
CBE—Life Sciences Education • 18:ar1, 1–14, Spring 2019 18:ar1, 1

ARTICLE

ABSTRACT
The Vision and Change report provides a nationally agreed upon framework of core con-
cepts that undergraduate biology students should master by graduation. While identify-
ing these concepts was an important first step, departments also need ways to measure 
the extent to which students understand these concepts. Here, we present the General 
Biology–Measuring Achievement and Progression in Science (GenBio-MAPS) assessment 
as a tool to measure student understanding of the core concepts at key time points in a 
biology degree program. Data from more than 5000 students at 20 institutions reveal that 
this instrument distinguishes students at different stages of the curriculum, with an upward 
trend of increased performance at later time points. Despite this trend, we identify several 
concepts that advanced students find challenging. Linear mixed-effects models reveal that 
gender, race/ethnicity, English-language status, and first-generation status predict overall 
performance and that different institutions show distinct performance profiles across time 
points. GenBio-MAPS represents the first programmatic assessment for general biology 
programs that spans the breadth of biology and aligns with the Vision and Change core 
concepts. This instrument provides a needed tool to help departments monitor student 
learning and guide curricular transformation centered on the teaching of core concepts.

INTRODUCTION
The Vision and Change national report outlined five core concepts that all biology 
majors should master by graduation, namely 1) evolution; 2) structure and function; 
3) information flow, exchange, and storage; 4) pathways and transformations of 
energy and matter; and (5) systems (American Association for the Advancement of 
Science [AAAS], 2011). Identified from conversations among more than 500 biolo-
gists and biology educators across the country, these core concepts represent a consen-
sus view of the central ideas in biology. Furthermore, these core concepts are similar 
to the central biology concepts contained in the Advanced Placement (AP) Biology 
Curriculum Framework (Wood, 2009; College Board, 2011) and Next Generation Sci-
ence Standards (NGSS Lead States, 2013), lending further credence to the communi-
ty’s support for the importance of these core concepts.
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Vision and Change provided an overarching framework with 
its broad descriptions of the core concepts and established a 
starting point for others to unpack these big ideas with more 
detail. To further articulate the core concepts, an iterative, 
grassroots approach incorporating feedback from more than 
240 biologists and biology educators led to the creation of the 
BioCore Guide (Brownell et al., 2014). This framework delin-
eates key principles and concepts underlying each core concept 
within three biology subdisciplines approximating the diversity 
of biology (i.e., molecular/cellular, physiology, and ecology/
evolution), giving departments a tool to help them align their 
instruction with the Vision and Change core concepts.

The emergence of these overarching conceptual frameworks 
has led to the need for departments to have tools to assess how 
well they are teaching the core concepts of Vision and Change. 
Rubrics developed by the Partnership for Undergraduate Life 
Science Education (PULSE) community can be used to self-eval-
uate the extent to which the courses in an undergraduate pro-
gram focus on the core concepts (Aguirre et al., 2013; 
Brancaccio-Taras et al., 2016). Other assessment tools have been 
developed that are aligned with the core concepts, such as the 
biology card sorting task (Smith et al., 2013), but these assess-
ments cannot be practically administered to hundreds of stu-
dents in a program due to the tools’ open-ended format. Existing 
concept inventories that are closed-ended typically focus on indi-
vidual topics or courses (e.g., Smith et al., 2008; Shi et al., 2010; 
Kalas et al., 2013; Kalinowski et al., 2016) but do not span the 
breadth of topics covered in an undergraduate biology program 
and are not explicitly aligned with the core concepts.

By gauging student understanding across an entire major, 
programmatic assessment represents an important mechanism 
to help monitor and guide departmental progress toward 
achieving the goals of Vision and Change. The decision to use 
programmatic assessment can stimulate conversations within a 
department on what it intends to teach in its programs, which 
courses address these important concepts, and whether poten-
tial thematic linkages exist across courses (Marbach-Ad et al., 
2007). Programmatic assessment data can help departments 
determine the extent to which students have learned various 
concepts at different points in a program, identify challenging 
concepts for which alternative teaching strategies can be 
employed, determine whether specific demographic character-
istics relate to student performance, and monitor the impact of 
instructional changes (Marbach-Ad et al., 2010). Furthermore, 
as administrators, accreditation bodies, and government agen-
cies call for evidence of the “value added” by an undergraduate 
education, programmatic assessment can provide an empirical 
basis for evaluating learning outcomes and justifying subse-
quent curricular decisions (Shavelson, 2010; Arum and Roksa, 
2011; Arum et al., 2016).

Despite the potential benefits of programmatic assessment, 
we still lack sufficient means to directly measure at scale the 
extent to which students have mastered the core concepts as 
they advance through general biology degree programs found 
at the vast majority of undergraduate institutions (Brownell 
et al., 2014). Here, we describe the development of the General 
Biology–Measuring Achievement and Progression in Science 
(GenBio-MAPS) instrument as a tool to measure student under-
standing of the Vision and Change core concepts at key time 
points during an undergraduate general biology program. We 

aligned the content of this instrument to the BioCore Guide con-
sensus framework to reflect the breadth of concepts and subdis-
ciplinary areas covered in general biology programs. We 
designed GenBio-MAPS for administration at three time points 
during an undergraduate degree: 1) at the beginning of an 
introductory biology series, 2) after completion of the introduc-
tory biology series, and 3) at an advanced time point before 
graduation from a bachelor’s program (Figure 1). These time 
points enable 2- and 4-year institutions to assess students’ 
incoming knowledge, measure the impact of introductory 
courses, and determine the cumulative learning outcomes of 
their biology curricula. GenBio-MAPS complements the other 
program-level instruments developed by our group for specific 
biology subdisciplines, including the Molecular Biology Cap-
stone Assessment (MBCA) (Couch et al., 2015), Phys-MAPS 
(Semsar et al., 2019), and EcoEvo-MAPS (Summers et al., 
2018). Together, this suite of instruments provides depart-
ments with tailored ways to gauge student conceptual under-
standing at key junctures and inspire curricular changes to 
improve their programs.

