
CBE—Life Sciences Education  •  18:ar19, 1–11, Summer 2019	 18:ar19, 1

ARTICLE

ABSTRACT
Next-generation sequencing (NGS)-based methods are revolutionizing biology. Their prev-
alence requires biologists to be increasingly knowledgeable about computational methods 
to manage the enormous scale of data. As such, early introduction to NGS analysis and con-
ceptual connection to wet-lab experiments is crucial for training young scientists. However, 
significant challenges impede the introduction of these methods into the undergraduate 
classroom, including the need for specialized computer programs and knowledge of com-
puter coding. Here, we describe a semester-long, course-based undergraduate research 
experience at a liberal arts college combining RNA-sequencing (RNA-seq) analysis with 
student-driven, wet-lab experiments to investigate plant responses to light. Students de-
rived hypotheses based on analysis of RNA-seq data and designed follow-up studies of gene 
expression and plant growth. Our assessments indicate that students acquired knowledge 
of big data analysis and computer coding; however, earlier exposure to computational 
methods may be beneficial. Our course requires minimal prior knowledge of plant biology, 
is easy to replicate, and can be modified to a shorter, directed-inquiry module. This frame-
work promotes exploration of the links between gene expression and phenotype using ex-
amples that are clear and tractable and improves computational skills and bioinformatics 
self-efficacy to prepare students for the “big data” era of modern biology.

INTRODUCTION
The Human Genome Project and the subsequent advent of so-called next-generation 
sequencing (NGS) technologies have been the catalysts for an explosion of genom-
ics-related information that is having a profound effect on medicine and research. This 
information is often grouped with proteomics, metabolomics, and other large-scale 
biological data sets under the daunting moniker of “big data.” This change in the scale 
of biological data—in addition to how data are collected and processed—has created 
a need for novel teaching strategies that address these new technologies and the com-
putational methods by which they are analyzed.

Despite the necessity for improved quantitative skills as biological data become 
increasingly large and complex, traditional teaching methods that present biology as 
a distinct discipline independent of mathematics has in the past resulted in isolated 
groups of students, each specialized within their own field, who often have difficulties 
communicating across the perceived divide (Gross, 2000; Bialek and Botstein, 2004). 
In Vision and Change in Undergraduate Biology Education: A Call to Action, the 
American Association for the Advancement of Science (AAAS, 2011) and National 
Science Foundation argued that the competencies needed to teach students included 
1) the ability to interpret quantitative data and 2) the ability to understand the inter-
disciplinary nature of science. NGS, particularly RNA sequencing (RNA-seq), by its 
very nature, is cross-disciplinary and a useful tool to target these key competencies. 
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As such, developing laboratory/classroom exercises that 
include NGS data analysis should provide inspiration for estab-
lishing new undergraduate courses that combine computa-
tional skills with biology.

RNA-seq is an NGS-based method by which the entire pool 
of transcripts within a biological sample can be catalogued and 
quantified. For many eukaryotic organisms, this pool consists of 
tens of thousands of unique transcripts. To handle this scale of 
data, RNA-seq analysis often uses specialized programs that 
require some knowledge of computer coding (Nagalakshmi 
et al., 2008; Wilhelm et al., 2008; Trapnell et al., 2012). Signif-
icant challenges to teaching RNA-seq have been noted, in large 
part due to the likelihood that most educators lack the neces-
sary training themselves (Peterson et al., 2015). This may be 
particularly true at smaller universities that do not routinely 
conduct RNA-seq experiments. Various teaching tutorials and 
workshop initiatives aim to address this shortcoming 
(Buonaccorsi et  al., 2014; Makarevitch et  al., 2015; Peterson 
et  al., 2015; www.rnaseqforthenextgeneration.org), and with 
many data sets now available through public repositories such 
as the Sequence Read Archive at the National Center for Bio-
technology Information (Kodama et al., 2011) and prices for 
RNA-seq continuing to fall, the means to teach this material or 
even perform RNA-seq experiments in the undergraduate 
sphere is now within the intellectual and financial grasp of 
many educators (Buonaccorsi et al., 2014).

In addition to improving students’ quantitative skills, analy-
sis of RNA-seq data is a valuable instrument for reinforcing con-
cepts of information flow in biological systems (AAAS, 2011). 
Most undergraduate students majoring in biology understand 
the concept that genotype determines phenotype; however, 
they often struggle with describing the molecular mechanisms 
that bridge the gap between the two (Lewis and Kattmann, 
2004; Reinagel and Bray Speth, 2016). RNA-seq data provide a 
means to improve student understanding of how the informa-
tion stored in genes translates to observable changes in pheno-
type via alterations in gene expression. The use of RNA-seq data 
for this purpose may be particularly powerful when it is com-
bined with tangible wet-lab experimentation (Makarevitch and 
Martinez-Vaz, 2017).

Here, we describe the implementation of a rigorous, semes-
ter-long course-based undergraduate research experience 
(CURE) that combined RNA-seq big data analysis with wet-lab 
experimentation. These experiments tested student-derived 
hypotheses inspired by big data analysis. The positive effect of 
undergraduate research experiences on student performance 
and perceptions toward science has been well documented, the 
benefits of which also extend to historically underrepresented 
groups in the sciences (Kardash, 2000; Lopatto, 2007; Russell 
et al., 2007; Ellington et al., 2010; Jones et al., 2010). Tradition-
ally, however, such experiences were limited to individual stu-
dent internships in research laboratories. CUREs are a means to 
scale this experience to the entire classroom and can yield 
learning gains similar to those of traditional internships 
(Lopatto et al., 2008). CUREs are generally defined as having 
five major properties: the use of the scientific process, discovery, 
relevance to the field, collaboration, and iteration (Auchincloss 
et al., 2014). CUREs foster student participation in the scientific 
process, which may include the conception and testing of origi-
nal research hypotheses, and allow students to experience the 

failures and triumphs of the scientific endeavor. They have been 
argued as a means to overcome inequities in engaging a broad 
student population in original research (Bangera and Brownell, 
2014) and can promote in students a greater sense of belonging 
to the larger scientific community (Shaffer et al., 2014).

