), and graphs (Tai et al., 2006; Libarkin et al., 2013).

Using ET technology to evaluate the effect of expertise on 
graph interpretation, Tai and colleagues (2006) compared the 
eye-gaze behaviors of six preservice teachers with different sci-
ence subject backgrounds (chemistry, biology, physics) while 
they were solving standardized problems including graph data. 
As predicted, the authors found student eye movements were 
affected by the extent of expertise in the subject in which the 
tasks were situated. Specifically, students with higher levels of 
content familiarity required fewer eye fixations and saccades to 
process information than their more novice-like peers. More 
recently, to help inform instructional practices, ET techniques 
have been used to identify and analyze differences in how 
individuals with little knowledge and “experts” interact with 
discipline-based or specialized graph data. As an example, 
Topczewski et al. (2016) compared the eye movements of intro-
ductory organic chemistry students with those of graduate and 
advanced undergraduate students when interpreting nuclear 
magnetic resonance (NMR) spectra—a common technique 
within the field. Substantial differences were noted between the 
two groups: the introductory students had a more sporadic gaze 
pattern distributed across the graph, whereas the more experi-
enced students focused on specific areas of interest in making 
sense of the data. Similarly, Atkins (2016) found notable varia-
tion in the search and fixation patterns of undergraduates and 

1See NRC (2000) for a comprehensive review as to how experts and novices differ 
in learning and problem solving.
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science experts (geoscience graduate students) when faced 
with five climate change graphs from the U.S. Environmental 
Protection Agency. In particular, undergraduates focused more 
attention on graph elements that helped them read the data 
(e.g., question text, title), but graduate students focused on 
information (e.g., data trends, legends, axis labels) that helped 
them better understand the data being presented. However, 
there are two ways such ET results may be constrained in 
understanding how individuals make sense of graph data. First, 
it can be argued that advanced undergraduates and graduate 
students generally lack the collective experiences necessary to 
act as expert group members (Ericsson and Charness, 1994), 
because they often demonstrate graphing difficulties compa-
rable to those of more novice-like learners (e.g., Shah and 
Carpenter, 1995; Shaffer and McDermott, 2005; Maltese et al., 
2015). Second, using highly discipline-specific data displays 
may represent more of an assessment of content and context 
understanding (Roth and Bowen, 2001) than a measure of a 
general ability to read and interpret graphs.

DESCRIPTION OF STUDY
Collectively, what we know about the effect of expertise on graph 
comprehension is that experts and novices interpret data differ-
ently and that identified differences can help inform our instruc-
tional practices. Most prior work approached the issue as a 
dichotomy contrasting differences between end members rather 
than along a continuum of expertise (e.g., Bowen et al., 1999; 
Topczewski et al., 2016). Surprisingly little is known about the 
progression of graph reading and interpretation skills in postsec-
ondary science. We designed the present study to address this 
gap in our understanding by examining the approaches of indi-
viduals with various levels of scientific expertise—from non–sci-
ence students to practicing STEM professionals—as they 
attempted to make sense of and use graph data. More specifi-
cally, using eye-movement data supplemented with interview 
questions, we examined the similarities and differences in the 
interpretive strategies of individuals when completing graph-
based tasks focused on science-related topics drawn from every-
day sources (e.g., medical pamphlets). Here, we sought to 
answer the question: How do individuals along a continuum of 
scientific expertise differ in how they read and interpret graph 
data? This research extends our pilot work (Harsh and Maltese, 
2013; Harsh et al., 2013) and others’ earlier research on exper-
tise in graph interpretation by explicitly examining differences in 
the decision-making processes of students and scientists. Our 
goal is not to determine what skills experts possess and novices 
lack, but to see what differences may exist as a function of scien-
tific training that can be used to inform the development of 
graph literacy. Based on prior data-visualization literature (e.g., 
Atkins, 2016; Angra and Gardner, 2016; Stofer, 2016; Topcze-
wski et al., 2016), it is anticipated that variation will exist 
between experts and novices in how they direct their attention 
during task completion when seeking meaningful information 
and that this knowledge might provide insight to help guide stu-
dents in transitioning from novice to expert-like performance or 
“learning how to see” like experts (NRC, 2000, p. 36)