METHODS
Question Format, Development, and Revision
We used a multiple-true-false (MTF) format in which each 
question consists of a stem that introduces a biological scenario 
followed by a series of independent true–false (T-F) items 
(Frisbie, 1992). This format has several advantages that make it 
particularly suitable for programmatic assessment. First, the 
closed-ended nature of these questions enables rapid and con-
sistent scoring. Second, the T-F items can probe student under-
standing of different concepts related to the same scenario, and 
students can answer several T-F items in the same amount of 
time that it takes to answer one multiple-choice (MC) question, 
enabling the test to cover a broader range of content in a lim-
ited time span (Frisbie and Sweeney, 1982; Kreiter and Frisbie, 
1989). Third, the traditional MC format only captures a stu-
dent’s preferred answer and thus cannot detect instances in 
which students have incomplete or mixed conceptions in which 
they believe more than one response option to be correct (Parker 
et al., 2012). The MTF format overcomes this issue by having 
students separately evaluate each T-F item, thereby providing a 
more detailed portrait of student thinking (Couch et al., 2018). 
Finally, MTF questions and other multiple-response formats 
have been shown to approximate the reasoning expressed by 
students in free-response answers and reveal specific incorrect 

FIGURE 1. Administration time points for 2- and 4-year biology 
programs. GenBio-MAPS was designed to be administered at the 
beginning of the introductory series, end of the introductory series, 
and toward the end of advanced course work.
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conceptions that go underdetected in open-ended formats 
(Wilcox and Pollock, 2014; Hubbard et al., 2017).

In developing questions, we followed a set of guidelines to 
ensure consistency in style and content across the instrument. 
Each MTF question consists of an introductory stem followed 
by four to five T-F items. The question stems span a range of 
biological scales from molecules to ecosystems and often 
include a diagram, graph, or table that students must interpret. 
The T-F items were developed to align with the core concepts 
and statements specified in the BioCore Guide within three 
major biology subdisciplines: molecular/cellular biology, phys-
iology, and ecology/evolution. We sought to maximize the 
extent to which students were required to think across the core 
concepts by having each stem include T-F items that addressed 
at least two different core concepts. This strategy also allowed 
us to test transfer of each core concept to a variety of contexts 
so that the diagnosis of student understanding of a core con-
cept would not be solely dependent on any specific scenario. To 
generate questions that targeted conceptual understanding 

FIGURE 2. GenBio-MAPS question-development process. Assessment questions were 
drafted and iteratively revised over the course of three phases, each culminating in a 
large-scale administration. See the Methods section for further details. IRT, item response 
theory.

rather than factual memorization, we lim-
ited the use of scientific jargon and 
avoided common textbook examples. We 
avoided words that could provide answer 
cues (e.g., “never,” “always”) and main-
tained a relatively even balance of the 
number of true and false items across the 
instrument to prevent students from 
employing test strategies (Frey et al., 
2005).

We developed questions using an itera-
tive process (Figure 2) intended to opti-
mize instrument validity and reliability 
(Adams and Wieman, 2011). During the 
first phase of question development, seven 
authors (B.A.C., C.D.W., S.F., J.K.K., 
M.K.S., A.J.C., S.E.B.) with a range of sub-
disciplinary expertise drafted an initial 
set of MTF questions, and each question 
writer assigned his or her T-F items to 
a core concept and subdiscipline. We 
reviewed these alignments to determine 
which areas needed additional coverage 
and identify questions that only addressed 
one core concept. We then added addi-
tional questions and items to help balance 
representation of the core concepts and 
subdisciplines across the question set. We 
conducted think-aloud interviews with 29 
students at one research-intensive univer-
sity to identify issues with question clarity 
and determine whether student answers 
were consistent with their underlying 
thinking (Anders and Simon, 1980), mak-
ing iterative revisions throughout this pro-
cess. An initial set of 16 questions with 73 
items was piloted to 881 students in seven 
course sections at three institutions during 
Spring 2014.

During the second phase, we analyzed 
results from the previous pilot using classi-

cal test theory statistics (Crocker and Algina, 2006), wrote 24 
new questions, and made iterative revisions based on these anal-
yses as well as 135 additional student interviews at one commu-
nity college and four research-intensive universities spanning the 
country (i.e., Northwest, Southwest, Mountain West, and North-
east). We solicited feedback from 20 experts with appropriate 
subdisciplinary backgrounds to ensure that each question’s con-
tent was clear, scientifically accurate, and appropriate for a gen-
eral biology major. Questions and items were removed when 
they were determined to not be performing appropriately. Two 
authors (C.D.W., A.J.C.) independently aligned each item to the 
core concept and subdiscipline that it addressed and discussed 
any disagreements until they reached consensus. This second 
phase culminated during the Spring 2015 semester when we 
piloted a revised set of 38 questions with 194 items to 2621 stu-
dents in 49 course sections at 10 institutions.

During the third phase, we began by conducting analyses of 
the previous pilot data, including classical item analysis, detec-
tion of differential item functioning (DIF), and development of 
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item response theory (IRT) models. Building on these pilot 
results, we drafted three new questions, and a team of four 
authors (B.A.C., C.D.W., A.J.C., S.E.B.) reviewed the entire 
question bank as a group and conducted additional revisions 
with particular attention to items flagged during the previous 
analyses (e.g., items with low discrimination, bias toward par-
ticular demographic groups, or poor fit to the model), while 
taking into account question performance during prior think-
aloud interviews. Again, questions and items with unresolvable 
issues were removed. We also drafted knowledge statements to 
delineate the understandings targeted by each item. As the 
questions were finalized, we conducted 31 additional student 
interviews at one research-intensive university and solicited 
feedback from 38 experts, prioritizing feedback on new and 
revised questions. Two authors (C.D.W., A.J.C.) again inde-
pendently aligned all the items to a primary core concept (80% 
agreement) and subdiscipline (88% agreement) and reached 
consensus on any disagreements through discussion.

The final instrument consists of 39 question stems and 175 
accompanying T-F items, including 39 items on evolution; 31 
items on structure and function; 41 items on information flow, 
exchange, and storage; 37 items on pathways and transforma-
tions of matter and energy; and 27 items on systems. These 
same items can also be categorized according to the subdisci-
plines, with 86 in molecular/cellular biology, 42 in physiology, 
and 47 in ecology/evolution. The full assessment and associ-
ated knowledge statements can be found in Supplemental 
Material 1.

Final Administration
For the final administration, each student answered a random 
subset of 15 question stems and associated T-F statements 
from the full question bank (i.e., each student answered a 
total of 60–75 T-F items). In addition, the order of T-F state-
ments within each question stem was randomized for each 
student to minimize any item-order effects. Students also 
answered a set of demographic questions at the end of the 

survey (Supplemental Material 2). The survey as a whole was 
designed to take ∼30 minutes to complete.

We administered the final version of the instrument to stu-
dents in 152 courses at 20 institutions with general biology pro-
grams during the 2016 calendar year (Table 1), including 11 
institutions with courses at all three time points in the under-
graduate major (Supplemental Material 3). We employed a 
cross-sectional design, meaning that different students com-
pleted the instrument at the different time points. We collected 
data at the first time point at the beginning of the first introduc-
tory biology course; the second time point at the end of the last 
course in a program’s introductory biology series, typically the 
second (for semester systems) or third (for quarter systems) 
course in the major; and the last time point at the end of 
upper-division courses that tended to be taken near the end of 
a program.

