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ABSTRACT 
Classroom observation protocols can provide an exceedingly rich form of data. However, 
this is a double-edged sword, as researchers often struggle to take full advantage of the 
detailed data outputs. In this essay, we introduce a new approach to the analysis of class-
room observation data, termed “classroom as genome” (CAG). We illustrate how real-time 
classroom observation data and genomic data can be viewed as quite analogous, both 
conceptually and in terms of downstream analysis. We provide both abstract and concrete 
examples of how the tools of genomics and bioinformatics can be applied to classroom 
observation outputs. We also show how this philosophy of analysis allows for the layering 
of information from multiple observation protocols onto the same classroom data. The 
CAG approach enables biology education researchers to explore detailed patterns within 
observed classrooms in a highly scalable manner.

INTRODUCTION

We need to think creatively about how to bring life sciences research methods—such as 
those used to study physiological systems, to model ecological processes across scales, 
and to analyze metabolic networks—to bear on the study of teaching and learning. 

Dolan, 2015, p. 1

Researchers and instructors can use a variety of tools when seeking to better under-
stand classroom practices, including surveys, classroom observation protocols, and 
interviews (American Association for the Advancement of Science, 2012). While each 
mechanism for data collection has pros and cons, classroom observation data have 
been highlighted as potentially more objective when compared with surveys and inter-
views relying solely on instructor reports (Ebert-May et al., 2011). A growing number 
of classroom observation protocols have been developed to convert video and audio 
recordings (or the observations of the trained eyes and ears of live observers) into 
more easily interpretable and comparable data structures (Supplemental Material). 
While the focal point of each observation protocol may differ, they all share the goal 
of reflecting the reality of the classroom experience as accurately as possible.

Classroom observation data are useful in a range of contexts. For individual instruc-
tors looking to better understand and improve their own classroom practices, class-
room observations may provide a variety of insights (e.g., Achen and Lumpkin, 2015). 
For education researchers, observing and analyzing classes at larger scales can shed 
light on the instructional practices present within a broader population. For instance, 
the Course Observation Protocol for Undergraduate STEM (COPUS; Smith et  al., 
2013) has been used to observe classes at a variety of postsecondary institutions. 
Resulting data have been used to characterize the wide spectrum of instructional 
practices found within a single research university (Smith et al., 2014), as well as to 

Robert M. Erdmann†* and Marilyne Stains*
Department of Chemistry, University of Nebraska–Lincoln, Lincoln, NE 68588

Classroom as Genome: Using the Tools 
of Genomics and Bioinformatics to 
Illuminate Classroom Observation Data

Ross Nehm,  Monitoring Editor
Submitted Jul 16, 2018; Revised Dec 6, 2018; 
Accepted Dec 17, 2018

DOI:10.1187/cbe.18-07-0116
†Present address: Center for Learning Innovation, 
University of Minnesota Rochester, Rochester, MN 
55904.
*Address correspondence to: Robert M. Erdmann 
(rerdmann@r.umn.edu) or Marilyne Stains 
(mstains2@unl.edu).

© 2019 R. M. Erdmann and M. Stains. CBE—Life 
Sciences Education © 2019 The American Society 
for Cell Biology. This article is distributed by The 
American Society for Cell Biology under license 
from the author(s). It is available to the public 
under an Attribution–Noncommercial–Share 
Alike 3.0 Unported Creative Commons License 
(http://creativecommons.org/licenses/
by-nc-sa/3.0).

“ASCB®” and “The American Society for Cell 
Biology®” are registered trademarks of The 
American Society for Cell Biology.

CBE Life Sci Educ March 1, 2019 18:es1

ESSAY



18:es1, 2	  CBE—Life Sciences Education  •  18:es1, Spring 2019

R. M. Erdmann and M. Stains

compare, contrast, and cluster hundreds or even thousands of 
class periods from a range of North American classrooms (Lund 
et al., 2015; Stains et al., 2018).

Analyzing classroom observation data at large scales is not 
without difficulty, however. For instance, Smith and colleagues 
remarked that “it was difficult to get a general sense of trends in 
student and instructor behavior when comparing 25 possible 
COPUS codes in 51 different courses” (2014, p. 627). In a way, 
this makes these observations one of education research’s many 
potential forms of “big data”—data that cannot be easily ana-
lyzed through conventional or straightforward analysis methods 
(Madhavan and Richey, 2016). Large-scale studies such as 
those referenced above frequently rely on the use of summary 
statistics to compress and restructure the data before conduct-
ing downstream analyses. However, the use of summary statis-
tics alone has the potential to obscure interesting trends and 
meaningful differences. This phenomenon is epitomized in Ans-
combe’s quartet, a group of four data sets that are clearly quite 
different when viewed in graphical form (e.g., a parabolic arc is 
by eye entirely distinct from a straight line), but are nearly 
identical in terms of descriptive statistics (Anscombe, 1973). A 
challenge for the field is to complement current big-picture, 
summary statistical analysis techniques with new methodolo-
gies that allow researchers to fully explore even the most fine-
grained versions of these enormous data sources.

In this essay, we wish to introduce a new philosophy of class-
room observation data structuring and analysis—the “class-
room as genome” (CAG) approach. We draw upon the tools and 

mindsets of the bioinformatics scientist, with the goal of repur-
posing genomics analysis methods to enable new approaches to 
specific research questions within science education. We argue 
that the CAG approach will allow the biology education research 
community to delve far deeper into classroom observation anal-
ysis, both at the single-classroom level and at highly parallel 
scales with the potential to analyze hundreds of classes and 
instructors simultaneously, without a concurrent need for the 
development from scratch of new tools or software.