MATERIALS AND METHODS
This work is part of a larger project on graph comprehension 
that relies on multiple pieces of evidence, including data-visual-

ization assessments (Maltese et al., 2015), graph-drawing activ-
ities with think-aloud recordings (Harsh et al., 2013), ET mea-
surements, and interviews. In this article, we focus primarily on 
ET, which measures visual attention to stimuli to lend insight 
into participants’ cognitive processes (e.g., patterns in searching 
for information) when tasked with answering questions while 
viewing graphs.

Participants
Participants demonstrating a broad spectrum of science exper-
tise were recruited at James Madison University, a large mas-
ter’s degree–granting university in the southeastern region of 
the United States. To capture variation within the expert–novice 
continuum, we identified five expertise groups before begin-
ning the study: non–science majors, early science majors with 
fewer than 15 completed credit hours in the sciences (consist-
ing of students completing required introductory course work 
in biology and chemistry), advanced science majors with more 
than 15 completed credit hours in science, biology graduate 
students, and life science faculty. Faculty were recruited from 
two units (biology and interdisciplinary science) via email; 
graduate students in biology were recruited via email; and 
undergraduates were contacted using class announcements, 
email messages distributed by faculty to their student research-
ers, and student organization Listservs. After “open” recruit-
ment at the onset, a more purposeful selection (Creswell, 2014) 
was undertaken on a rolling basis to fill out the groups to a 
(relatively) equal balance. The final sample (n = 36) was com-
posed of nine non–science majors (NSM), seven early science 
majors (ESM), eight advanced science majors (ASM), six grad-
uate students (SGS), and six science faculty (SF). Participants 
took part in the study on a voluntary basis and were paid a 
modest stipend in recognition of their time.

Description of ET
ET Data Collection. Study participants were seated in front of 
a standard desktop computer connected to a table-top ET sys-
tem. Before the test, a researcher provided a brief overview of 
the study and general instructions for the session that included 
a practice slide to familiarize the participants with how the 
graphing tasks would be presented. At this time, participants 
were invited to ask any questions they might have and com-
plete the institutionally approved institutional review board 
documents (James Madison University IRB #17-0420). After 
initial calibration, participant eye movements were recorded 
while they completed the electronic instrument at their own 
pace (lasting 28 minutes on average). The instrument con-
sisted of 26 graph-based tasks of various topics and levels of 
difficulty. Assessment visualizations were selected to provide a 
range of complexity in graph characteristics identified in the 
literature (e.g., Glazer, 2011; Maltese et al., 2015), such as 
graph type (e.g., line graph vs. scatter plot), data trends (e.g., 
single vs. multiple), mathematical functions (e.g., slope), and 
so on (see Supplemental Table 1). Eighteen of the 26 graph-
based tasks were drawn from existing validated data-visual-
ization instruments (Picone et al., 2007; Maltese et al., 2015). 
Most items (n = 16) came from a measure designed and tested 
by two of the coauthors (J.H. and A.M.; Maltese et al., 2015) 
that relied on visualizations collected from everyday sources 
individuals would commonly have access to (e.g., high school 
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textbooks, health-related pamphlets, government websites) 
for authenticity and generalizability purposes. As content and 
contextual familiarity influences the interpretation process 
(Roth and Bowen, 2001), the use of “everyday” science- 
related imagery was intended to help level the proverbial 
playing field between participants of various backgrounds, as 
we were assessing their actions in reading and interpreting 
graph data rather than their disciplinary knowledge.