We adopted an administration strategy that enabled us to 
collect and score the data in a consistent and efficient manner 
across institutions. Students completed the instrument in an 
online survey outside of class time. Each course instructor was 
directed to verbally announce that students, as part of normal 
course practices, would complete an assignment to gauge their 
understanding of core biology concepts. To incentivize student 
participation, instructors were asked to give students a small 
amount of regular or extra credit for the assignment, with the 
exact amount being at the discretion of the instructor. Students 
were additionally told that they would have the option to 
release their responses for research purposes but that this deci-
sion would have no effect on their course grade. After class, the 
instructor sent students a link to a Qualtrics survey. The first 
survey page introduced the assignment and asked students to 
answer the questions to the best of their abilities in one sitting 
on a large-format device (e.g., laptop, desktop) and avoid con-
sulting outside resources (e.g., peers, websites). The second 
page of the survey contained a consent form that described the 
project and prompted students to indicate their willingness to 
release their responses for research purposes.

TABLE 1. Institution and course demographics

Institution characteristic n %

Control
 Public 15 75
 Private 5 25
Regiona

 Mid-Atlantic 2 10
 Midwest 10 50
 Northwest 3 15
 Southwest 5 25
Carnegie basic classification
 Associate’s Colleges: Mixed Transfer/Career & Technical-High Nontraditional 2 10
 Baccalaureate Colleges: Arts & Sciences Focus 3 15
 Master’s Colleges & Universities: Larger or Medium Programs 7 35
 Doctoral Universities: Higher or Moderate Research Activity 3 15
 Doctoral Universities: Highest Research Activity 5 25
Course time point
 Beginning of introductory series 58 38
 End of introductory series 45 30
 Advanced 49 32
aRegion designations are based on PULSE regional boundaries. No institutions from the Northeast or Southeast regions are represented in the data set.
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Data Processing, Participation Rates, 
and Student Demographics
We applied a stringent filtering process to generate a high-qual-
ity data set reflecting the target population. We first removed 
any survey submissions for which the student did not finish the 
survey, reported being under 18 years of age, did not consent, 
or had already submitted a survey in the same course. To 
reduce potential noise from responses containing extensive 
guessing, we next excluded any responses for which students 
completed the survey in less than 10 minutes, because this was 
determined to be too short a length of time to have made a 
good faith effort to read and answer the questions. Finally, we 
excluded students who did not answer at least 60 T-F items and 
responses from students who fell outside the target population, 
including students who had already taken the survey in a differ-
ent course, students at the postbaccalaureate or graduate level, 
or students who indicated that they were not planning to major 
in life sciences. In total, the final data set consisted of 5175 
responses, which we estimate represents 65% of the eligible 
students enrolled in the courses. This participation rate approx-
imates the number of eligible students by taking overall course 
enrollment and subtracting an ineligible student estimate (i.e., 
students who were underage, enrolled in another section, post-
baccalaureate or graduate status, or nonmajors) based on the 
ineligible response rates seen in surveys. Demographic informa-
tion for students included in the final data set can be found in 
Table 2. The group with the most students served as the refer-
ence group for nominal demographic variables. With respect to 
the time points, 2425 responses (47%) came from students at 
the beginning of the introductory series, 1832 responses (35%) 
came from students at the end of the introductory series, and 
918 responses (18%) were from advanced students in upper- 
division courses. While students enter and advance through 
programs at different rates, the first time point consisted pri-
marily of first-year and sophomore students and the last time 
point consisted almost entirely of juniors and seniors (Supple-
mental Material 4).

Statistical Analyses
We used Mplus software (v. 8) to conduct confirmatory factor 
analysis (CFA) with weighted least-squares means and vari-
ance-adjusted estimation to account for the categorical nature 
of the item responses (Brown, 2015). We used Winsteps soft-
ware (v. 3.91.0) to generate Rasch models of the item 
responses, calculate person reliabilities, determine item fits, 
and conduct DIF analysis using the Mantel-Haenszel test 
(Linacre, 2014a). We also used the same Rasch models to gen-
erate estimates of overall student ability (i.e., theta) and mod-
eled item difficulties in units of logits. The Rasch model esti-
mates the probability of a student answering a particular item 
correctly based on student ability and item difficulty (Bond 
and Fox, 2007).

We used classical test theory to calculate overall student 
scores, core concept scores, subdiscipline scores, and item diffi-
culties. Overall, core concept, and subdiscipline scores were 
calculated as each student’s percent correct across all the T-F 
items in that group. Item difficulty was calculated as the per-
cent of students answering each item correctly. We compared 
Rasch and classical student and item metrics using Pearson 
correlations.

We calculated linear mixed-effects models with restricted 
maximum-likelihood estimation to understand how different 
variables explained student performance. Predictor variables 
were included based on whether they were hypothesized a pri-
ori to explain variance in the outcome variable: no further 
model selection or model averaging was performed. For the 
base model predicting overall scores, we included institution 
and course nested within institution as random effects (to 
account for potential differences between data-collection sites) 
and student self-reported demographic variables as fixed 
effects.

Overall score ~ Institution course institution time point

class standing GPA gender

race/ethnicity language parent education

AP Biology transfer

( )+ +

+ + +

+ + +

+ +

TABLE 2. Student self-reported demographics

Student characteristic na %

Course time point
 Beginning of introductory series 2425 47
 End of introductory series 1832 35
 Advanced 918 18
Class standing
 First year 2049 40
 Sophomore 1319 25
 Junior 1011 20
 Senior 796 15
Approximate current overall GPA
 4.00–3.70 (A+ to A−) 1748 43
 3.69–2.70 (B+ to B−) 2896 56
 2.69–1.70 (C+ to C−) 362 7
 1.69–0.00 (D+ to E/F) 27 <1
Gender
 Female 3376 65
 Male 1755 34
 Other 27 <1
Ethnicityb

 Non-underrepresented 4360 84
 Underrepresented 735 14
English language
 English spoken at home growing up 4437 86
 English not spoken at home growing up 722 14
Highest parental education level
 Completed bachelor’s degree 3204 62
 Did not complete bachelor’s degree 1886 36
High school biology course work
 No AP Biology 3209 62
 AP Biology 1916 37
Transfer status
 Non–transfer student 4384 85
 Transfer student 779 15
aNumbers do not add to full sample size because some students left the given item 
blank.
bUnderrepresented ethnic groups included African American/Black, Filipino, 
Hispanic/Latino, Native American/Alaska Native, Native Hawaiian, and Pacific 
Islander.
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For the two models predicting subcategory (i.e., core concept 
and subdiscipline) scores, we included institution, course nested 
within institution, and student nested within course and institu-
tion as random effects (to account for data-collection sites and 
repeated measures across the subcategories) and time point, 
subcategory, and time point × subcategory as fixed effects.