CLASSROOM AND GENOME: PARALLEL CONSTRUCTS
The similarities and differences of classroom and genome 
within our analogy are summarized in Table 1.

Layers of Information
The genome of a species can be summarized as a sequence of 
DNA bases strung in a long line, but in the hands of a genom-
ics researcher, that is merely the scaffold upon which all man-
ner of genomic information and analyses can rest (Figure 1A). 
A more comprehensive picture of a genome incorporates many 
layers of information, such as the annotations of transcribed 
mRNAs, the DNA methylation status of cytosine bases, the 
prevalence of all manner of chromatin modifications, and the 
abundance of small RNAs derived from the underlying 
sequence. These genomic features described are generally not 
mutually exclusive—at any given point along the DNA 
sequence, multiple types of overlapping genomic features can 
co-occur.

TABLE 1.  The classroom as genome analogy: similarities and differences

Concept Genomic example Classroom example

Similarities Ability to layer information of 
various types

DNA methylation, mRNA transcripts, and 
chromatin can all be viewed or analyzed 
simultaneously.

Student questions, instructor answers, and 
formative assessments can all be viewed 
or analyzed simultaneously.

Genome as a defined scaffold The location of a promoter or a gene can be 
easily described as a chromosomal 
position.

The timing of an instructor behavior or a 
student response can be easily described 
relative to the start or endpoint of a class 
period.

The chromosome as an indepen-
dent unit of analysis

The contents of chromosome 1 are often 
analyzed independently of, but in 
parallel to, the contents of chromosome 
2.

An individual class period can be analyzed 
independently of, but in parallel to, a 
second class period.

Interactions between genomic 
elements

Chromosome conformation capture 
illustrates that certain chromosomal 
regions can preferentially interact with 
specific regions of other chromosomes.

Each class period within a broader course 
may be an independent entity, but there 
are generally threads of related content 
or repeated activities that bind these 
independent units.

Patterns and directionality matter 
within a genome

The positioning of a promoter upstream of a 
gene is often essential for proper 
transcription—downstream positioning 
of the same genetic element would not 
have the same outcome.

The positioning of certain classroom 
activities relative to one another in time 
has important impacts on the learning 
environment—a student question before 
an activity may infer something very 
different than the same student question 
following the same activity.

Differences Universality of directionality With sense and antisense strands, 
transcription occurs bidirectionally.

Classroom time only runs from start to 
finish.

Definition of a genome For the genome of a given species, scientific 
community comes to a consensus on 
numbering/labeling for chromosomes.

“Genome” definition is completely free-form 
and dynamic depending on data to be 
analyzed.
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Classroom observation data can be thought about in much 
the same way. Information from multiple classroom observa-
tion protocols can be layered onto the same class period, with 
the timeline of the classroom serving as the scaffold to which 
everything maps (Figure 1B). As in the case of biological data, 
a variety of codes1 might be overlapping at any given position 
within a hypothetical classroom genome. By retaining the con-
nection to a common yardstick for each code, rather than 
merely reducing data to median/mean values, we are able to 
glean information about different behavior types overlapping or 
flanking each other, instead of thinking of them as independent 
entities that cannot be directly related to one another.

One key note is that, even as we describe the power of over-
lapping data type over data type onto a single scaffold, one trait 
illustrated by a range of bioinformatics studies is that access 
does not equate to mandate. A chromatin researcher might be 
much more interested in contrasting all of the histone markers 
associated with a region of the genome and might find little 
value examining small RNA expression patterns at the same 
time, even if that information were readily available. Similarly, 
in an education research capacity, researchers do not have to 
use all available code types all of the time—for example, an 
analysis of instructor behavior might omit data relating to stu-
dent behaviors for the sake of simplicity and coherence.

FIGURE 1.  Mock genome browser and classroom browser displays. (A) Sample genome 
browser display, illustrating a portion of chromosome 1 for a model organism. The area in 
green above the browser window depicts the portion of the chromosome in view. (B) Sam-
ple classroom browser display, illustrating a portion of a classroom observation with select 
COPUS and DART codes (see the Supplemental Material) visible.

Directionality and Genomic 
Superstructure
Directionality has meaning for both bio-
logical genomes and classroom “genomes.” 
In the case of biological chromosomes, the 
labeling of one end of a chromosome as 
“base 1” and the other end as “base 
20,000,000” is arbitrary, but because 
genes have meaningful starts and ends, 
directionality is encoded into the system. 
A genetic sequence might exert a com-
pletely different effect on a gene’s expres-
sion if it followed the gene instead of 
preceding the gene. In the case of a class-
room, this is also the case—actions taken 
by instructors and students are contextu-
alized by what events precede or follow 
them. Furthermore, the scaffold of time 
that the classroom genome is built upon 
has a very easily understood directional-
ity—time only marches forward.

The split of genomes into separate 
chromosomes, each containing a subset of 
the total DNA complement, provides the 
genomes with a superstructure. These 
chromosomes are independent and 
bounded entities (e.g., the start of chro-
mosome 2 is generally not immediately 
adjacent to the end of chromosome 1). 
Consequently, certain genomic-level anal-
yses are conducted separately in parallel 
for each individual chromosome, even if 
the entire genome is under study. In our 

conception of classroom observation data, each class period is 
analogous to an individual chromosome. Even if there are vid-
eos of multiple classes taught by the same instructor, each class 
should be considered as an independent unit, especially in light 
of the fact that any individual class taught by an instructor 
should not be considered fully representative of that instructor’s 
pedagogical practice (Lund et al., 2015; Stains et al., 2018).