The question prompts were designed to reflect differing lev-
els of challenge for adult learners (Glazer, 2011), from simple 
(e.g., identification of a variable) to complex (e.g., describing 
variable relationships). Where possible, the prompts were 
drawn or modified from the original source material to increase 
task authenticity. The remaining eight graphing tasks gener-
ated for the ET study were developed much like the earlier 
measure designed and tested by the authors, with particular 
focus placed on selecting images conducive to tracking eye 
movements between areas of interest (i.e., graph layouts with 
distinct, nonoverlapping features). The validity of these new 
tasks was again based on their authenticity and feedback col-
lected from faculty with expertise in science and mathematics 
that supported the face validity of the tasks. For the ET sessions, 
each graph image was presented individually and, comparable 
to other tests that include data-visualization tasks (e.g., Scho-
lastic Aptitude Test, Test of Scientific Literacy Skills) or what 
students may encounter in their course work (e.g., clicker or 
exam questions), included a question prompt and four multi-
ple-choice answer options. In general, the graph tasks were 
largely presented in an order of anticipated level of challenge to 
allow participants to cognitively “warm-up” as they gained 
experience with the study.

FIGURE 1. Screen capture of the defined AOIs used to assess fixation and search parame-
ters. Graph source: Intergovernmental Panel on Climate Change (2007).

A Tobii X2-60 system (Stockholm, Sweden) was used to track 
participant eye movements during completion of the graph-
based tasks. This table-top system consists of an ET camera and 
infrared LEDs housed in a unit that attaches to the computer in 
order to capture eye movements by computing corneal and pupil 
reflection patterns. The tracker operates at a sampling rate of 
60 Hz (producing a data point less than every 35 ms) and has an 
accuracy (spatial error between true eye position and computed 
measurement) of ±0.4°, both of which are satisfactory in this 
work, and other practical applications (de Koning et al., 2010), 
for measuring eye position. The use of the nonrestraining system 
permits participant head motion side-to-side and forward within 
a 1 square foot range at 60 centimeters. The data displays were 
presented on a 24-inch monitor.

ET Data Analysis. Tobii Studio v. 3.3 software (www.tobii.com) 
was used to record, replay, and analyze participant eye move-
ment. Raw eye-movement data were aggregated and analyzed 
as fixations and saccades (as described earlier) that were com-
pared with delineated areas of interests (AOIs), which are zones 
of the image that are characterized to be different from one 
another. Here, based on standard graph design (Kosslyn, 1994), 
the graph data, title text, variables, question text, answer text, 
and other included information (e.g., data source, legend) were 
defined as distinct zones (Figure 1). Using these AOIs and the 
eye-movement data, we examined what a participant looked at 
(i.e., the number of fixations and total time spent within the 
AOI boundaries) and how they directed their attention (num-
ber and order of saccades between AOIs) when completing 
graph-based tasks (Figure 2). Fixations on the screen but out-
side of the AOIs were categorized as “lost” and may represent 

brief unsystematic data losses due to spa-
tial accuracy, transitions between AOIs, 
head motion, or other technical difficul-
ties. In the few instances in which partici-
pants had unsatisfactory tracking for a 
graph (>20% loss of data; n = 3), the data 
for that particular image were excluded 
from analysis. ET data were later migrated 
into IBM SPSS v. 24 software for further 
statistical analyses.

Description of Supplemental 
Data Collection
After completion of the ET sessions, partic-
ipants completed a short questionnaire to 
gather information about their academic 
backgrounds (e.g., course work, career 
interests) and were interviewed to enhance 
data collection. As part of the larger 
data-visualization study, the semistruc-
tured interviews (Creswell, 2014) focused 
on a range of areas related to graphing 
practices—here, we focus on two question 
lines particularly relevant to this ET study 
that lend insight into potential differences 
in how participants interpret information. 
First, as expertise building through practice 
helps individuals recognize meaningful 
patterns of information (de Groot, 1965), 
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participants were asked about their general experiences with 
graphing through the following questions: 1) In a typical week, 
how many graphs or charts do you read or create? [If needed] 
How many of these do you use to make decisions, communicate 
information, or solve problems? 2) Have you taken classes or 
had other training that explicitly taught you how to interpret or 
construct a graph? [If so] Can you describe the type of instruc-
tion or training on graphing you received? In the interest of 
ascertaining differences in how participants approach graph 
reading and interpretation, participants were asked: 3) When 
you are trying to read a new graph, do you approach it in a given 
way? [If needed] Can you explain the stepwise process—or 
order that you look at graph features—when first interpreting a 
graph? In addition to lending insight to their thought processes 
used in graph interpretation, the latter question also afforded 
the opportunity to compare the alignment between participants’ 
planned problem solving and their actual activities as measured 
via ET (a ground truthing of sorts).