Subcategory score ~ Institution course institution

student course, institution time point

subcategory time point subcategory

( )

( )

+

+ +

+ + ×

Item differences between time points were determined by 
calculating the normalized difference for each item across the 
entire sample from the beginning of the introductory series to 
the advanced time point, according to the formula

c a aNormalized difference / 1( ) ( )= − −

where a represents the percent correct at the beginning of the 
introductory series and c represents the percent correct for 
advanced students. This formula accounts for initial item diffi-
culty by calculating the proportion of the available difference 
achieved at the later time point.

This work was approved under protocols at Arizona State 
University (00001058, 00003057), University of Colorado–
Boulder (15-0283), University of Maine–Orono (2015-06-07), 
University of Nebraska–Lincoln (14618), University of Wash-
ington–Seattle (00000672), and all piloting institutions.

RESULTS
Test and Item Characteristics
In developing GenBio-MAPS questions, we wrote items that 
aligned with the five core concepts and three subdisciplines 
delineated in the BioCore Guide. We determined the extent to 
which these alignments could explain variation in student 
responses. We found that a CFA model wherein all of the ques-
tions were considered as one factor (root mean square error of 
approximation [RMSEA] = 0.007, confirmatory fit index [CFI] 
= 0.87, Tucker-Lewis index [TLI] = 0.86) yielded fit statistics 
similar to models that included either the five core concepts as 
separate factors or the three subdisciplines as separate factors 
(RMSEA = 0.007, CFI = 0.87, TLI = 0.87 for both models). We 
also found that core concept or subdiscipline factor scores were 
highly correlated with each other (r > 0.96 for all pairwise cor-
relations across core concepts or subdisciplines), indicating that 
students exhibit similar relative performance across these sub-
categories and that the subcategory groupings provide little 
explanatory power beyond the unidimensional model.

We generated Rasch models to determine the extent to 
which student responses to individual items were consistent 
with their broader performance on the test. We analyzed person 
reliability as a metric for the consistency of student responses 
across all the items on a test. We first developed a model in 
which all the items were considered as a single scale, which 
produced an acceptable reliability of 0.82 (Kline, 2000). We 
also analyzed each core concept and subdiscipline as separate 
models and found that the reliabilities for these models were 
variable, ranging from 0.18 to 0.50 for the core concepts and 
from 0.41 to 0.72 for the subdisciplines (Supplemental Material 

5). These lower reliabilities likely stemmed from the compara-
tively smaller number of items in each subcategory and suggest 
that individual student scores for core concepts and subdisci-
plines should be interpreted with caution. However, these 
scores may still be useful when aggregated at the cohort level 
for identifying broader performance trends.

We next sought to determine how well the individual items 
aligned with a student’s overall performance (Supplemental 
Material 6). Rasch point measures represent the correlations 
(point-biserial coefficient) between item responses and mod-
eled student ability scores (Linacre, 2014b). The vast majority 
(172 out of 175) of the items had positive values, whereas only 
three items (15b, 36d, and 45d) had negative point measures, 
indicating that higher-performing students did slightly worse 
than their lower-performing counterparts. We elected to leave 
these three items on the instrument, because they were inter-
preted appropriately during student interviews, they tested 
important concepts, their low correlations could be explained 
by poor student performance, they did not hinder the overall 
instrument from achieving acceptable reliability levels, and 
they had negligible effects on total scores. We analyzed Rasch 
outfit mean-square statistics as a metric for the degree to which 
responses to each item fit the test model. For the outfit mean-
square statistic, all of the items had acceptable fits based on 
having values between 0.5 and 1.5 (Linacre, 2014b).

We further wanted to determine whether any of the items 
displayed potential signs of bias based on student demographic 
characteristics (Martinková et al., 2017). The Mantel-Haenszel 
test analyzes whether two groups show significant differences 
on individual items beyond what would be expected given the 
overall scores of these students (Crocker and Algina, 2006). In 
analyzing the results from this test, we paid particular attention 
to any items with significant differences between the reference 
and nonreference groups that would be classified as category C 
according to Educational Testing Services criteria (Zwick et al., 
1999; Linacre, 2014b). Category C items have moderate to 
large differences in the modeled difficulty for the two groups 
(DIF contrast ≥ 0.64). Two items (31b and 45d) met this crite-
rion for gender, and two other items (22a and 38c) met this 
criterion for race/ethnicity. In both cases, one item was easier 
for the nonreference group, and the other item was harder for 
the nonreference group. We elected to leave these items on the 
instrument, because they showed no explicit signs of bias 
during student interviews, they seemingly had no distinguish-
ing features that related to the particular demographic variable, 
and they had a neutral net effect on overall scores.

Comparing Rasch and Classical Metrics
Rasch modeling estimates person and item parameters based 
on how students answer each item. This is particularly useful 
for instruments such as GenBio-MAPS that use a test adminis-
tration design in which students only answer a subset of all the 
questions, because student ability scores account for the diffi-
culty of the particular items answered by each student. How-
ever, we also recognize that many institutions might lack the 
necessary expertise, software, and sample size to analyze test 
data using item response models. Thus, we compared Rasch 
analyses with classical student and item metrics to determine 
whether there were functional differences between these two 
analytic approaches. We found that Rasch student ability scores 
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were highly correlated with overall percent correct (r = 0.97; 
Supplemental Material 7A). In visualizing this relationship, the 
vast majority of students fell along the linear portion of the 
sigmoidal curve, while the highest-performing students, consti-
tuting roughly 1% of the sample, fell in the upper portion of the 
curve. We also found that Rasch item difficulties and item per-
cent correct values had a strong correlation (r = −0.99), with 
only a few of the easiest items showing deflection from a one-
to-one relationship (Supplemental Material 7B). Given that 
most institutions using GenBio-MAPS will employ classical test 
statistics and that these metrics correlate very closely with 
Rasch-based measures, the remaining analyses will use classical 
test results. This data presentation strategy has been adopted 
previously to help make test results more interpretable for the 
target audience (Vincent-Ruz and Schunn, 2017; Summers 
et al., 2018).