While other published RNA-seq teaching descriptions have 
highlighted the possibility of original, student-led follow-up 
computational studies using the same or other RNA-seq data 
sets (Makarevitch et al., 2015; Peterson et al., 2015), ours is one 
of the first that we know of to combine RNA-seq analysis with 
student-led follow-up studies in a living system. This approach 
may better integrate the “abstract” data analysis with more tra-
ditional concepts held by the students of what biology is and 
how it is practiced, and it may improve student understanding 
of information flow from genes to phenotype. Assessment activ-
ities, student course evaluations and comments, pre- and post-
class perception surveys, and a postclass assessment quiz all 
suggested that students acquired knowledge and confidence in 
programming skills and an understanding of NGS analysis. We 
provide herein our lesson plans and in-class tutorials to be mod-
ified as needed by other interested instructors. Depending on 
institution resources and time, the wet-lab component of our 
course can be easily modified to a shorter inquiry-based module 
that complements the big data RNA-seq analysis.

METHODS
Human Subjects Protocol
This project was exempted by the University of San Diego 
(USD) Institutional Review Board (IRB-2019-46).

Course Description and Class Enrollment
USD is a small, private, liberal arts college. In total, 5605 under-
graduate students were enrolled full-time in the 2017–2018 
academic year. Students majoring in biology must fulfill a 
research requirement. To do this, most students enroll in a 
semester-long Biology 490: Research Project class (4 credits). 
Each section enrolls eight senior students, and each covers dif-
ferent topics and scales in biology depending on the research 
interests of the instructor. Generally, three or more research sec-
tions are offered per semester that emphasize molecular, physi-
ological, or ecological/population biology. The main objectives 
for all Biology 490 sections are for students to design and exe-
cute research experiments, generate original data, and present 
their results at an intradepartmental poster session. Later, these 
same data are used as the basis for a 20- to 25-minute depart-
mental seminar that students deliver orally as part of the 
required Biology Capstone Seminar course. Each section of Biol-
ogy 490 meets twice per week for 4 hours, with additional non-
scheduled hours as needed.

Our course was offered in the Fall of 2017 as one of three 
different sections of Biology 490. We titled our section “Big 
Data in a Post-Genome World.” Our section was unusual in that 
it was taught by two adjunct professors (C.P. and S.M.) with 
complementary strengths in teaching bioinformatics and plant 
physiology in a liberal arts college environment. Students in our 
section included five females and three males. These students 
had diverse backgrounds that impacted implementation of the 
course. All had already taken genetics, ecology, research 
methods, and introductory biology courses as prerequisites for 
Biology 490. However, while all of our students had some 



CBE—Life Sciences Education  •  18:ar19, Summer 2019	 18:ar19, 3

Big Data to the Bench for Undergraduates

familiarity with basic molecular biology techniques, only one 
had previous experience with quantitative reverse transcriptase 
(qRT) polymerase chain reaction (PCR), two had prior experi-
ence with the coding language R from a previous biostatistics 
class, and none had ever undertaken an analysis of NGS data. 
In addition, only two students had exposure to plant physiology 
or botany, so exposure to this material and the relevant labora-
tory procedures was included in the course curriculum and 
taught as part of or in parallel with lecture and computational 
modules.

Choice of the Model System
For our course, we chose plants as the model system. The 
reasons for this were multiple, many of which have been 
highlighted by other educators (Ebert-May and Holt, 2014; 
Makarevitch and Martinez-Vaz, 2017). First, seeds and reagents 
for research in plant systems are readily available from a variety 
of repositories. These are supported by excellent databases of 
genomic information and an abundance of primary literature. 
Second, equipment needed to grow plants is inexpensive and 
accessible at most schools. While many of the experiments per-
formed by our students took advantage of more elaborate and 
controlled tissue culture methods, seeds can also be germinated 
just as well on soil or filter paper. Third, experiments with 
plants avoid many ethical concerns. Fourth, when performing 
experiments on the fast-growing seedlings of the model plant 
Arabidopsis thaliana (Arabidopsis) or the oilseed/vegetable 
crop species Brassica rapa (Brassica), results can be generated 
very quickly. This is important given the time constraints of 
most undergraduate courses. Arabidopsis seeds for educators 
are available from the Arabidopsis Biological Resource Center 
at the Ohio State University (Columbus, OH), while different 
sources provide Brassica seeds. Brassica varieties used by our 
students included those already in wide circulation among edu-
cators for teaching genetics; for example, the fast-cycling Wis-
consin Fast Plants from Carolina Biological and their related 
self-compatible varieties (https://fpsc.wisc.edu/). Finally, it 
has been recognized that there is a need to improve student 
perceptions of plant biology. Despite the fact that plants are 
fundamental for life on this planet as we know it, and that the 
National Research Council (2009) has identified the develop-
ment of food plants that grow across changing environments as 
one of four key challenges facing the next generation of biolo-
gists, many students have a distinct disinterest in plant biology 
and prefer to study animals (Wandersee, 1986; Marbach-Ad, 
2004). This phenomenon is known as “plant blindness” 
(Wandersee and Schussler, 1999). Improving student percep-
tions toward plants might be achieved through using plants as 
classroom models to learn general biological principles 
(Ebert-May and Holt, 2014). Indeed, while plants were our sys-
tem of choice for all the reasons described, we did not necessar-
ily consider this a “plant biology” course. To highlight the uni-
versal applications of NGS technology, we deliberately chose 
non-plant papers for in-class primary literature readings; were 
broad in our discussions of how NGS technologies are imple-
mented; used human ethical questions as hooks to capture stu-
dent interest (Loike et al., 2013); and invited guest lecturers 
from other fields, including a research scientist and a practicing 
prenatal genetic counselor who advises patients on test results 
generated by NGS platforms.