Interviews, ranging between 10 and 20 minutes in duration, 
were conducted by one of two coauthors (C. Murray or C. 
Myers) with a written interview guide and transcribed verba-
tim. Coding for the selected questions reflected themes expected 
to appear in participant answers, graphing literature, our work 
in this prior area, and the prompts themselves. An open-ended 
iterative approach known as constant comparative analysis 
(Glaser, 1965) was used to identify and describe emergent 
themes within the transcripts. Each response was independently 

FIGURE 2. Example of a graduate student’s fixation path over the first 10 seconds of being 
presented a graphing task. The line is the eye movement, numbers indicate fixation order, 
and dot size represents the time spent fixated at that point. Graph source: National 
Oceanic and Atmospheric Administration (2015).

coded by two of the four coauthors (J.A.H., 
M.C., C. Murray, or C. Myers) with regular 
discussion to build consensus on the final 
codes and qualitative themes. Compari-
sons were drawn between expertise groups 
to address the research question.

RESULTS
To answer our research question—
whether individuals along a continuum of 
expertise attended to graph data differ-
ently—we selected three common ET 
metrics to evaluate what differences, if 
any, exist between expertise groups in 
how they directed their focal attention 
when completing the graph-based tasks. 
First, the duration that participants 
spent fixated on AOIs was analyzed, per 
task. Closely linked to time duration 
(Duchowski, 2007), the second metric 
was the number of fixations (>200 milli-
seconds) per AOI over the duration of 
time spent on task. In addition, partici-
pants’ visual search activities were 
observed by analyzing the number of sac-
cades (i.e., voluntary eye movements) to 
each AOI. These measures are of particu-
lar interest here, as the duration and num-
ber of fixations and directed eye move-
ments indicate participants’ interest in or 
difficulties with parts of a visual stimulus 
during processing (e.g., Rayner, 1998; 
Duchowski, 2007; Ooms et al., 2014).

As mentioned in the ET session description, participants 
could work at their own pace, which led to notable variation in 
time spent on and the number of eye movements occurring 
during any given task. In light of this, we chose to normalize 
comparisons by computing percentages (e.g., the percent of 
time that a participant spent fixated on an AOI) relative to their 
total value (e.g., actual time spent on task) for each measure 
(cf. Slykhuis et al., 2005). These data were averaged across the 
26 graph-based tasks and aggregated by expertise groups in an 
attempt to identify trends. As Figures 3–5 depict, all three mea-
sures suggest a general trajectory in how individuals direct their 
cognitive allocations in interpreting graph data as they gain 
expertise. Differences in measured values between expertise 
groups were statistically analyzed using the Kruskal-Wallis test 
as a nonparametric method due to the small and unequal sam-
ple sizes per group.

The distribution of time spent fixated on answer AOIs (χ2 = 
17.8, df = 4, p = 0.001) was significantly different among 
groups. Pairwise comparisons using Dunn’s test revealed signif-
icant differences in the graph information AOI fixation time 
between SF and NSM (p < 0.01) and SF and ESM (p < 0.05) in 
time spent fixated on answer AOIs. Less distinct but appreciable 
trends were also observed, as less experienced participants 
were more likely to spend more time fixated on the task ques-
tions and less time on the graph data, variables, graph legend, 
and title/captions than their counterparts with more expertise 
(Figure 3).
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Using a Kruskal-Wallis test, we also analyzed differences 
between expertise groups based on the number (or count) of 
fixations >200 milliseconds in each AOI during completion of 
the graphing tasks. Significant differences were again noted 
among groups for fixations counts in answer AOIs (χ2 = 13.4, 
df = 4, p = 0.01). Dunn’s test for pairwise comparisons identified 
significant differences in fixation counts between SF and NSM 
(p < 0.05) and SF and ESM (p < 0.05). While not significant, 
stepwise trends are also notable across groups for count data in 
the variables, title text, legend, graph data, and question AOIs, 
as well as the collective graph information AOI (that bins vari-

ables, title text, and legends together) as a function of expertise 
(Figure 4).