Overall Student Performance, Demographic Effects, 
and Institutional Patterns
We next sought to understand broad student performance pat-
terns based on overall test scores. Across institutions, students 
had an overall score median of 61% at the beginning of the 
introductory series, 68% at the end of the introductory series, 
and 75% at the end of advanced courses (Figure 3A). We gener-
ated a linear mixed-effects model to control for sampling vari-
ance and estimate the contributions that various factors make to 
overall scores (Table 3). We found that administration time 
point had a large impact on student scores, modeled as a differ-
ence of 6.5% from the beginning to end of the introductory 
series and 11.7% from the beginning of the introductory series 
to the advanced time point. By comparison, class standing (i.e., 
first-year, sophomore, junior, senior) had a much smaller effect 
of less than 1% change between levels. Self-reported grade point 
average (GPA) had an effect of roughly 3.5% change for each 
higher letter grade. In comparison with their reference group, 
we found a positive effect for students who took AP Biology in 
high school (2.7%). Students who were female, were from an 
underrepresented minority (URM) group, did not speak English 
at home, or did not have a parent who graduated from college 
experienced a negative effect attributable to these variables 

(−3.0, −2.0, −3.2, and −2.0, respectively), whereas we detected 
no significant effect for transfer students. To further investigate 
the effects of these demographic characteristics, we generated a 
priori planned models testing for potential interactions between 
time point and gender, ethnicity, language, or parents’ educa-
tion. In each of these separate models, we found no significant 
effect for the interaction term, indicating that the discrepancies 
seen for each demographic variable remain consistent across the 
major and do not narrow or widen at later time points.

Although we did not design the GenBio-MAPS instrument 
for the purpose of comparing institutions, we tested whether it 
has the important property of detecting institution-specific out-
comes. Specifically, we added a time point × institution interac-
tion term to the base model. This term was significant, indicat-
ing that institutions show different trajectories across the time 
points (Supplemental Material 8). We further plotted average 
raw overall student performance for the 11 institutions with 
data at all three points (Figure 4). These institutions showed a 
range of different profiles across the three time points. The pat-
terns did not necessarily reflect different classes of institutions 
(based on the Carnegie basic classification), as each pattern 
could be observed for different institution types. In some cases, 
students at an institution had equivalent increases in perfor-
mance between consecutive time points, suggesting continual 
gains across the curriculum. In other cases, students at an insti-
tution showed little difference between the first two time 
points, but a larger increase between the later time points or, 
conversely, a large difference between the first two time points 
followed by a smaller difference across the later time points. In 
these cases, a plateau between adjacent time points could high-
light a time period with little growth and periods for programs 
to consider potential improvements.

Student Subcategory and Item Performance Levels
While overall scores can detect broader patterns in student per-
formance, programs also need higher-resolution information to 
identify areas for growth. Thus, we began by plotting core con-
cept and subdiscipline scores at the different time points 
(Figure 3, B and C). These scores would be expected to show 
similar patterns with overall scores, but they provide important 

FIGURE 3. Student raw score distributions at the different time points based on (A) overall scores, (B) core concept scores, and 
(C) subdiscipline scores. Central bars represent median overall percent correct, boxes represent inner quartiles, and whiskers represent 5th 
and 95th percentiles. Post hoc Tukey’s tests revealed significant differences between all adjacent time points. Post hoc Tukey’s tests were 
significant between all adjacent time points, indicating that students show growth between time points.
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information, because they reflect current or potential ways of 
organizing program content (Sinharay et al., 2011; Livingston, 
2015). Additional mixed-effects models revealed interactions 
between time point and core concept or subdiscipline (core 
concept × time point: F(8, 20,685) = 9.73, p < 0.001; subdisci-
pline × time point: F(4, 10,344) = 31.19, p < 0.001). Post hoc 
Tukey’s tests were significant between all adjacent time points, 
indicating that students show growth between time points in 
each of the subcategories. For example, students showed 
improvements at each time point for the evolution core con-
cept, with an overall improvement from a 63% median at the 

start of the introductory series to 75% at the end of the 
advanced time point.

In addition to subcategory scores, institutions can further 
examine performance at the item level to pinpoint specific areas 
of proficiency and deficiency. We identified items showing the 
highest and lowest normalized differences from the beginning 
of the introductory series to the advanced level across all insti-
tutions (see Tables 4 and 5 for the content of each item). The 10 
items showing the highest differences had normalized differ-
ences above 0.6 (Table 4). The initial percent correct on these 
items showed a broad distribution with values scattered from 
55% to 90%. In all cases, the percent correct was high among 
advanced students, ranging from 86% to 97%. These items 
spanned all five core concepts, but were mostly at the mole-
cular/cellular level. We also identified the 10 items for which 
students demonstrated the lowest differences (Table 5). These 
items could show low differences because they were either chal-
lenging at both time points or relatively easy at both time 
points. For most of the items, the initial percent correct started 
and remained low (i.e., below 60%). Thus, these items were 
difficult at all levels rather than being too easy or “topped out” 
at the introductory level. The items spanned all five core con-
cepts and covered a more even range of biological scales. While 
these items represented key conceptual areas, they often 
required students to apply these concepts in more complicated 
scenarios and may reflect “sticky” misconceptions that persist 
despite instruction (Smith and Knight, 2012).

DISCUSSION
In articulating the core concepts, Vision and Change created a 
conceptual framework for departments to place at the center of 
their undergraduate curricula. Building on these efforts, the 
PULSE community and others have published program-level 
rubrics that enable departments to self-assess their status in 
teaching the core concepts (Aguirre et al., 2013; Brancaccio-Taras 
et al., 2016; Cary and Branchaw, 2017). However, despite these 
important advances, the biology education community has 

FIGURE 4. Student performance at different institutions across 
time points. Points represent average raw overall percent correct at 
the beginning of the introductory series, end of the introductory 
series, or advanced time points. Each colored line connects data 
from a single institution, and each series is colored based on 
institution type: blue, doctoral universities: highest research activity; 
green, doctoral universities: higher or moderate research activity; 
orange, master’s colleges and universities: larger or medium 
programs; red, baccalaureate colleges: arts and sciences focus.

TABLE 3. Linear mixed-effects model on the effect of student demographic characteristics on overall percent correct

Parametera Estimate SE df t p

Time point (ref: beginning of intro series)
 End of intro series 6.53 0.69 97.2 9.4 <0.001
 Advanced 11.66 0.85 185.4 13.7 <0.001
Class standing 0.77 0.23 3872.9 3.4 0.001
GPA 3.53 0.24 4809.3 14.7 <0.001
Gender (ref: female)
 Male 3.04 0.29 4764.9 10.4 <0.001
Race/ethnicity (ref: non-URM)
 URM −1.96 0.43 4783.1 −4.5 <0.001
Language (ref: English spoken at home)
 English not spoken at home −3.16 0.42 4769.1 −7.5 <0.001
Parental education (ref: parent graduated college)
 No parent graduated college −2.05 0.31 4791.4 −6.6 <0.001
AP Biology (ref: no AP Biology)
 Took AP Biology 2.71 0.30 4787.1 9.2 <0.001
Transfer (ref: non-transfer)
 Transfer student −0.18 0.43 4811.2 −0.4 0.675

aEstimates for ordinal variables (i.e., class standing and GPA) indicate modeled effect based on moving 1 scale point for the given parameter. Estimates for the other 
nominal variables indicate the modeled effect based on being a member of the italicized focal group in comparison with the indicated reference (ref) group.
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lacked mechanisms to directly measure whether general biology 
programs are successfully teaching the core concepts.