If each class period is an individual chromosome, what is the 
collection of chromosomes comprising the “genome” in this 
analogy? Here, we highlight a difference between the biology 
and education versions: in the case of our classroom example, 
class period “chromosomes” might not be mutually exclusive to 
a single genome. One analysis might place class period “A” into 
an “Instructor #1, Biology 101 course” genome, perhaps along 
with class periods “B” and “C” that were observed from the 
same course. Another analysis might place class period “A” into 
a “Socratic instruction” genome, along with class periods from 
other instructors and courses, while placing “B” and “C” into a 
“group-work” genome. So long as the chromosomes remain as 
independent units of analysis, the conception of the overarching 
genome as an organizational tool remains completely flexible.2

1Throughout this essay, we will use the word “code” to describe any data classifi-
cation or annotation type that is associated with an observation protocol.

2This flexibility does require that researchers adopt internally consistent naming 
conventions for chromosomes and files. While this is clearly a best practice for 
data analyses of any type, it takes on additional importance in a situation in which 
there is no universally accepted set of known chromosomes to work from, as is the 
case in most biological genomics analyses.
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While chromosomes are a logical unit for independent anal-
ysis, different chromosomes do interact in interesting and 
important ways. For example, genes in the same biological 
pathway can be located on separate chromosomes, and an 
entire suite of biological techniques has been developed to con-
nect linear genomic representations with three-dimensional 
closeness metrics within the nucleus (Dekker et  al., 2002). 
Similarly, in the classroom, individual class periods generally 
happen within the context of a larger course. An activity that 
happens only once in an observation of a class period may also 
have happened in a dozen preceding class periods or may never 
have happened before in that course. If the data allow it, ana-
lyzing course structure at the same time as class period struc-
ture allows researchers to see both the forest and the trees.

Underlying Patterns
In many ways, the field of genomics is first and foremost the 
study of patterns and associations between different forms of 
biological information. Nature provides us with many interest-
ing examples that dovetail with our understanding of biological 
processes at the molecular level. Various forms of promoter 
sequences precede genes, helping to direct the necessary tran-
scriptional machinery to an appropriate starting point. In gen-
eral, active chromatin marks show a strong association with 
highly transcribed genes. Zooming out, large regions of a chro-
mosome may share a broad chromatin signature. Taken together, 
these patterns and associations make it evident that genomic 
features frequently share relationships with other features, with 
clearly understood biological consequences.

Classroom observations have the ability to illuminate similar 
types of patterns and sequences. For example, if an instructor 
poses a nonrhetorical question to the class, it is likely that stu-
dents will provide some type of answer in response. (Just as in 
a biological scenario, there are always exceptions, and these are 
often every bit as interesting as the majority patterns.) Further-
more, any such student responses are likely to be reacted to in 
some way by the instructor—through acceptance, clarification, 
a follow-up question, or redirection, among other options. In 
this scenario, certain codes are more tightly coupled than oth-
ers, but the potential for underlying sequencing is quite evi-
dent. This means that genomics approaches for finding mean-
ing within large, complex data sets should also provide ways to 
pursue the analysis of patterns and configurations embedded in 
instructional events.

THE POTENTIAL TO ADDRESS WIDE-RANGING 
RESEARCH QUESTIONS
Analysis solely for the sake of analysis does not advance the 
research enterprise—the CAG approach is useful only insofar as 
it enables researchers to address meaningful research questions. 
Here, we offer a spectrum of sample research questions, directly 
followed by the more “technical” questions that underpin the 
answering of the research questions. These technical questions 
are the actual questions addressed by CAG methods.

How Long Is Instructor Wait Time after Posing a Question  
to the Class? → What Is the Mean/Median Length of a 
Single Instance of a Particular Code?
When behaviors occur, are they brief or extended in nature? 
The genomics tools used to enable CAG can easily determine 

this, similar to calculating the mean lengths of genes or 
other features found on a particular chromosome. For exam-
ple, a researcher interested in instructor wait time following 
questions might encode data using Flanders interaction 
analysis (FIA; Amidon and Flanders, 1967), which includes 
code 10 (Silence) and code 4 (Instructor poses a nonrhetor-
ical question). Then, the researcher could determine the 
average span of an unbroken stretch of code 10 immediately 
following an instance of code 4 across any number of classes 
of interest.

How Evenly Dispersed Are Clicker Questions across Entire 
Periods of Instruction? → How Far Is This Code from 
Other Instances of the Same Code?
These questions get at the dispersion of a behavior over the 
course of a class—scattered versus tightly clustered. If 20% of a 
class period is occupied by a particular behavior/code, it could 
make a big difference if that 20% occurs in a single extended 
instance or is dispersed as multiple smaller instances widely 
spread out across the class. In this case, a researcher could 
examine the distribution of clicker question annotations relative 
to their nearest neighbors to better describe the clustering (or 
lack thereof) of the code.

Are Student Questions and Instructor Questions Internally 
Segregated/Clustered within a Period of Instruction or 
More Evenly Intermixed? → How Far Is This Code from 
Instances of Different Codes?
A deeper understanding of classroom events often requires 
the analysis of relationships between different codes. For 
example, a researcher might want to examine the relation-
ship between student- and instructor-posed questions. To do 
this, relative distance metrics can be employed to show how 
the two behaviors are situated relative to one another over a 
class period, as will be illustrated in a case study later in the 
essay. Determining the dispersion and intermingling of mul-
tiple codes as opposed to a single code allows for the identi-
fication of broader pockets of associated activities that extend 
far beyond the start and end of any particular classroom 
event.