In examination of subjects’ visual search activities, the distri-
bution of saccades (or visits) toward question (χ2 = 15.72, df = 
4, p < 0.01) and answer (χ2 = 12.44, df = 4, p = 0.05) AOIs were 
significantly different among groups. Pairwise comparisons 
using Dunn’s test revealed significant differences between SF 
and NSM in the number of saccades toward the answer AOIs 
(p < 0.01) and between SF and ESM (p < 0.05) in distribution 
of saccades toward the question AOI. Distribution of saccades 
toward the graph data, variables, legends, and title text between 

FIGURE 3. Box plots representing (thick line indicates median) average proportion of fixation time to (a) graph data, (b) questions, 
(c) answer options, (d) variables, (e) title/caption, and (f) legend AOIs by expertise. ET data were collected from 36 participants: 9 NSM, 
7 ESM, 8 ASM, 6 SGS, and 6 SF.

FIGURE 4. Box plots representing (thick line indicates median) average proportion of fixation counts to (a) graph data, (b) questions, 
(c) answer options, (d) variables, (e) title/caption, and (f) legend AOIs by expertise. ET data were collected from 36 participants: 9 NSM, 
7 ESM, 8 ASM, 6 SGS, and 6 SF.
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groups were not found to be significantly different; however, a 
noteworthy trend can be observed, as less experienced partici-
pants were less likely to visit these graph features than their 
more experienced counterparts (Figure 5).

Taking into account that individuals often group various ele-
ments of perceived meaningful information when problem solv-
ing (NRC, 2000), the AOIs central to understanding graph con-
tent/context (i.e., variables, title text, legends) were also 
analyzed as a single AOI (referred to here as “graph informa-
tion”). While statistical differences between groups were not 
found in the reported metrics earlier when examined inde-
pendently, significant differences as a function of expertise were 
apparent when these features were observed collectively. Here, 
the time spent fixated on (χ2 = 15.5, df = 4, p < 0.01; Figure 6) 
and the distribution of saccades (or visits) to the graph informa-
tion (χ2 = 10.13, df = 4, p < 0.05) were significantly different 
between groups. Pairwise comparisons using Dunn’s test identi-
fied significant differences between SF and NSM (p < 0.01) and 

SF and ESM (p < 0.05) in time spent fixated on graph informa-
tion. Similarly, pairwise differences were also found between SF 
and NSM in the number of saccades toward the graph informa-
tion (p < 0.05). While not statistically different, an appreciable 
positive stepwise trend in the number (or count) of fixations 
>200 milliseconds toward the graph information as a function 
of expertise is apparent (Figure 6).

Another more qualitative pass was taken to determine 
whether expertise group members attended to the graphing 
tasks differently based on display type. Figure 7 and Supple-
mental Figures 1 and 2 depict the proportion of time fixated per 
AOI (with graph information again combined into a single AOI) 
by three graph type bins,2 including 1) line charts (n = 9), 2) bar 
charts and histograms (n = 7), and 3) other graph types (n = 10, 

FIGURE 5. Box plots representing (thick line indicates median) average proportion of visits to (a) graph data, (b) questions, (c) answer 
options, (d) variables, (e) title/caption, and (f) legend AOIs by expertise. ET data were collected from 36 participants: 9 NSM, 7 ESM, 8 ASM, 6 
SGS, and 6 SF.

FIGURE 6. Box plots representing (thick line indicates median) the average proportion of (a) fixations, (b) fixation counts, and (c) visits to 
the graph information AOI. ET data were collected from 36 participants: 9 NSM, 7 ESM, 8 ASM, 6 SGS, and 6 SF.