In light of this need, we developed the GenBio-MAPS pro-
grammatic assessment instrument to test student understand-
ing of the Vision and Change core concepts across the broad 
discipline of biology. To our knowledge, GenBio-MAPS rep-
resents the first freely available instrument designed for pro-
grammatic assessment of a general biology major. Several dis-
tinguishing features make this instrument amenable for a wide 
range of departments interested in gauging student under-
standing of the core concepts and monitoring the impact of 
curricular innovation. Importantly, the content of the instru-
ment spans an entire program, and thus provides information 
at the program—not individual course—level, which should 
help departments think more broadly about the cumulative 
effects of their instruction, rather than evaluate individual 
courses. The instrument directly aligns with the detailed artic-
ulations of the core concepts in the BioCore Guide. To facilitate 
sampling of student thinking across the broad domain of biol-
ogy, each student answers only a random subset of questions. 
The MTF question structure enables each core concept to be 
tested in scenarios ranging from the molecular to ecosystem 
levels, thereby measuring the extent to which conceptual 
understanding transfers across different contexts. Further, the 
T-F items target concepts at different levels of the curriculum, 
allowing the test to differentiate incoming from advanced stu-
dents, and our results indicate significant differences in perfor-
mance across time points. Finally, the closed-ended question 
format can be administered online and automatically scored, 

ensuring that survey administration can be conducted by any 
size department and that results can be quickly analyzed to 
inform curricular decisions.

Evidence of GenBio-MAPS Validity
Messick’s framework provides a useful lens for evaluating the 
validity of the GenBio-MAPS instrument (Messick, 1994). This 
framework represents a comprehensive and unified model that 
considers the origin, meaning, and use of student scores with 
respect to 1) content validity, 2) substantive validity, 3) struc-
tural validity, 4) generalizability, and 5) external validity.

Content validity in this case refers to the scientific accuracy 
of the questions and the extent to which the items represent the 
full range of biology. We largely addressed the scientific accu-
racy of the questions by soliciting feedback from biology 
experts, and the coverage of the core concepts stems from align-
ment of the instrument with the BioCore Guide. While the 
breadth of biology cannot be fully captured in any instrument, 
the BioCore Guide represents a thorough articulation by more 
than 240 biology faculty of the central ideas underlying each 
core concept. This framework served as a guide for our initial 
question drafting, and we made concerted efforts throughout 
the process to augment areas of limited coverage. In the final 
version, we had relatively even coverage of each core concept, 
with slightly fewer items in the systems subcategory. The inte-
grative nature of the systems core concept made it challenging 
to capture in the MTF format, in which each item focuses on a 
specific idea, and this challenge has been reported previously 
with other closed-ended formats (Smith et al., 2013).

TABLE 4. Items demonstrating highest normalized differences sorted by core concept

Percent correct

Item CC-SDa

Beginning of 
intro series Advanced

Normalized 
difference Knowledge statement

14b EV-E 87 97 0.77 Branch points represent common ancestors, but these ancestors are not the same as 
the descendant groups, which have evolved into something different.

03d SF-M 86 95 0.63 Mutations can confer viral drug resistance by changing the ability of a drug to bind its 
viral target.

12d SF-M 67 88 0.63 Phosphorylation activates proteins by causing a structural change that alters their 
biochemical properties.

40c SF-M 75 92 0.68 The frequency and duration of binding between two molecules depends on their 
biochemical properties.

44d SF-M 69 91 0.72 Binding of a ligand to an allosteric regulatory site induces a change in the structure 
and activity of the active site.

04d IF-M 77 92 0.65 Different transcription factor proteins are selectively expressed in different cell types, 
contributing to differences in gene expression between these cell types.

22a IF-P 73 91 0.66 Physiological process are often initiated by the production of a specific signaling 
molecule in response to a stimulus. A signaling molecule that is exogenously added 
to an organism can still elicit a downstream response in the absence of the corre-
sponding stimulus, provided the signaling molecule can reach its intended location.

27b EM-M 70 89 0.63 Decreasing the area in which a molecule diffuses will increase its effective concentra-
tion and the likelihood that it will encounter its receptor. For signals that are 
released from a particular source, shortening the distance from the source to the 
receptor will result in increased probability of binding to its receptor.

31c EM-P 90 97 0.68 The reactions of cellular respiration are not 100% efficient, and some of the energy 
stored in glucose is ultimately released as heat during chemical reactions.

12a SY-M 55 86 0.69 Most genes are regulated by a complex array of signaling pathways.
aCore concept (CC): EM, pathways and transformations of energy and matter; EV, evolution; IF, information flow, exchange, and storage; SF, structure and function; 
SY, systems. Subdiscipline (SD): E, ecology/evolution; M, molecular/cellular; P, physiology.
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While the GenBio-MAPS questions cover a wide range of 
topics, we could not achieve complete coverage of all the areas 
within biology. With respect to the context of each question 
stem, there is an overrepresentation of items in the molecular/
cellular subdiscipline relative to the physiology and ecology/
evolution subdisciplines. The relative number of items in these 
subcategories mirrors the proportion of students expressing pri-
mary interest in these subdisciplines as well as the common 
division of an introductory biology series into a molecular/cel-
lular semester and an organismal semester that covers physiol-
ogy and ecology/evolution. Certain critical areas of biology 
(e.g., immunology, neuroscience, animal behavior, bioinformat-
ics) do not have extensive representation due to their content 
being more specialized than expected of a general biology 
major. While the specific content of these courses may not be 
covered by GenBio-MAPS, we propose that conceptual under-
standing in these areas could still contribute to a student’s per-
formance on the instrument. If these courses focus their instruc-
tion on core concepts, students may transfer knowledge to the 
other subdisciplines represented on the instrument.

Substantive validity captures the degree to which subjects 
engage in the thought processes targeted by the instrument. We 
addressed this form of validity by conducting nearly 200 think-
aloud interviews in which students were asked to describe their 
thought processes behind each answer choice (Anders and 

Simon, 1980). These interviews captured cases in which stu-
dents misinterpreted a question or used undesired strategies in 
selecting answers. For example, we identified questions for 
which students picked the right answer for the wrong reason, 
used superficial features of a figure to correctly answer the 
question, or missed the question because of misinterpretation 
of a word that was unrelated to the biology concept. By refining 
questions iteratively based on these interviews, we increased 
the likelihood that the selected answers accurately represented 
student thinking.