Learning Outcomes
The main core learning outcomes were similar across all sec-
tions of Biology 490. It was expected that, after this course, 
students would be able to 1) design and conduct independent 
research projects, 2) demonstrate a command of the scientific 
literature associated with their research topics, 3) show mas-
tery of techniques related to their research, and 4) articulate 
scientific information orally and in writing. In addition to these 
core learning outcomes, at the completion of our big data sec-
tion, students were also expected to be able to 5) explain NGS, 
that is, what it is, how it is performed, and its various applica-
tions; 6) analyze an RNA-seq big data set to find differentially 
expressed genes and formulate hypotheses in light of the rele-
vant primary literature; 7) demonstrate an understanding of 
basic plant anatomy and growth responses to environmental 
stimuli; and 8) demonstrate an ability to independently plan, 
execute, and document phenotypic and/or molecular–genetic 
experiments with plants to evaluate gene expression 
hypotheses.

Course Implementation
A summary of all 16 weeks of in-class activities and graded 
assessments can be found in Table 1 and Figure 1. Class periods 
included lectures, guest lectures, journal club readings, bioin-
formatics analyses, R programming tutorials, and wet-lab work, 
among other activities. We provide our in-class tutorials and 
worksheets for most of these activities in the Supplemental 
Material. These are intended to complement instructor-led dis-
cussions and lectures on NGS methodologies. Students were 
required to have access to their own laptops or institutional 
computers on which they installed the necessary software (see 
the Supplemental Material). Wireless Internet access was pro-
vided in class. A subscription to The Arabidopsis Information 
Resource (TAIR; www.arabidopsis.org) was provided to the 
class free of charge for educational purposes.

Broadly, the class was divided into two lab modules, one 
computational and the other a wet lab, with significant overlap 
between the two. Group work and discussion was strongly 
encouraged at all steps; however, students were expected to 
plan and execute their own independent experiments within 
any given group. Assessment activities included both individual 
and pair grades.

Computer Lab
The Arabidopsis genome contains more than 25,000 coding 
genes (Arabidopsis Genome Initiative, 2000). RNA-seq can be 
used to assess the expression level of each of these genes simul-
taneously by collecting millions of sequencing reads of cDNA 
template generated from the RNA from an Arabidopsis tissue 
sample. The relative number of reads that match a given gene 
is used as a measure of transcript abundance (Nagalakshmi 
et al., 2008; Wilhelm et al., 2008). Such RNA-seq data sets are 
typically extremely large and present a daunting challenge to a 
novice student: How do you make sense of tens of millions of 
reads that originate from tens of thousands of genes to find 
biologically important changes in gene expression across differ-
ent tissue samples? Students were guided through all aspects of 
this big data analysis using a combination of free, online cyber-
computing infrastructure provided by CyVerse (previously 
iPlant) and local R-based coding on student or departmental 
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laptops (Goff et al., 2011; R Core Team, 2015). This approach 
isolated the largest data files and computational steps to remote 
servers and avoided many of the difficulties encountered by 
others in teaching the Linux command line (Peterson et  al., 
2015). However, unlike other approaches to teach RNA-seq—
notably the much-simplified Green Line of the DNA Subway 
developed by the DNA Learning Center (https://dnasubway.
cyverse.org)—our course still guided students through all steps 
of data analysis and genome read alignment, with an emphasis 
on graphical interpretations of the data and biological meaning. 
Our analysis pipeline is shown in Figure 2A. Quality assessment 
of reads using FastQC, alignment to the genome with TopHat, 
and counting reads over a given gene with HTSeq were per-
formed using the Discovery Environment in CyVerse (Trapnell 
et al., 2009; Goff et al., 2011; Anders et al., 2014). The longest 

computational steps (read alignment and counts) were set to 
run as homework exercises to be ready for the next class period.

One of the best ways to make RNA-seq analysis feel less 
abstract is to visualize it. To do this, students completed an 
in-class tutorial in pairs using the Integrated Genome Browser 
to view read alignments to the genome (Freese et al., 2016). 
This tutorial was intended to serve as a discussion platform of 
the Arabidopsis genome, gene nomenclature in Arabidopsis, and 
how to use TAIR as a resource for finding information on any 
given gene. For this tutorial, we directed students to genetic 
intervals that included genes with altered gene expression level 
across environmental treatments, whose functions matched 
phenotypic data that the students had collected (Figure 2, B and 
C). Implementing this particular tutorial required downloading 
a large representative bam alignment file and its index for both 

a control and an environmental treatment 
sample. These files were provided for stu-
dents on an external USB drive. Otherwise, 
students needed only to download the very 
small count files generated by HTSeq for 
downstream analysis in R. Alternatively, 
tutorials provided in CyVerse explained 
how to acquire a URL for the bam align-
ment file for use with the Integrative 
Genomics Viewer (Robinson et al., 2011).

edgeR was used for identification of dif-
ferentially expressed genes (Robinson 
et al., 2010). After an in-class overview of R 
and the R Studio environment, students 
completed an in-class guided R tutorial 
intended to cover all the basic functions 
needed in R: reading and writing tables, FIGURE 1.  Summary of the schedule of class activities.

TABLE 1.  Schedule of class activities

Week(s) Class activities Graded assessment

1 Lecture: The scientific method in the context of “big data”
2 Lecture: Sanger sequencing; NGS technologies (Illumina); traditional gene expression analysis vs. 

RNA-seq; introduction to plants and plant anatomy
Journal club: “What became of the Neanderthals? An introduction to NGS” (Green et al., 2010)
Wet lab: Plant culture techniques and growth medium preparation

3 Lecture: Introduction to Arabidopsis; RNA-seq experimental design
Guest lecture: NGS in the clinic and genetic counseling.
Journal club: “How does gene expression change during human embryo development? Visualizing 

RNA-seq results” (Xue et al., 2013)
Computer lab: Introduction to CyVerse; aligning sequencing reads
Wet lab: Preparing light chambers; growing plants to test effect of light environment.