2These three bins were selected for their structural properties and, given the vari-
ation between graphs (e.g., task difficulty), to maintain comparable numbers of 
graphs per category for analysis purposes.
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see Supplemental Table 1 for the variety of “other” types used 
in the study). While statistical comparisons between expertise 
groups are limited with the ET data disaggregated by graph 
type, the observed general trends are consistent with the earlier 
results (Figures 3 and 6) in how individuals direct their focal 
attention during graph interpretation as a function of 
expertise.

These differences in search patterns become more striking 
when comparing individual participants’ eye-movement path-
ways depicting the sequence of fixations and duration over a 
given time period. Figure 8 illustrates the initial eye movements 
of a representative faculty member (red line), advanced science 
major (orange line), and non–science major (blue line) over a 
standardized 20-second time interval when starting a new 
graphing task. The lines represent the participants’ eye move-
ments through the AOIs for a single (randomly) selected graph. 
Here, the faculty member demonstrates a more directed 
approach focusing on the graph information and data, whereas 
the student search patterns are more sporadic. Between stu-
dents, the advanced science major’s eye movements oscillated 
among AOIs, while the nonmajor’s attention was frequently 
directed to the question and answer.

To lend insight to the observed similarities and differences in 
eye movement between participant groups during graph inter-

pretation, we identified several themes that emerged from our 
interview transcripts relating to participants’ graphing experi-
ence and thought processes. First, while all participants reported 
daily exposure to graph data through various avenues (e.g., 
social media, course work, research), there was a notable posi-
tive trend between expertise level and meaningful graph usage 
(i.e., interpretation or drawing of graphs) in problem solving on 
a weekly basis. Most SF self-reported—on average—using mul-
tiple graphs each day followed by SGS (1–2/day), ASM (3–4/
week), ESM (1–2/week), and NSM (rarely or <1/week). Also 
related to their graphing experience, ∼30% of participants (n = 
11) reported having a course or other training related to graph 
drawing and interpretation. Of these “trained” respondents, 
approximately half were SF (n = 3) and SGS (n = 3) who iden-
tified explicit graphing instruction through research and gradu-
ate courses, whereas ASM (n = 3) and ESM (n = 2) reported 
implicitly learning through practice in their course work. The 
following comment represents this view: “I guess in chemistry 
[as] we did graphs all the time and he wanted them in a pretty 
specific ways that he could read them quickly or whatever. 
Yeah, I guess the practice helps. Just repetition to get better 
with time” (third-year biology student).

Interview data revealed similarities and differences across 
participants’ thought processes when interpreting graph data. 

FIGURE 7. Box plots representing (thick line indicates median) average proportion of fixations for line charts to (a) graph data, (b) ques-
tions, (c) answer options, and (d) graph information AOIs by expertise. ET data were collected from 36 participants: 9 NSM, 7 ESM, 8 ASM, 
6 SGS, and 6 SF.
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Figure 9 summarizes the first three self-reported steps3 by 
participants in graph interpretation. Across expertise groups, all 
participants identified similar pathways in their planned or 
intended actions that focused first on contextual information 
(title/caption, variables) before directing their attention to the 
graph data or the question presented. While comparisons of the 
interview responses and ET data from three randomly selected 
graphs (including the graph seen in Figure 8) largely confirmed 
the faculty and graduate student participants’ strategies (i.e., they 
did what they said they did), variations in underlying thought 
processes between the planned and actual actions for the more 
novice-like groups were revealed. Despite having intended plans 
comparable to the higher expertise group members, undergradu-
ate (NSM, ESM, and ASM) students lacked alignment between 
their planned and actual intentions to some degree—often ini-
tially depending on cues or the graph data to make sense of the 
image.