When an Instructor Is Not Actively Doing Anything, 
What Else Is Happening in the Classroom at That Point? 
→ What Codes Overlap with This Code? When This 
Code Is Compared with Other Codes, How Similar 
Is the Coverage?
By determining which codes overlap with a code of interest, 
a researcher has the ability to assess correlations between 
different behaviors. For example, the COPUS code IW 
(Instructor waiting) might show considerable overlap with 
certain other codes, and determining such correlations 
might provide a window into how instructors conceive of 
associated (or nonassociated) classroom activities. This is 
useful even within the context of a single observation proto-
col, if codes are nonmutually exclusive within a time block. 
However, this ability becomes particularly interesting 
when more than one observation protocol is overlaid on the 
same class period. When this happens, relationships between 
codes from different protocols can be observed, expanding 
the pool of potential broader questions that can be answered.
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What Codes Precede Instructor Questions? → What 
Happens before (or after) This Code?
In this case, a researcher may want to see what activities or 
behaviors are enriched during the lead-up to questions posed to 
the class. The usage of ends analysis, described further in the 
case studies to follow, enables a researcher to compile a detailed 
and complete picture of the regions flanking a code of interest. 
Addressing such questions is often interesting in its own right, 
but identifying the codes preceding or trailing another code is 
the fundamental basis for a variety of potential analyses regard-
ing the sequencing and patterning of codes.

What Is the Sequencing of Codes That Surrounds a Clicker 
Question? → Is This Code Part of an Overarching Pattern/
Sequence?
Taking many of the prior questions into account, a researcher 
can begin to ask questions addressing overarching patterns. 
Within any given field of instruction, instructional style, class 
demographic profile, or other categorization of interest, com-
mon instructional signatures and patterns may exist that cannot 
be easily observed through other means. CAG approaches 
enable this sort of higher-order observational analysis and may 
spur new avenues of inquiry. For example, the instructional pat-
terns associated with the usage of clicker questions might 
inform a study on the fidelity of implementation of peer instruc-
tion. Ultimately, this level of question should enable a better 
examination of the linkages between classroom activities and 
student outcomes—a fundamental goal of much of the field’s 
research.

In most cases, researchers seeking to address these types of 
questions must have large samples for the signal to emerge 
from the noisiness inherent in this type of data. If a researcher 
is examining a single classroom observation, some of these 
technical questions might be answerable without inordinate dif-
ficulty, but the use of CAG enables the grouped assessment of 
hundreds of class periods simultaneously, a prospect inconceiv-
able through manual approaches.

CAG CASE STUDY ANALYSES
To illustrate how such analyses might work in an actual educa-
tion research context, we will present a number of case study 
examples, using COPUS data from a prior publication (Lund 
et  al., 2015) as the starting point for further analysis. These 
data were reformatted into a genomics file format before analy-
sis using publicly available bioinformatics tools and workflows 
(see Methodology for Implementation section and the Supple-
mental Material for details).

The Context of the Clicker Question Code
Imagine that you are a researcher who is very interested in the 
ways in which clicker questions are implemented within 
observed classrooms. The COPUS code Clicker question (CQ) 
would likely be of strong relevance to your research. As dis-
cussed in the preceding section, there are many things you 
might be eager to explore about classroom time blocks in which 
CQ was coded. Here, hypothesis testing can be easily envi-
sioned—perhaps you hypothesize that when instructors use 
clickers (CQ), they are more likely to ask students to talk to 
one another before voting (CG) than to have students answer 
the clicker questions individually (Ind).

This type of question can be addressed through the produc-
tion of an ends analysis plot, a tool used by genomics research-
ers to visualize features that precede, follow, or overlap other 
features of interest—for example, where transposable elements 
tend to sit relative to genes in the genome. In ends analysis, the 
starting end and the closing end of every instance of a code/
feature of interest are lined up, while all other codes are plotted 
relative to those aligned ends.3 In Figure 2, we have produced 
an ends analysis plot that shows how select COPUS codes relate 
to the instances of CQ codes found within 269 classroom obser-
vation periods (only the 10 COPUS codes with the highest aver-
age frequency around CQ codes are displayed).

Figure 2 indicates that our hypothesis holds true: we see 
that, even though both CG and Ind frequencies increase drasti-
cally after a clicker question has been asked, Ind climbs only to 
a maximum frequency of 34%, compared with CG, which 
climbs to a frequency of 83%. However, the distribution of the 
two codes complement one another, with Ind coming to its 
highest value near the starting point of the CQ codes, while CG 
starts at a below-peak value of 59% and then increases during 
the later phases of the CQ codes.4 This analysis illustrates 
how CAG provides opportunities to move beyond looking at an 
individual code and relate the patterning of multiple codes 
simultaneously.

If we shift to a more exploratory mode of analysis, what 
broader patterns can be discerned? We find that listening, and 
to a lesser extent, lecturing, are the codes most often found 
preceding the CQ code locations. When we shift our focus to the 
overlapping CQ area in the center of the plot, we observe a 
strong spike in the Instructor waiting (IW) code, reaching a 
peak of 86% overlap with CQ. Instructors within the sample 
were an order of magnitude more likely to wait during a clicker 
question than to move through the classroom (MG code—not 
shown in Figure 2 due to low frequency). Meanwhile, the Fol-
low-up (Fup) code spikes near the end and immediately follow-
ing the CQ code, showing that the end of a clicker question is 
often followed by some form of follow-up. While here we have 
focused on only a small number of high-frequency codes, we 
have already started to compile a picture of how CQ may cor-
relate with other codes among our observed population.