4 and 5 Computer lab: Introduction to R; differential gene expression analysis
Wet lab: Scoring the effect of light on plant phenotype

6 Lecture: Performing qRT-PCR
Guest lecture: NGS applications in research (ChIP-Seq)
Computer lab: GO analysis and making sense of the data
Discussion: Formulating hypotheses and project selection

R script files

7 Peer review and finalization of research proposals
8–12 Wet lab: Supervised independent research Literature review and written 

proposal; theory exam
13 Completion of research and poster preparation
14 Poster feedback; peer review; finalization; printing
15 Departmental poster presentation Poster presentation
16 No class Gene expression analysis with 

R assignment; lab notebooks
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column and row arithmetic, statistical testing, and graphing and 
indexing (see the Supplemental Material and the accompanying 
data spreadsheet available through our class materials on 
CyVerse: http://datacommons.cyverse.org/browse/iplant/
home/shared/USD_teaching_materials). As many of our stu-
dents were interested in ecology, for this tutorial we used a data 
set describing the patterns of movement of local ocean wildlife, 
with personal instructor stories and images (including a 
shark-eating octopus!) to aid student engagement and friendly 
discourse with the instructors. From here, students worked in 
pairs through a series of tutorials to find differentially regulated 
genes (see the Supplemental Material). Students were allowed 
to work through each tutorial at their own pace, but were not 
given the next tutorial until all students were ready. This ensured 
that no particular group got too far ahead and that in-class ques-
tions and the resulting discussions were relevant to all students. 
At the completion of the tutorials, students submitted their R 
scripts for assessment. As a guide to instructors, we provide in 
our class materials on CyVerse an R markdown and html file for 
use with our instructor-led example data set.

Wet Lab
Students in our class analyzed gene expression in plants in 
response to environmental change. Accompanying this analysis, 
all students were tasked early during the semester with growing 
Arabidopsis plants and measuring basic phenotypic responses to 
the environmental condition from which the RNA-seq data 
were generated. This approach is similar to that reported by 

FIGURE 2.  Student analysis of gene expression and phenotype of shade-treated Arabi-
dopsis seedlings. (A) Flowchart of RNA-seq analysis and follow-up experimentation 
performed by students. Steps in red were completed using the Discovery Environment in 
CyVerse. (B) Student photograph showing the phenotype of 10-day-old Arabidopsis 
seedlings grown in white light or shade (5 days white light + 5 days low R:FR light). Note 
increased elongation growth of the hypocotyl (hyp) in shade. (C) Student worksheets were 
used to correlate the hypocotyl phenotype with increased expression of genes involved 
with auxin growth hormone signaling. Shown is cDNA sequencing reads from white-light-
treated and shade-treated Arabidopsis seedlings, aligned over the YUC2 gene (boxes, 
exons). YUC2 codes for an enzyme involved with auxin biosynthesis (Mashiguchi et al., 
2011). Students noted the increased number of reads in the shade-treated plants.

other educators using maize (Makarevitch 
et al., 2015). For example, we simulated 
shade by reducing the ratio of red (R) to 
far-red (FR) light (see the Supplemental 
Material). Shade treatment results in large 
phenotypic effects on Arabidopsis and 
related plant species that are easily scored 
by students using basic instrumentation 
(Figure 2B). Our protocols for growing 
plants in tissue culture or on soil are avail-
able in the Supplemental Material. FR 
light was provided using fixed-wavelength 
LED bulbs (LumiGrow ECC-FR or PAR-
source PowerPAR Far Red LED bulbs).

By the end of the RNA-seq analysis, stu-
dents had generated lists of differentially 
regulated genes in Arabidopsis in response 
to the same environmental treatment, 
made various graphs to show these 
changes, performed a gene ontology (GO) 
enrichment analysis using PANTHER to 
look for pathways that may be overrepre-
sented among the differentially expressed 
genes (Mi et  al., 2013), and investigated 
the function of interesting genes using 
TAIR. In-class tutorials guided students to 
look for likely causal links between gene 
expression changes and phenotypes that 
could be explored further. On the basis of 
these observations, students were then free 
to choose their own independent follow-up 
studies using plants. This was in part to ful-

fill department objectives that students taking Biology 490 gen-
erate original data. In addition, we thought it was important that 
students choose their own original hypothesis to test in planta on 
the basis that some autonomous control over the direction of 
their projects would lead to the positive attributes associated 
with project ownership (Hanauer et al., 2012). With such large 
data sets from which to draw inspiration, and as a consequence 
of this approach, student projects were diverse and depended on 
individual student interests. Most involved finding homologous 
gene sequences for interesting genes in a plant species other than 
Arabidopsis using online databases. For example, five of eight 
students chose to test a hypothesis using the vegetable and oil-
seed crop species B. rapa (e.g., see Example Project 1 in the Sup-
plemental Material). This may reflect that students find crop 
species more immediately relevant than Arabidopsis. Students 
then designed qRT-PCR experiments to detect gene transcripts in 
the novel species. Our protocols for RNA extraction, cDNA syn-
thesis, primer design, and qRT-PCR measurements of gene 
expression are provided in the Supplemental Material. As an aid 
to other educators, we also provide therein tutorials for the study 
of plant responses to shade and two examples of individual stu-
dent projects to demonstrate the quality and scale of the projects 
students completed during the semester, and the methods used.