DISCUSSION
In this study, eye-movement data were used to examine how 
individuals along a continuum of science expertise (non–science 
majors, early science majors, advanced science majors, graduate 
students, science faculty) differ in making sense of “everyday” 
science-related graphs. Generally, based on aggregated visual 
fixation (time spent and number of fixations) and search pat-
terns (number of saccades), as participants’ experience levels 
increased, more attention was allocated toward contextual ele-
ments (i.e., graph title/caption, variables, legend/key, and data 
source) that might inform their understanding of the image as 
well as the graph data relative to their move novice-like counter-
parts. On the other hand, as experience level decreased, partici-
pants were more likely to focus their attention and rely on cues 
(provided answer options and question prompts) in an effort to 
complete the graph-based tasks than more expert participants. 

Our data are consistent with earlier expert–novice ET studies4 
focusing on discipline-specific or specialized graph data (Atkins, 
2016; Topczewski et al., 2016) as well as findings reported by 
Angra and Gardner (2017), who noted in their research on 
graph construction that experts are more likely to take the time 
to understand the data before using them.

We also saw differences along the expert–novice continuum 
in participants’ sequence of fixations (i.e., what they looked at 
and when). Generally, as expertise increased, participants were 
more likely to display directed search patterns by initially focus-
ing on contextual and graph data features; whereas less experi-
enced participants demonstrated more sporadic search patterns 
that oscillated between task-based cues (i.e., prompts, provided 
answers) and other image elements. Comparisons of partici-
pant eye movements and supplementary interviews highlighted 
differences between expertise group members in their intended 
and actual cognitive strategies when faced with a new graph 
interpretation task. While all participants in these groups 
described comparable strategies for graph interpretation, an 
appreciable shift appeared between the search actions proposed 
by undergraduate students (NSM, ESM, and ASM) and how 
those students actually attempted to navigate images. In com-
parison, faculty and graduate student intentions largely aligned 
with their exhibited actions. One interpretation might be that 
undergraduate students are instructed how to “see” graph data, 
but the breakdown in practice with everyday science-based 
imagery suggests the lack of rehearsal or difficulties in transfer-
ring their skills to situations outside the classroom.

While previous research provides a foundation to the chal-
lenges experts and novices face in graph analysis, few studies 
have assessed the cross-sectional skills of science students and 
practitioners in making sense of graphs. Studying how partici-
pants across the expert–novice continuum read and interpret 
graphs deepens our understanding of skill progressions and can 
inform instructional activities to help novices demonstrate more 
expert-like practices. Our findings lend further support to 
calls for the incorporation of learning experiences that hone 

FIGURE 8. Representative pathway example of how an SF, ASM, and NSM directed their attention when faced with the graphing task seen 
to the right. The lines represent the subjects’ AOI fixation order and duration during a standardized period of 20 seconds (given subject 
variability in time on task) after initially being presented the graph. Graph source: Intergovernmental Panel on Climate Change (2007).

3The selection of three steps here to explore participants’ thought processes was 
threefold. First, we predicted it would be a manageable number of steps for partic-
ipants to recollect and/or have planned. Second, order of attention often indicates 
participant interest or priority in a given feature (Ooms et al., 2014)—beyond the 
third step, there was substantial variation in participant thought processes. Third, 
several participants completed one or more of the graphing tasks in three steps.

4It should again be noted that prior ET studies have largely used advanced majors 
and graduate students as experts for comparative purposes.
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students’ graph analysis and, more broadly, quantitative reason-
ing skills in the college science classroom (AAAS, 2011).

There are many published examples of short-term interven-
tions (e.g., Harsh and Schmitt-Harsh, 2016) and semester-long 
curricula (e.g., Picone et al., 2007; Speth et al., 2010) that high-
light key design features for teaching graphing, including 
engaging students in the active collection of data for graph 
analysis, exposure to “messy” data, using a two-step data anal-
ysis approach, collaborative practices, and explicit graphing 
instruction. With respect to explicit graphing instruction, Angra 
and Gardner (2016, 2017) emphasize the importance of the 
design and implementation of instructional scaffolds that target 
student difficulties with conceptual (i.e., understanding the 
purpose of a graph), procedural (understanding the stepwise 
processes in making sense and using graphs), metacognitive 
(self-reflection on graphing practices), and strategic (consider-
ing alternative problem-solving approaches) difficulties. As an 
example of how such scaffolding can be readily incorporated 
into the classroom setting, in his large introductory biology 
class, the lead author (J.A.H.) presents students with graph 
data in a stepwise manner to mirror the general procedural pro-
cess demonstrated by experts in this study (as represented in 
Figures 8 and 9). First, reflective of how experts initially direct 
their attention toward graph information when faced with a 
new graph, only the graph framework (e.g., axes, scale) and 
contextual features (e.g., variable labels, title/caption) are pro-