Such an analysis is a simple example of the type of pattern 
discovery that can be done through CAG approaches. This is only 
the first layer of potentially many. For example, we found that 
clicker questions had an overlapping individual thinking (Ind) 

3Just as genes can have a variety of lengths, classroom activities can take varying 
amounts of time. If one simply lines up the starting points of all features, the 
ending points would not align, and vice versa. To adjust for this, we can construct 
ends analysis plots in one of two ways: as a continuous plot or as a split plot with 
a vertical gap in the middle. To make a continuous plot, we must transform the 
data from a time-coupled form into a fraction-of-overall-length form. In a split 
plot, like the one shown in Figure 2, the starting points and the ending points are 
aligned, and a certain amount of overlap is displayed, but any features longer 
than a certain length will not be fully characterized in the center region.
4In some ways, this description is a slight simplification of a complex scenario. In 
COPUS data, Ind could easily overlap with CG in a peer-instruction scenario in 
which students first think individually, then discuss with their neighbors. Thus, 
CG numbers cannot be taken to only mean “students jump straight into discussion 
with peers without individually considering the question.” However, analysis of 
the frequency with which CG codes overlap or follow Ind codes shows that our 
description in the main text is a fair characterization of the practices within our 
sample.
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component a little more than a third of the time in our sample. 
However, Ind might be even more tightly associated with CQ 
than this suggests. Indeed, we find that for greater than 70% of 
Ind code instances, a clicker question is asked simultaneously. 
Clearly, analyses need to account for the asymmetric nature of 
code overlap to provide a complete story. In this way, we can 
begin to spur on new, unforeseen research questions as well as 
provide better descriptions of general patterns and subpatterns 
of classroom activity.

The Layering of Classroom Observation Data
One of the most valuable features of the CAG approach is the 
fact that different observation protocols can be applied to the 
same classroom data. This works because CAG is fully instru-
ment agnostic—researchers can use whatever observation pro-
tocols address their research questions of interest and overlap 
complementary types of analysis. Thus, codes and components 
can be mixed and matched in whatever way advances a study.

As an example, imagine that you are a researcher who is 
interested in the way in which instructors and students ask 
and answer questions within the classroom. More than one 
observation protocol could be useful in this regard. The pre-
viously mentioned COPUS contains a number of codes corre-
sponding to student and instructor questions. Meanwhile, 
FIA categorizes instructor and student verbal interactions, 
including questions and responses, into 10 codes (Amidon 
and Flanders, 1967). These two observation protocols differ 
in several respects. For example, the quanta of COPUS codes 
are much larger (120-second blocks) when compared with 
FIA codes (3-second blocks). This means that using COPUS 
may lead to the loss of information—a classroom event that 
takes 5 seconds may be coded similarly to something that 

TABLE 2.  Comparison of selected COPUS and FIA codes for 
“Socratic—at board” cluster class observations

Observation

Instructor 
poses 

question 
(COPUS)

Instructor 
asks 

questions 
(FIA)

Student 
question 
(COPUS)

Student 
talk—initiation 

(FIA)

1 48.0% 7.9% 0.0% 0.0%
2 48.6% 2.6% 43.2% 3.7%
3 42.9% 5.5% 40.0% 6.8%
4 68.0% 8.1% 16.0% 0.9%
5 50.0% 6.0% 3.8% 0.8%

FIGURE 2.  Ends analysis showing the relationship of select COPUS codes with a compilation of all CQ code occurrences found within 269 
classroom observations. Additional details regarding ends analysis plot construction and interpretation can be found in the Supplemental 
Material. Abbreviations: L, Students listening; Ind, Student independent work; CG, Group discussion of clicker questions; SAnQ, Students 
answer questions; Lec, Instructor lectures; RtW, Instructor writes on board during instruction; Fup, Follow-up to clicker question or 
activity; PQ, Instructor poses question; IAnQ, Instructor answers question; IW, Instructor waits.

takes 50 seconds. Conversely, FIA only has 10 associated 
codes, and this can lead to a loss of information when 
compared with the 25 codes of COPUS. These differences 
may result in the two protocols providing complementary 
information when applied to the same classroom observa-
tion, potentially mitigating the drawbacks of each, and open-
ing up new avenues of analysis.

To illustrate this type of dual application of observation pro-
tocols, we coded a subset of our COPUS-coded classroom videos 
using FIA (N = 5). The videos selected for FIA coding were clas-
sified as “Socratic—at board” in Lund et al., 2015. (Details of the 
analysis approach can be found in the Supplemental Material.) 
If we compare the percentage of class time occupied by codes 
that represent similar constructs, we can see how the two proto-
cols might be complementary in terms of deeper analysis. In 
Table 2, we show five classroom observations, each represented 
by a row, and four classroom observation protocol codes, each 
represented by a column. Each percentage reported represents 
the percentage of the total time from an individual classroom 
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observation that was coded for the code associated with the col-
umn. Here, we can split the four codes into two meaningful pair-
ings of codes: COPUS PQ (Instructor poses a question) pairs 
with FIA 4 (Instructor asks questions), and COPUS SQ (Student 
asks a question) pairs with FIA 9 (Student talk that is initiated 
by the student). In the case of the first pairing of codes (the 
“Instructor” columns of Table 2), observations 1 and 2 are of 
particular interest. While the COPUS percentages are quite com-
parable, the FIA percentages are divergent, with the instructor of 
observation 1 apparently spending roughly three times as much 
time posing questions to students according to FIA. On the other 
hand, in observations 4 and 5, the FIA code for students initiat-
ing talk/posing questions shows very comparable values, but the 
percentage for the student question COPUS code shows a four-
fold difference between the two classes, implying a difference in 
student question dispersion. As the table suggests, any observa-
tion protocol may have shortcomings or oversimplify things in 
certain situations, but through the usage of additional protocols 
on the same underlying data, some of these situations can be 
better identified and mitigated.