RNA-Seq Data
Students analyzed one of two different RNA-seq data sets 
reporting changes in gene expression in Arabidopsis to two dif-
ferent environmental stimuli. These data sets were generated 

http://datacommons.cyverse.org/browse/iplant/home/shared/USD_teaching_materials
http://datacommons.cyverse.org/browse/iplant/home/shared/USD_teaching_materials
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on the Illumina platform (stranded mRNA libraries, single-end 
sequencing, 50 base reads). One of these data sets was of 5-day-
old Arabidopsis seedlings following a 4-hour low-R:FR light 
treatment (Procko et al., 2016) and is the focus of this paper. 
The other data set is currently unpublished, but was similar, in 
that it was generated from Arabidopsis seedlings responding to 
a light treatment, specifically, high light. To avoid confusion 
over batch effects, students analyzed experimental and control 
duplicates from RNA samples harvested on the same day only. 
For instructor demonstrations, a third RNA-Seq data set report-
ing changes in gene expression in 3-day-old Arabidopsis 
seedlings in response to 1 hour of 10 μM abscisic acid (ABA) 
treatment was used (Song et al., 2016). ABA is a plant hormone 
involved with mediating responses to drought and other abiotic 
stressors. Sequencing read files can be found at the Gene 
Expression Omnibus (accession numbers GSE79881 and 
GSE80568). For ease of use by other instructors, we have also 
made the relevant files for ABA and low-R:FR shade responses 
publicly available on CyVerse (http://datacommons.cyverse 
.org/browse/iplant/home/shared/USD_teaching_materials).

Plant Strains
Arabidopsis strains used in our class were Col-0 (wild type), 
phyB-9 mutant, and gi mutant (Salk_092757). Brassica rapa 
strains used were R-o-18 (yellow sarson); FPsc, a rapid-cycling 
self-compatible variety; and the FPsc phyB mutant ein194 
(https://fpsc.wisc.edu).

Assessment
A challenge of bioinformatics courses is the design of quality 
assessment tools, in part due to the disparate methods of bioinfor-
matics and the rapid progress in the field (Campbell and Nehm, 
2013; Magana et al., 2014). We designed formative assessment 
activities to fulfill departmental requirements that students taking 
Biology 490 undertake and present an independent research 
project. Additional activities tested cognitive and psychomotor 
skills specific to our section of the course, namely RNA-seq analy-
sis and computer coding. We did not administer a final cumula-
tive exam, but rather assessed our learning objectives by student 
submission of R files, a short midterm theory exam focused on 
NGS and how these big data sets are used, a final R assignment, 
a written literature review and project proposal, a poster presen-

tation, lab performance, and a lab manual documenting experi-
mental design and implementation (Table 2).

There are few published assessment tools to evaluate student 
learning of RNA-seq theory and its analysis (Makarevitch et al., 
2015). To assess NGS theory, we administered an in-class mid-
term exam (see the Supplemental Material). Questions were 
written by the instructor (C.P.) most knowledgeable in the field 
and actively using NGS methods in their research and were 
edited by S.M. and others to improve student readability. The 
exam was not intended to be difficult, and no student took lon-
ger than 1 hour to complete it. Rather, in addition to the recall 
and description of facts, we tested higher-order cognitive and 
critical-thinking skills by asking our students to apply their 
knowledge to previously unseen sets of mock data and to evalu-
ate and make predictions based on these data (Bloom et  al., 
1956; Crowe et al., 2008). Our small class size made it feasible 
to administer this exam using mostly short-answer, constructed 
response–style questions, which are better suited to assessing 
student creativity and critical thinking than multiple choice 
(Martinez, 1999). In addition, the inclusion of constructed-re-
sponse questions on exams has been demonstrated to correlate 
with study behaviors that are more cognitively active and in 
which the interrelationships of facts are emphasized (Stan-
ger-Hall, 2012). Students were prepared for these exams and the 
style of questions by in-class discussions and examinations of 
selected journal club papers in which we broke down figures 
within papers to understand how RNA-seq data are presented 
and what hypotheses they can test.

We strongly argue that the only way to assess student profi-
ciency in RNA-seq analysis using the coding language R is to do 
it: to write, run, execute, and debug code to achieve a particular 
goal. To this end, not only did we require students to submit their 
R script files from the in-class tutorials, but we also administered 
a final take-home big data coding assignment in lieu of a cumu-
lative exam or final written report (see the Supplemental Mate-
rial). This assignment required students to download a list of 
gene expression values and to manipulate the data to draw 
graphs and form conclusions. While we believe that coding is an 
active endeavor and that discussion with classmates is some-
thing to be encouraged, to ensure some independence on the 
assignment, we had each student work with one of five different 
gene lists, with each list representing thousands of genes from 

TABLE 2.  Learning outcomes and associated assessment tools

Learning outcome Graded assessment

1. Design and conduct an independent research project. Literature review and written proposal; participation and lab 
performance; lab notebook

2. �Demonstrate a command of the scientific literature associated with 
research topic.

Literature review and written proposal

3. Show mastery of techniques related to research. Participation and lab performance; lab notebook
4. Articulate scientific information orally and in writing. Literature review and written proposal; poster presentation
5. �Explain NGS: what it is, how it is performed, and its various 

applications.
Techniques and theory exam

6. �Analyze an RNA-seq data set to find differentially expressed genes and 
formulate hypotheses in light of the relevant primary literature.

R script and bioinformatics analyses; gene expression with R 
assignment

7. �Demonstrate an understanding of basic plant anatomy and growth 
responses to environmental stimuli.

Literature review and written proposal; poster presentation

8. �Demonstrate an ability to independently plan, execute, and document 
phenotypic and/or molecular–genetic experiments with plants to 
evaluate gene expression hypotheses.

Participation and lab performance; lab notebook

http://datacommons.cyverse.org/browse/iplant/home/shared/USD_teaching_materials
http://datacommons.cyverse.org/browse/iplant/home/shared/USD_teaching_materials
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one of the five Arabidopsis chromosomes. Our focus was to award 
completion of the activity, and, as such, all students started with 
a grade of 100% for assignment submission, with percentage 
points deducted for inaccuracies based on severity. “Severity” 
was a measure with some subjectivity, as it was impossible for us 
to predict all the ways a student might go wrong. For example, a 
simple error wherein a student erroneously counted a header 
row of a table as a gene row lost only 1 percentage point, while 
an error that confused values of gene expression (in the form of 
read counts per million, or cpm) with fold change was deemed a 
greater conceptual mistake and penalized more.