One challenge to substantive validity stems from the possi-
bility that students may not put forth their best effort on a low-
stakes assignment completed online, outside of class. Previous 
work established that these conditions produce results nearly 
identical to those obtained when students complete an instru-
ment in class under similar stakes (Couch and Knight, 2015). 
Thus, while the conditions used in this study represent low 
stakes for individual students, we consider them adequate to 
elicit student participation and yield performances similar to 
what might be expected of students during class. On a related 
note, instructors may expect that students with little knowledge 
engage in purely random guessing due to the MTF format. 
However, evidence suggests that this perception does not align 
with student behaviors. Several items have percent correct val-
ues below 30% at the beginning of the introductory course 

TABLE 5. Items demonstrating lowest normalized differences sorted by core concept

Percent correct

Item CC-SDa

Beginning of 
intro series Advanced

Normalized 
difference Knowledge statement

02d EV-P 58 59 0.02 Mutations can increase the fitness of an organism.
08d EV-E 86 85 −0.08 A pathogen can have different effects in different subgroups of a species due 

to underlying genetic differences between the subgroups. Genetic 
differences in subgroups can also drive the divergent evolution of a 
pathogen.

15b EV-E 24 22 −0.02 Allele frequencies within a population fluctuate over time due to genetic drift, 
which is particularly pronounced in smaller populations.

45c SF-P 45 47 0.04 For two structures with the same volume, an irregularly shaped structure will 
have a greater surface area than a structure that is closer to spherical. 
Thus, for two structures with the same surface area, an irregularly shaped 
structure will have less volume than a structure that is closer to spherical. 
Structures that are closer to spherical provide the greatest amount of 
volume for a given surface area.

36d IF-M 22 24 0.03 Many genes involved in the formation of sex organs are located on auto-
somes.

61a IF-P 70 67 −0.09 Hormones are able to circulate throughout the body and permeate into target 
tissues.

12e EM-M 56 54 −0.05 Binding between two macromolecules is a reversible interaction whose 
frequency and duration is determined by the biochemical properties of the 
macromolecules and local environmental conditions.

33d EM-M 53 54 0.01 Small, nonpolar molecules, such as hormones, can readily cross through 
plasma membranes.

45a EM-P 28 30 0.03 Evapotranspiration from leaves draws water from the roots toward the leaves 
of a plant. This process does not require the plant to expend energy.

32b SY-P 26 30 0.05 Cellular receptors are normally either located within a cell or embedded in a 
cell membrane. Receptors circulating in the blood will not readily cross or 
become inserted into a membrane. Circulating receptors may bind to a 
signal but will not transduce the signal into a cellular response.

aCore concept (CC): EM, pathways and transformations of energy and matter; EV, evolution; IF, information flow, exchange, and storage; SF, structure and function; SY, 
systems. Subdiscipline (SD): E, ecology/evolution; M, molecular/cellular; P, physiology.
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series, suggesting that these items reflect student misconcep-
tions, as opposed to random guessing. Additionally, Bayesian 
response models of other MTF data have revealed that a ran-
dom-guessing parameter does not explain student responses 
(Brassil and Couch, unpublished data). Rather, when students 
have incomplete understandings, they still answer based on an 
item-specific rationale, which causes their responses to deviate 
from random distributions (Cronbach, 1941).

Structural validity refers to how groupings and interrelations 
between the different items on an instrument relate to the 
underlying domain. In the case of GenBio-MAPS, the five core 
concepts and three subdisciplines provided a priori organiza-
tional structures. CFA indicated that these structures do not pro-
vide additional explanatory power beyond a unidimensional 
model, suggesting that students perform similarly relative to 
one another across the core concepts and across the subdisci-
plines. Given these findings, we principally used the item align-
ments as a means to ensure breadth of item coverage across 
subdisciplines and core concepts. However, these subcategory 
scores may still provide useful information to departments, 
because they can highlight areas in which students struggle. 
Within the national data set, information flow proved to be the 
most challenging core concept across time points, which may 
stem from the dependence of these items on specific terminol-
ogy or the ability to think across different spatial scales or onto-
logical levels. For example, DNA has both a physical structure 
and information contained within its sequence of bases, and 
these dual natures can present challenges for students (Ferrari 
and Chi, 1998; Duncan and Reiser, 2007).

There are several reasons why student thinking may not 
divide neatly along the lines of the core concepts. First, the core 
concepts encompass the underlying deep features of a question, 
yet we do not know the extent to which students answer an 
item based on deep versus more superficial rationales. Indeed, 
experts tend to use deep question features, whereas novices 
tend to use these deep features to a lesser extent (Smith et al., 
2013). Although think-aloud interviews allowed us to decrease 
the chance that students would answer an item correctly based 
on spurious reasons, we did not have students identify the core 
concept addressed by each item and thus do not know whether 
students answered the items in the way intended by faculty 
who had aligned the items with the core concepts. Second, cer-
tain biological phenomena can relate to multiple core concepts. 
Thus, student understanding of one core concept may overlap 
with understanding of another core concept for that phenome-
non. For example, biological structures uniquely adapted to 
perform specific functions tend to arise through natural selec-
tion. Thus, the way students think about structure and function 
may be intimately connected to their understanding of evolu-
tionary processes. Third, most undergraduate biology programs 
have not specifically aligned their curricula to the core concepts, 
and instructors may not be explicit about the core concepts in 
their teaching, so students may have trouble connecting sepa-
rate phenomena that reflect the same deeper concept. For 
example, if an instructor is teaching about variation in the 
length of the loop of Henle in the kidney across species, he or 
she may not explicitly highlight this as an example of structure 
relating to function. If departments do not organize their curric-
ula according to the core concepts or make the core concepts 
explicit for students, then we would not necessarily expect stu-

dents to have distinct reasoning patterns for different core con-
cepts. Further research is needed to understand whether the 
core concepts represent distinct domains and whether student 
thinking aligns more with the core concepts in programs that 
have transformed their curricula. Finally, with respect to the 
subdisciplines, the questions were intentionally written to not 
require highly detailed subdisciplinary knowledge, so student 
performance may depend more on overall conceptual under-
standing of biology rather than the specific subdisciplines in 
which they have taken the most courses.

Messick’s validity framework also considers how generaliz-
able an instrument is beyond the immediate item set and study 
population. In part, generalizability considers whether perfor-
mance on the given items represents student understanding of 
the broader construct domain or whether an alternative set of 
items from the same domain would have yielded different 
results. The generalizability of GenBio-MAPS items stems from 
each core concept being tested by 27–41 items situated in a 
variety of biological contexts spanning the entire scale of bio-
logical organization. While contextual features of questions and 
items (organism, direction of change, etc.) may have influenced 
student responses to an individual item (Nehm and Ha, 2011; 
Heredia et al., 2016), the distribution of concepts across multi-
ple scenarios strengthens the instrument and capitalizes on the 
MTF format. Because each core concept is tested in many differ-
ent contexts, a student’s performance on a core concept is not 
determined by his or her familiarity with a single biological 
context.