The first way in which we used the complementary informa-
tion of the two observation protocols was by leveraging infor-
mation from one protocol to select a sample for the application 
of the other. When clustered by select COPUS code proportions 
(Lund et al., 2015), the selected class videos all fell into the 
same bin and should thus be representative of a certain type of 
class structure (in this case, lecturing with Socratic questioning 
while writing on the board). As described earlier, this is one 
way (of many) to organize a coherent “genome” of classes to 
analyze in tandem. Once these classes were subjected to FIA 
coding, we could then perform analyses similar to those 
described earlier for the COPUS CQ code. As an example, we 
could examine FIA code 4, which corresponds to an instructor 
posing a nonhypothetical question to his/her students. In Figure 
3A, we provide an ends analysis that illustrates, on average, 
what FIA codes follow FIA 4 in our sample of analyzed “Socra-

tic—at board” observations. In these classes, a student response 
to the instructor question (FIA 8) is the most common code 
within the 3 seconds immediately following the end of the 
instructor question, occurring roughly two-thirds of the time, 
with Silence (FIA 10) representing the second most common 
code (most often corresponding with wait time). Between 3 
and 6 seconds after the end of the question, the two codes just 
mentioned become much less common, and instructor praise or 
acknowledgment of student answers becomes the most com-
mon code (albeit only with a plurality). By 9 seconds after the 
end of the question, the lecture code becomes the most com-
mon code, and continues to be so for an extended stretch of 
time. Therefore, on average in this sample of five observations, 
it takes about 9 seconds for students to process, respond to, and 
be recognized for their answers to an instructor’s question.

Using a global analysis approach does not preclude the dis-
covery of individual differences within our sample. In Figure 
3, B and C, we illustrate ends analysis performed on two indi-
vidual class periods within the FIA-analyzed sample of “Socra-
tic—at board” observations, as opposed to the overall average. 
Here, we observe a stark difference in the pattern of codes 
following the instructor’s questions. In Figure 3B, nearly 90% 
of the time following an instructor question, the first code 
observed was a student response to the question. In Figure 3C, 
student responses to the question were not even the most 
common code following the end of the instructor’s question—
instead, silence was the most common occurrence. Looking at 
the overall code patterns, a clear difference in the use of wait 
time after the question is apparent. By using FIA in addition to 
COPUS, we are able to highlight differences in classroom 
dynamics that COPUS alone would not highlight, and these 
differences could easily lead to further investigation.

There are other ways in which an observation protocol 
pairing could be used. In genomics, relative distance is a 
metric that describes the spatial correlation between a pair 
of feature types (Favorov et  al., 2012). For example, if an 

FIGURE 3.  Ends analysis showing the frequency of five FIA codes in the period following the end of the FIA 4 code (instructor asking a 
nonrhetorical question). (A) Compiled profile for five classroom observations drawn from the “Socratic—at board” COPUS profile (Lund 
et al., 2015). (B) Profile for observation 1 in Table 2. (C) Profile for observation 3 in Table 2. Abbreviations: FIA 2, Instructor praises or 
encourages student; FIA 5, Instructor lectures; FIA 8, Student talk in response to a teacher’s question or instructions; FIA 9, Student talk 
initiated by the student; FIA 10, Silence.
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instance of code 2 overlapped with code 1, the relative dis-
tance metric between code 1 and code 2 at that position 
would be 0, while if another instance of code 2 was exactly 
equidistant between the nearest flanking instances of code 1, 
the relative distance metric would be 0.5 (Figure 4A). With a 
larger number of features, a frequency distribution can be 
calculated (Figure 4B). A uniform or flat distribution of fre-
quencies suggests random assortment of the codes, while an 
above-average frequency at low relative distance would sug-
gest that the codes tend to be closer together than would be 
expected from a random assortment.

If we wanted to probe the relationship between select 
COPUS and FIA codes, we could use relative distance as a mea-
sure of the level of spatial association between the codes in 
question. In Figure 4, C–F, each relative distance plot summa-
rizes the relationships between select FIA codes and a single 
COPUS code. The slopes of the linear regressions provide an 
indication of the relationships between the codes over the total-
ity of the class periods analyzed, with negative slopes indicating 
that codes are closer together than expected by chance, positive 
slopes indicating that codes are farther apart than expected by 
chance, and flat slopes indicating a relatively random distribu-
tion relative to the other code. In Figure 4D, we observe that the 
COPUS code SQ (Student asks question) tends to be much 
closer to instances of FIA 9 (Student talk initiated by the stu-
dent) and FIA 3 (Instructor accepts or uses ideas of students) 
than expected. The former association is not surprising, simply 
due to the closely paralleling definitions of the two codes, but 
the latter association is potentially more interesting, suggesting 
that instructors are much more likely to accept or use the ideas 
of students close in time with student questions.

Figure 4 also alludes to potential avenues for further investi-
gation. Figure 4, C and E, relates to the COPUS codes PQ 
(Instructor posing questions) and SQ (Students answering 
questions), respectively. In both cases, FIA 4 (Instructor asks 
nonrhetorical questions) and FIA 8 (Student talk in response to 
a teacher’s question or instructions) have negative slopes, indi-
cating a logical close proximity of these FIA codes to the COPUS 
codes. Meanwhile, the FIA 4 and 8 codes have positive slopes in 
Figure 4, D and F, which features the COPUS codes SQ and 
IAnQ (Instructor answers a question). This implies that instruc-
tor-initiated question events are more distant temporally from 
student-initiated question events than expected by chance. 
Altogether, this may indicate that during Socratic—at board 
instruction, for both instructor and student questions, it is more 
likely that the nearest neighboring questions within a class 
period would be questions of the same type, as opposed to 
alternating between question types. This is an example of how 
CAG analyses can illuminate potential patterns of instructional 
practices at large scales.