Assignment essays in the form of a literature review are also 
useful tools to assess higher-order cognitive-thinking skills and 
are tools that can encourage students to employ deep-learning 
strategies that try to integrate facts and course components into 
a higher understanding (Scouller, 1998). We challenged stu-
dents to review and evaluate a field of literature pertinent to 
their proposed experiments and used this tool as a means to 
evaluate higher-order cognitive skills such as synthesis and 
evaluation (Bloom et al., 1956; Crowe et al., 2008). A depart-
mental grading rubric was provided to highlight our desire for 
students to synthesize the literature to produce relevant, inter-
esting scientific “stories” that looked for gaps in the field and 
justified their proposed wet-lab experiments (see the Supple-
mental Material). In addition to this activity, a further opportu-
nity to evaluate their own work was then provided in the form 
of a culminating, open departmental poster session that 
included presentations by students from other Biology 490 sec-
tions in addition to our own. Grading for posters followed a 
standard departmental rubric (see the Supplemental Material). 
To avoid subjective bias in grading the literature review and 
poster presentation, these items were rated by both class 
instructors and agreement was reached as to where a student’s 
effort fell within the grading rubric. A consensus through delib-
eration was reached in the case of instructor disagreement. Our 
small class size also allowed for students to challenge grades 
with reason for re-evaluation by one or both instructors.

Depending on the research environment, lab notebooks take 
many different forms and increasingly include collections of 
digital data as well as handwritten notes. Thus, the only require-
ment for the lab notebooks was that students needed to provide 
descriptions of their experiments so that an educated observer 
would be able to replicate all necessary components and a legi-
ble record of their results in conjunction with the necessary dig-
ital files. A grade of “excellence” indicated the lab notebook 
fulfilled these requirements, while a “satisfactory” grade or 
lower reflected that a student might have omitted certain details 
of the experiment or descriptions of the data might only have 
been interpretable by the student. These grades and “lab perfor-
mance” (admittedly a rather subjective measure of commitment 
to task) were also determined through discussion by both 
instructors to minimize bias and improve reliability and consis-
tency. While we reported feedback to students on all aspects of 
their grades and were vocal in our expectations at the start of 
the semester and throughout, future iterations of the course 
could be improved by providing a written rubric of our expecta-
tions for lab performance in particular. However, some subjec-
tivity cannot be eliminated.

In addition to our graded activities, we also sought to assess 
the learning of our students (n = 8) by comparing them against 

those of other Biology 490 sections or students taking research 
internships (n = 21). Owing to in-class time constraints, this 
consisted of using a brief, multiple-choice quiz consisting of 10 
questions that mostly assessed factual recall (see the Supple-
mental Material). This quiz was executed 3 months after 
course completion by sampling graduating seniors taking the 
Biology Capstone Seminar course and did not form a part of 
any student’s grade. Quiz questions covered the scientific 
method—which we argued all students should have learned in 
lower-level classes and as part of their particular research 
experience—as well as questions that might be more specific 
to our particular section of Biology 490–Research Project: gene 
expression, genome evolution, and RNA-seq theory. Questions 
were largely taken or modified from other reported assessment 
quizzes (Couch et al., 2015; Makarevitch et al., 2015).

Finally, we were also interested in monitoring student per-
ceptions and bioinformatics self-efficacy. This we did using anon-
ymous pre-and postclass questionnaires (see the Supplemental 
Material) and student write-in comments on class evaluations.

RESULTS
Students came into the course with minimal experience in cod-
ing, and none in big data analysis (see Methods). Multiple forms 
of assessment were used to track student proficiency in these 
topics and the associated wet-lab experimentation, including a 
written report, poster presentation, and submission of R script 
files and lab notebooks (see Methods). All students successfully 
completed the R coding tutorials and assignment, and all scored 
grades of “excellence” for their culminating poster presenta-
tions, which demonstrated their ability to integrate the RNA-
seq data with their in planta experiments in poster format and 
sufficiently communicate this material to others (Table 3).

As described earlier, we also executed a short, 10-question 
factual-recall postclass quiz covering various aspects of our 
course (see Methods, Supplemental Table 1, and the Supple-
mental Material), in which we compared our students with 
seniors who were enrolled in other Biology 490 sections or, in 
lieu of this, had completed research internships. We reasoned 
that our comparison group would control for general knowl-
edge of a USD senior student majoring in biology. Initially, how-
ever, we were surprised to see that our students performed only 
marginally better on this quiz than the control group (74 ± 5% 
vs. 65 ± 3% [mean ± SE]; not significant, Wilcoxon-Mann-Whit-
ney test). This might reflect the limitations of our small sample 
size (due to the fact that USD is a small university with small 

TABLE 3.  Student scores

Activity
% of overall 

grade Mean scorea

Participation and lab performance 20 88.6
Literature review and written proposal 20 85.6
Poster presentation 20 95.4
R script and bioinformatics analyses 10 95.4
Lab notebook 10 87.5
Gene expression with R assignment 10 96.7
Techniques and theory exam 10 88.2
aMean score represents the mean across all students in the class, as a value out of 
100: >90 represents a letter grade of “A” (excellence), 80–90 represents a “B” 
(satisfactory), and 70–80 represents a “C.”
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classes) and the limited number of questions in our postclass 
quiz due to time constraints. However, we noticed that our stu-
dents performed surprisingly poorly on the few questions 
devoted to the scientific method (questions 1–3), in which we 
had expected all students who had undertaken a research expe-
rience to perform at least equally well. This might indicate that 
other sections of Biology 490 emphasized these skills and 
hypothesis-driven science more than we did, partly on our 
assumption that students already had a strong knowledge of the 
scientific method and the definition of a hypothesis before tak-
ing our class. This might be rectified in future iterations of this 
course by emphasizing the role of RNA-seq as a hypothesis gen-
erator within the traditional context of the scientific method. On 
the remaining seven questions pertaining to molecular genetics, 
genome evolution, and molecular techniques, which are ideas 
all relevant to either RNA-seq theory or the accomplishment of 
our students’ research projects, our students significantly out-
performed others (82.1 ± 0.06% vs. 63.9 ± 0.04% [mean ± 
SEM], p < 0.05, Wilcoxon-Mann-Whitney test). The question 
that showed the greatest differential between the two groups 
was the only question pertaining directly to RNA-seq (question 
10), of which seven of our eight students answered the question 
correctly versus only seven of 21 students from the control 
group (p < 0.05, Fisher’s exact test).