vided, and students are prompted to collaboratively describe 
what data are to be represented and to make predictions based 
on their prior knowledge. In the second step, students are pro-
vided with the graph data and are asked to evaluate the general 
relationship being demonstrated. Next, students are asked a 
specific question regarding the graph data and are given a set of 
possible answers to select from, and student selections are cap-
tured via class polling (clickers). Finally, conversations about 
reading the graph data at the levels outlined by Curcio (1987; 
i.e., reading the data, reading between the data, and reading 
beyond the data) are held, with the lead author modeling 
graph-reading practices as needed to help attend to proficiency 
gaps (Shah and Hoeffner, 2002; Picone et al., 2007).

There appear to be four general constraints for this study. 
First, while the sample size here is toward the higher end of what 
is commonly found in ET studies, our findings may be restricted 
by the number of expertise group members. By its nature, ET 
research is intensive (i.e., participant recruitment; collection and 
analysis of data points generated every 30–60 milliseconds), and 
the use of small samples sizes is considered appropriate when 
studying observable behaviors (cf. Slykhuis et al., 2005; Tai 
et al., 2006; de Koning et al., 2010). Our results lend unique 
insight to how individuals with various levels of expertise make 
sense of graphs; however, it would be beneficial for future 
research to collect data from a greater number of subjects to 
afford a more detailed characterization to the development of 

FIGURE 9. A comparison of participants’ self-reported and actual actions in graph interpretation by expertise groups. The pathways to the 
left of the dotted represent the first three steps in graph interpretation as outlined in by participants during interviews. The pathways to the 
right of the dotted line represent group members’ first three AOIs viewed as measured by ET for the graph in Figure 8. The light gray 
shaded boxes represent alignment in order between predicted and actual actions, while the dark gray shaded boxes indicate a lack of 
alignment. Line hatching designates viewed AOIs that were not discussed by participants in the interviews.
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graph interpretation skills. Second, the layout of the graphing 
tasks to include multiple-choice answers may have inadvertently 
influenced how participants directed their attention in the search 
for information. The decision to use this type of design, as dis-
cussed earlier, was—in part—to align with existing data-visual-
ization tests and for the purpose of structural familiarity for the 
participants. Other common types of response formats may limit 
measuring eye movements (e.g., typing open responses can lead 
to data loss as subjects look between the screen and keyboard; 
thinking aloud can affect behavior). A potential option in future 
research could be to temporally separate the presentation of the 
graph task and answer options (or other response format) in a 
manner more closely reflecting how one may “naturally” inter-
pret graphs (i.e., without provided answers). Third, for conve-
nience and accessibility, participants were recruited from a single 
comprehensive institution, which limits study generalizability. 
Even so, our results are consistent with a smaller pilot study con-
ducted at a large research-intensive university (Harsh and Mal-
tese, 2013), and it seems reasonable to conclude that our find-
ings are broadly relevant within college science education. 
Fourth, the current study lends insight into differences in how 
individuals of differing levels of expertise direct their attention 
when faced the reading and interpretation of everyday sci-
ence-related graphs; yet answering how these differences came 
about is beyond the scope of this work. Further investigations 
are critically needed to discern how activities in research and 
instructional spaces contribute to learners’ progressions in mak-
ing sense and using graph data. Future work will also continue 
to explore how students and scientists read other forms of data 
visualizations and to examine common missteps that respon-
dents may make when incorrectly interpreting data.
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