Generalizability also pertains to the range of students 
involved in the initial development efforts and the extent to 
which the instrument would produce similar findings in other 
populations. During the question-development process, we 
attempted to maximize the diversity of student interview sub-
jects by recruiting students from courses at different levels at a 
diverse set of institutions in different geographical areas. We 
leveraged having a multi-institution team of researchers to 
interview nearly 200 students; this number greatly exceeds 
what has been done for previous concept inventories and com-
mercial tests, such as the AP Biology exam. Given the large 
scope of the instrument, this comprehensive effort was critical 
to ensuring that the questions would be interpretable by a 
broad range of biology majors. We also conducted pilot and 
final administrations of GenBio-MAPS at a wide variety of insti-
tution types, including community colleges. Taken together, 
the scope of the development process and final analyses sup-
port the use of this instrument at most undergraduate institu-
tions with general biology programs.

External validity considers the degree to which scores cor-
relate with other relevant measures. We found that Gen-
Bio-MAPS scores demonstrated convergence with administra-
tion time point and GPA, and these variables had the highest 
estimates in the linear models. This meets the reasonable 
expectation that students who are more advanced in a biology 
series or have achieved higher grades would perform better on 
the instrument. As many advanced courses also had smaller 
class sizes compared with introductory courses, it is possible 
that the effect of time point could be due in part to going from 
larger to smaller class sizes. However, we note that the effect of 
class size is partially accounted for in our model by the random 
effect for institution, because class size is generally related to 
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program enrollment. Interestingly, class standing (first-year, 
sophomore, etc.) had a much smaller effect than time point, 
suggesting that being in college for a longer period of time does 
not explain performance as much as advancement through a 
biology program.

Approaches to Using GenBio-MAPS to Assess 
and Improve a Curriculum
Despite widespread support for the curricular goals outlined in 
Vision and Change (AAAS, 2015), departments have had few 
choices for directly measuring student understanding of broad 
core concepts across a general biology major. As a program-
matic assessment instrument aligned with these core concepts, 
GenBio-MAPS addresses this need and can guide formative dis-
cussions within departments on how to improve their under-
graduate programs through several approaches.

GenBio-MAPS provides a wealth of information on student 
performance at the overall, core concept, subdiscipline, and 
item levels. Departments can use these results to identify areas 
of proficiency and deficiency throughout their programs and 
guide curricular changes to address problem areas. For exam-
ple, instructors teaching an introductory series could identify a 
challenging concept to incorporate at multiple points across the 
course series to help students build and refine their understand-
ing. Instructors who teach advanced courses could identify con-
cepts that remain challenging at the end of the introductory 
series so that these concepts can be revisited before moving on 
to more complex phenomena that build on these concepts. Fur-
thermore, this type of targeted thinking could inspire broader 
conversations at the department level about when and how 
often key concepts should be integrated across a program to 
ensure that students graduate with robust understandings.

As a measurement instrument, GenBio-MAPS provides a 
means for departments to establish baseline scores and deter-
mine the impact of curricular changes on student understand-
ing of core concepts. Departments could administer Gen-
Bio-MAPS before and after a major effort to realign their major 
with the Vision and Change core concepts in hopes that their 
efforts will yield improved outcomes. Departments may also 
wish to collect assessment data to ameliorate concerns that a 
controversial curricular change has a negative impact. For 
example, performance data could help diminish apprehensions 
associated with transforming an introductory course series to 
focus more on concepts than content, replacing traditional sin-
gle-topic labs with a yearlong course-based undergraduate 
research experience or shifting the required courses for a major. 
Importantly, this data-focused approach to curricular thinking 
overlaps with departmental requirements for institutional 
reporting, performance reviews, and accreditation (Beno, 2004; 
New England Association of Schools and Colleges, 2011).

Programmatic assessment can also be used by departments 
to understand how students perform based on certain demo-
graphic characteristics or participation in success programs, such 
as bridge experiences or learning communities (Ashley et al., 
2017). We found performance differences attributed to gender, 
race/ethnicity, language, and parental education. These results 
indicate that programs need to account for these variables when 
analyzing group performance, because group composition may 
change across time points and between cohorts. Furthermore, 
these results highlight the need for investigation at the program 

and national levels into why these groups perform differently 
(Eddy and Hogan, 2014; Wright et al., 2016) and how programs 
might alter their instruction to better serve the needs of all stu-
dents (National Research Council [NRC], 2011; President’s 
Council of Advisors on Science and Technology, 2012).

Finally, GenBio-MAPS could help facilitate transition of 
transfer students from 2-year programs to 4-year programs or 
from one 4-year institution to another 4-year institution. At the 
aggregate level, transfer students performed similarly to their 
peers. However, given that the introductory course curriculum 
typically differs across institutions, administering GenBio-MAPS 
specifically to transfer students at common transition points 
could help both 2- and 4-year programs identify specific areas 
to bolster to ensure posttransition success. This approach would 
be particularly informative for situations in which large num-
bers of students follow a relatively common pathway from one 
set of institutions to another (e.g., from a community college 
system to a university system) and could help guide conversa-
tions among institutions about curricular structures.

In administering GenBio-MAPS, large departments will 
likely have enough students to see statistically significant differ-
ences, while smaller departments may need to combine data 
over multiple years to achieve sufficient sample sizes. While 
each student sees only a subset of the questions, our results 
showing correspondence between classical scores and Rasch 
measures of person ability suggest that this question sampling 
strategy does not have a large influence on overall percent cor-
rect scores (although response modeling could address any 
potential concerns about a student seeing different questions 
across time points for longitudinal-study designs). To maximize 
student participation and motivation, we recommend, based on 
our experiences, that instructors provide students with partici-
pation credit for completing the instrument and convey to stu-
dents how the survey results will be used to improve under-
graduate biology instruction.

How to Obtain and Administer GenBio-MAPS
We have established an online portal (http://cperl.lassp 
.cornell.edu/bio-maps) where interested users can access and 
coordinate the administration of GenBio-MAPS and other 
instruments developed by our group (e.g., Molecular Biology 
Capstone Assessment, Phys-MAPS, EcoEvo-MAPS). This portal 
enables users to set up survey start and end dates, generates a 
unique Qualtrics link where students can take the assessment, 
and sends a list of participating students along with an aggre-
gated score report after the survey has closed. Users do not need 
a Qualtrics license to administer through this site. Users wishing 
to conduct research using GenBio-MAPS should contact the cor-
responding author for more information on data accessibility.
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