On pre- and postclass perception surveys designed to test 
changes in self-efficacy, students self-reported increased confi-
dence using coding and bioinformatics tools to address biologi-
cal questions (Table 4). Students also showed a slight but non-
significant increase in their positive feelings toward molecular 
genetics and genomics, which might reflect already high student 
interest in these topics before completing the class and/or our 
small n value. While these self-efficacy surveys were encourag-
ing, they hide some student frustration. Student write-in com-
ments on class evaluations ranged from extremely positive 
(“Best course at USD”!) to some feeling “overwhelmed” by R. 
We reviewed student comments and identified those that 
appeared most positive and most negative, and we present these 
in Table 5 to show the range of feelings students expressed 
about the course. In addition, three of eight students felt that the 

midterm exam was unnecessary in the context of the number of 
other assessment activities, and two reported that the “workload 
(homework, papers, exams, etc.)” was “too demanding.” Five 
students felt that the workload was “about right,” and one stu-
dent wavered in-between. By contrast, 14 of 15 students queried 
from other Biology 490 sections felt that the workload of their 
section was “about right,” and only one judged it “too demand-
ing” (p = 0.10, Fisher’s exact test). These thoughts might be 
reflected in some negative feelings toward the time spent on 
wet-lab work in our section, albeit balanced by other students 
who “enjoyed” the novelty of the research experience (Table 5).

DISCUSSION
A challenge for biology departments—particularly at small 
undergraduate institutions like USD—is to teach students quan-
titative big data biology that reflects the current state of the life 
sciences. Our anecdotal experience suggests that students are 
often happy to discuss the ethical issues surrounding this new 
era of genetic information, yet have minimal understanding of 
the technologies that have brought about this revolution and 
how they are implemented. Here, we describe the design and 
implementation of a CURE that teaches big data NGS concepts 
and analysis using RNA-seq, from which students integrate this 
analysis with in planta observations and hypothesis testing. 
Student data were presented to the department in the form of a 
poster session and later capstone seminar, and some student 
experiments will continue to be followed in a research labora-
tory setting.

Our approach to teaching RNA-seq lies somewhere between 
the Green Line of DNA Subway (https://dnasubway.cyverse 
.org), which was developed to ease educators into introducing 
RNA-seq to the classroom, and the more advanced tutorials 
developed by the Genome Consortium for Active Teaching 
using Next-Generation Sequencing (GCAT-SEEK; Peterson 
et al., 2015). The Green Line is the easiest approach, but, while 
useful for educators facing steep time constraints, limits user 
control over the data and confines the output to a series of pre-
determined graphs and spreadsheets, pushing much of the 
analysis into a “black box” (Makarevitch and Martinez-Vaz, 

TABLE 4.  Mean pre- and postclass scores for bioinformatics self-efficacy

Item Preclassa Postclassa p valueb

I am comfortable with statistical analyses in biology. 2.625 3.875 0.029
I am knowledgeable in computer programming. 2.25 3.375 0.026
I can use bioinformatics tools to answer biological questions. 2.5 4.125 0.00093
Molecular genetics and genomics excite me! 3.875 4.3125 0.19
I am likely to use R in the future for data analysis. NAc 3.0625 NAc

aStudents anonymously self-reported levels of agreement to each item statement. The response format was: strongly disagree (coded 1), disagree (2), neutral (3), agree 
(4), and strongly agree (5). Mean scores are shown.
bSignificance was determined by Wilcoxon-Mann-Whitney test.
cNA, not applicable. This question was asked only at the completion of the class when all students had acquired some knowledge of R coding.

TABLE 5.  Examples of postclass student comments

Class component Student comments

General/computer lab Positive: “Best course at USD; learned the most.”
Negative: “We went through R too fast and it was overwhelming.”

Wet lab Positive: “I enjoyed the research that we did and the fact that it is the first time being done at USD.”
Negative: “Research requirement … requires too much class time as well as time out of class.”

https://dnasubway.cyverse.org
https://dnasubway.cyverse.org
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2017). Furthermore, learning to manipulate large sets of bio-
logical data using coding languages such as R is a valuable 
learning objective unfulfilled by the Green Line. By contrast, 
tutorials on the other end of the spectrum provided by GCAT-
SEEK require Linux command line skills in addition to R, and 
significant teacher investment in class preparation. By using the 
Discovery Environment through CyVerse in combination with 
R, we have deliberately avoided the complexities of running 
analyses through the Linux command line, while still emphasiz-
ing the need to learn some coding for big data analysis.

Other published approaches to teaching RNA-seq have 
encouraged students to computationally test preformed hypoth-
eses using the data sets analyzed in class or to test follow-up 
hypotheses computationally with the same or other data collec-
tions (Makarevitch et al., 2015; Peterson et al., 2015). Ours is 
one of the first that we know of to combine computational anal-
ysis with student-driven wet-lab experimentation. While this 
approach is intended to target many of the positive attributes 
associated with CUREs, it requires significant teacher invest-
ment in both the design of RNA-seq analysis tutorials and 
instructional support for the wet-lab component. It is hoped that 
the availability of class materials such as ours will improve 
instructor confidence in tackling large computational analyses in 
the classroom. Future implementations of the course may assess 
instructor confidence to test this. However, this does not absolve 
the challenge of leading students through technically challeng-
ing molecular protocols, such as RNA extraction and quantita-
tive PCR. Our course was taught by two adjunct professors, one 
with expertise in RNA-seq analysis and the other with greater 
experience teaching laboratory classes. This melding of expertise 
no doubt contributed to the first-round success of this course; 
however, we note that most larger institutions will have higher 
student-to-teacher ratios, and this course might be best adapted 
to a more streamlined inquiry-driven class with predetermined 
experiments in these situations. In addition, we sometimes had 
difficulties dividing instructor time between eight students 
working on eight different projects, and one student noted there 
were “days where time was not utilized effectively.” While our 
approach was taken in part to fulfill departmental requirements 
that each student have his or her own original data set to pres-
ent, our opinion is that the class could be improved with stu-
dents working in larger groups on the same project, with more 
instructor time devoted to each group. This would also improve 
issues with scheduling student access to shared equipment, 
while all the positive aspects of CUREs and student hypothesis 
development and project “ownership” are still provided.