We can display the magnitude of data at our disposal, 
representing both COPUS and FIA coding at the same time, 
in a genomic-style representation (Figure 5). This figure dis-
plays an overwhelming amount of information, with thou-
sands of data points. However, the point of using genomic 
tools for analysis is to condense this mass of data into 
digestible observations and patterns that can contribute to 
our understanding of classroom behaviors. These observa-
tion protocol outputs, as complex as they are, can be easily 
transformed into anything from basic summary statistics to 

5This conversion can be done manually, but is best done through automation, not 
only to save time, but also for accuracy and reproducibility reasons. Automation 
looks different based on the input file type or format and is discussed in greater 
detail in the Supplemental Material.

complex ends analysis plots for codes of interest. At its 
heart, the idea of CAG is to look at something like Figure 5 
and see vast untapped potential and possibilities, enabled 
by tools already at a researcher’s disposal, as opposed to 
something inscrutable, beyond any individual’s comprehen-
sion or understanding.

METHODOLOGY FOR IMPLEMENTATION
Now that we have discussed the purpose and potential of CAG 
approaches, we can more easily delve into potential methods 
for implementation. In this section, we focus on conveying the 
broad theory and basic mechanics, with greater detail available 
in the Supplemental Material.

Translating Classroom Observations into Genomic File 
Formats
How do classroom observation data get converted into a 
“genomic” form?5 There are multiple file types used in bioinfor-
matics analyses, but here, we will use bed (browser extensible 
data) files as a representative example. The bed file format, at 
its heart, is simply a tab-delimited notation of the chromosome 
number, starting position, and ending position of each feature, 
listed sequentially. For example, we might indicate the position-
ing of four members of a gene family of interest within a 
genome as such:

Chr1 100 1600
Chr1 2000 3200
Chr2 6000 8000
Chr4 2500 3600

By convention, the file describes the presence of something 
at the specified location, like mRNA transcripts of interest (or in 
the case of CAG, perhaps an instructor lecturing to the class). 
However, it is certainly possible to create bed files that denote 
the absence of a particular code or codes—for example, areas of 
the genome that do not overlap with annotated genes or trans-
posable elements or times during a class period when the 
instructor is not lecturing.

An optional fourth column within the bed file format pro-
vides a space for the inclusion of additional information. In 
many cases, biological data associated with a location will not 
fit a strict binary, and this fourth column provides a mechanism 
for retaining this information in addition to positioning data. 
For example, we could show the average level of CpG methyla-
tion within the specified genomic spans as such:

Chr1 100 200 0.67
Chr1 2000 2200 0.50
Chr2 7800 8000 0.20
Chr4 2550 2650 0.87
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FIGURE 4.  Diagrams of relative distance metric and linear regression analysis of the frequency of relative distance values for six FIA codes 
relative to individual COPUS codes. (A) Three examples of individual relative distance measures. (B) Timeline of three codes, with an 
accompanying frequency plot for relative distance values for code 4 or code 5 relative to code 3. (C) Plot for COPUS code PQ (Instructor 
poses question). (D) Plot for COPUS code SQ (Student asks question). (E) Plot for COPUS code SAnQ (Student answers question). (F) Plot for 
COPUS code IAnQ (Instructor answers question). Abbreviations: FIA 2, Instructor praises or encourages student; FIA 3, Instructor accepts 
or uses ideas of students; FIA 4, Instructor asks nonrhetorical questions; FIA 8, Student talk in response to a teacher’s question or instruc-
tions; FIA 9, Student talk initiated by the student; FIA 10, Silence.
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An example where this might apply to classroom observa-
tion data relates to audio recordings of classroom activities, 
such as those used within the DART protocol (see the Supple-
mental Material). The volume of a recording can be deter-
mined for various spans within the class period. The fourth 
column would allow each span to be annotated with the 
appropriate volume value, while remaining within the same 
timing framework used by bed files not containing the addi-
tional column of information.

Analysis Methods and Tools
Once classroom data have been converted to a genomic file 
format, a variety of tools are available to extract meaning from 
the raw data. A prime example is the Bedtools suite of soft-
ware tools (Quinlan and Hall, 2010). Bedtools enables a broad 
spectrum of analyses upon and between bed files. Some com-
ponents of the suite have little conceivable use within a CAG 
context—perhaps unsurprisingly, seeing as how the suite was 
originally designed for a different purpose. However, many of 

FIGURE 5.  Circos plot illustrating all observed COPUS (inner region) and FIA (outer region) codes from observations 1–5 (Table 2). Dark 
colors within a circular track indicate the presence of a code, while lighter shades of the same color indicate the absence of the same code. 
Numbers on the outside of the circle indicate the progression of time in seconds for each of the five observations. Abbreviations: FIA 2, 
Instructor praises or encourages student; FIA 3, Instructor accepts or uses ideas of students; FIA 4, Instructor asks nonrhetorical questions; 
FIA 5, Instructor lectures; FIA 7, Instructor criticizes student; FIA 8, Student talk in response to a teacher’s question or instructions; FIA 9, 
Student talk initiated by the student; FIA 10, Silence; L, Students listening; Ind, Student independent work; SAnQ, Students answer 
questions; SQ, Students ask questions; SW, Students wait; Lec, Instructor lectures; RtW, Instructor writes on board during instruction; PQ, 
Instructor poses question; IAnQ, Instructor answers question; Adm, Instructor performs administrative task; MG, Instructor moves through 
class during group work; 1o1, Instructor talks to a student one on one; DV, Instructor uses a demo/visual; IW, Instructor waits; IO, Instruc-
tor engages in an “other” unclassified task.
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the tools are broadly useful even outside genomics. For exam-
ple, the “bedtools closest” command would allow a researcher 
to see what codes most closely surround another code of inter-
est as well as the distance separating the codes, while the 
“bedtools jaccard” command would allow a researcher to cal-
culate the Jaccard statistic for overall similarity between dif-
ferent codes. Through the command line, bedtools-based 
analyses can be automated and applied to large data sets with 
ease. There are also options for implementing Bedtools and 
other bioinformatics packages using a graphical user interface 
(GUI) as opposed to the command line—Galaxy is an example 
of a Web-based, GUI-oriented platform for conducting bioin-
formatics analyses (Afgan et al., 2018). In a broad sense, the 
creative repurposing of bioinformatics tools and workflows 
can allow education researchers to avoid reinventing the 
wheel.