Our assessment tools and survey suggest that students 
acquired knowledge in programming and increased bioinfor-
matics self-efficacy. Self-efficacy—the judgment one has about 
one’s own capabilities toward a particular task (Bandura, 
1977)—is an important indicator of student success. Students 
who report higher self-efficacy show greater optimism and are 
more persistent at tasks. These traits correlate with the higher 
academic success of these students and retention in their cho-
sen academic disciplines (Lent et  al., 1986, 2001; Lau and 
Roeser, 2002). A major source of increased self-efficacy is the 
accomplishment of similar tasks in the past, or so-called mas-
tery experiences (Usher and Pajares, 2008). It is likely that the 
increased scores of self-efficacy reported by our students in our 
pre- and postclass perception surveys (Table 4) were due to 

their completion of the class assignments and coding tutorials. 
We hope that this increased self-efficacy will translate to a 
greater confidence in our students to tackle similar and new 
bioinformatics-related problems in the future. However, student 
postclass comments also showed some frustration with R; spe-
cifically, three of eight students described R coding as “over-
whelming.” A broad spectrum of student comments toward 
learning R has also been reported by others teaching RNA-seq 
(Makarevitch et al., 2015; Peterson et al., 2015). We propose 
that, to mitigate these challenges, biology students should ide-
ally be exposed to these skills earlier in their undergraduate 
education through similar or other bioinformatics/biostatistics 
courses. A consistent application of these skills during under-
graduate education should in principle better prepare senior 
students for courses like ours and the new reality of the post-
graduate research enterprise.

In their follow-up studies, many of our students used qRT-
PCR methods to follow a gene of interest in Arabidopsis or 
another plant species. This technique allows the measurement 
of transcript abundance of a chosen gene across biological sam-
ples using real-time PCR (Bustin, 2000). Despite the impor-
tance of real-time PCR to estimate DNA concentrations in mod-
ern academic and industrial molecular biology laboratories, 
very few papers describe the successful implementation of qRT-
PCR modules in the classroom (Hancock et al., 2010; Makare-
vitch and Martinez-Vaz, 2017). This may in part be due to 
experimental complexity, inhibitory costs, or lack of access to 
the necessary equipment at many undergraduate institutions. 
Indeed, while most students in our class had previously per-
formed a PCR, only one had prior experience with quantitative 
PCR through a research internship. Here, we used the dou-
ble-stranded DNA binding dye SYBR Green and the ∆∆Ct 
approach to estimate the fold change in transcript abundance 
for a student’s chosen gene (Hancock et al., 2010). The time 
that students needed to treat plants, extract RNA, generate 
cDNA, and perform qRT-PCR was approximately 3 to 4 weeks, 
which is similar to the time frame described by Hancock and 
colleagues (2010) in their teaching module using primer pairs 
predetermined by the instructor. However, our students needed 
some additional time to design and test novel primer pairs and 
repeat experiments when initial results were ambiguous. In 
addition, while we discussed the theory behind normalizing 
transcript abundance to a constitutively expressed housekeep-
ing gene, in the interest of time, we used BioRad’s CFX Manager 
software to calculate the fold change in gene expression rather 
than generating ∆∆Ct values manually.

Our course is easy to adapt to guided inquiry, which will 
likely be more appropriate at institutions with larger student-to-
teacher ratios or who do not have access to real time PCR ther-
mocyclers or the financial resources for some of the experiments 
discussed herein. Plant responses to shade are an excellent plat-
form for guided inquiry: Arabidopsis and Brassica seedlings are 
easy to grow in a short period of time, and many schools already 
have the requisite skills and materials; the R/FR light environ-
ment is easy to manipulate; and the hypocotyl elongation phe-
notype is easy for students to measure and conceptually place in 
an ecological context (Figure 2B). Furthermore, shade induces 
obvious changes in auxin biosynthesis and auxin target-gene 
expression in the RNA-seq data, which can explain the observed 
growth phenotype (Figure 2C). If instructors so choose, students 



18:ar19, 10	  CBE—Life Sciences Education  •  18:ar19, Summer 2019

C. Procko et al.

can then test the hypothesis that increased auxin levels are caus-
ative for the increased growth in shade by manipulating the 
auxin pathway with application of exogenous auxin transport 
inhibitors or comparing Arabidopsis wild-type seedlings to any 
of many auxin-deficient mutants available from the Arabidopsis 
Biological Resource Center (https://abrc.osu.edu; Tao et  al., 
2008). While we find shade responses in plants particularly 
compelling for these reasons, our tutorials and approach to 
teaching RNA-seq can be applied to many other published data 
sets (or instructor-generated data) that use model organisms 
suitable for classroom instruction. For example, single-celled 
organisms such as yeast and bacteria are easy for students to 
grow and manipulate, and gene expression changes might be 
matched to growth curves or other phenotypes.

We present here a CURE that combines quantitative assess-
ment of NGS data with wet-lab experimentation that tests stu-
dent-generated hypotheses. We provide our RNA-seq analysis 
tutorials and make suggestions for how the course can be 
adapted by other institutions depending on their needs and 
constraints. Our assessment tools suggest that students gained 
experience in R-based coding and showed subjective and objec-
tive improvements in bioinformatics skills and knowledge of 
molecular genetics. Introducing biology students to coding 
even earlier in their undergraduate education would likely fur-
ther improve student performance and satisfaction in quantita-
tive biology courses and better prepare students for the “big 
data” era of biology.
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