Visualizing Classroom Observation Data in Raw 
or Analyzed Form
Encoding classroom data in bed file format enables a researcher 
to visualize codes using the same tools used by biologists to 
visualize genomics data streams, for the purposes of both initial 
exploration and final display. A variety of genome browsers are 
available, such as the Integrated Genome Viewer (Robinson 
et al., 2011) and the Integrated Genome Browser (Freese et al., 
2016), that allow for customized visualization and exploration 
of files in standard genomic formats; these modes of represen-
tation served as the inspiration for Figure 1. Genome browsers 
excel for the interactive viewing of data and allow for general 
data exploration. In contrast, command-line tools such as Cir-
cos (Krzywinski et  al., 2009) or ends analysis scripts (Picard 
and Gehring, 2017) are excellent for the static presentation of 
either raw or analyzed data in figure-ready form, as well as for 
the construction of multiple related plots through automation. 
In addition, some observation protocols, such as OPAL (Frey 
et al., 2016), RPDOT (Olmstead and Turpen, 2016), and RIOT 
(West et  al., 2013), are already associated with visualization 
schemes that share characteristics with the genomic visualiza-
tion tools described earlier (Supplemental Material). In any 
case, modifications might sometimes be necessary to enable the 
visualization of complementary and/or unanticipated data 
streams.

CONCLUSION
In this paper, we argue that classroom observation data, as col-
lected using any of a number of observation protocols, can be 
analyzed in new ways through pairing with established bioin-
formatics frameworks and tools.

One criticism that is sometimes levied at big data approaches 
is that they can seemingly favor eschewing research question–
driven or hypothesis-driven studies in favor of large-scale “fish-
ing expeditions.” However, as shown through the earlier exam-
ple analyses, hypothesis-driven research is fully compatible 
with the CAG approach. Therefore, we see the ability to conduct 
exploratory surveys of large, complicated data sets as a feature, 
rather than a bug, as this can lead to a plethora of new research 
questions that may not have been tractable within traditional 
analysis regimes. Indeed, researchers in the data analytics com-
munity have argued that “Data by themselves have only limited 
value. True transformation of educational ecosystems lies in 

converting these data into actionable intelligence (meaning 
insights and knowledge that enable learners and other stake-
holders to act)” (Madhavan and Richey, 2016, p. 6).

Multiple members of the science education research commu-
nity have argued that it is important to expand efforts within 
the realm of second-generation science education research, and 
such an expansion should include studies that explore the spe-
cific aspects of instructor and student behavior that lead to 
learning gains within active-learning environments (e.g., Free-
man et al., 2014; Dolan, 2015). We propose that CAG analyses 
can play an important role in such second-generation studies by 
enabling researchers to pinpoint previously unnoticed or subtle 
patterns in behavior and activity within the postsecondary biol-
ogy classroom. Just as genomics approaches have allowed for 
deeper, more nuanced analyses of genetic influences on human 
disease than were once possible or even imaginable, CAG 
approaches have the potential to expand the scope of classroom 
observation protocol–based studies beyond summary statistics, 
into the realm of detailed pattern analysis.

An additional benefit of the CAG mindset is the potential to 
improve communication between biology education researchers 
and bench biologists. A study within physics suggests that the 
interactions between discipline-based education researchers and 
instructors are not always smooth (Henderson and Dancy, 2008). 
Biology education research efforts might be viewed as more com-
pelling and easier to understand by biologists if they are framed 
using the language of genetics and genomics. Because much of 
the biology education community works within traditional biol-
ogy departments, finding new ways to facilitate meaningful con-
nections between education research and biology research could 
be of great benefit to researchers on both sides.

One of the most exciting aspects of this approach is the 
potential for multiple observation protocols to be applied to 
the same classroom observations, allowing for better triangu-
lation during analysis. This approach admittedly requires a 
measure of caution. Validity, the idea that an observation pro-
tocol or other instrument is capturing what a researcher 
argues it is capturing, is not an inherent or immutable prop-
erty of an instrument (Campbell and Nehm, 2013). This 
means that observation protocols designed for different 
instructional contexts should be closely examined to deter-
mine whether or not codes are measuring the same or related 
constructs. However, if validity is kept in mind during data 
analysis, differing instruments may be used in parallel to 
great effect. If classroom video recordings could be coded by 
multiple collaborating research groups using different proto-
cols, with the resulting annotations available to other 
researchers, the community would benefit from both “widen-
ing” (making more observations available) and “deepening” 
(annotating each video with multiple, complementary instru-
ments). The creation of some form of a semi–open data eco-
system within the science education research community 
could catalyze great progress in this area, as data collected 
with the intention of addressing one question could also be 
brought to bear upon unforeseen questions and reduce dupli-
cation of data-collection efforts. While this would require 
close coordination among researchers, institutional review 
board officials, and other stakeholders, the benefits of having 
an educational equivalent to the Gene Expression Omnibus 
could be sizable.
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