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To the Editor:
In a recent analysis, Blumer and Beck (2019) argue that guided-inquiry modules in 
laboratory courses may help less-prepared undergraduates improve in scientific rea-
soning and experimental design. In one study, they use a test of scientific reasoning 
(modified from Lawson, 1978), and in another they use the Experimental Design 
Ability Test (EDAT; Sirum and Humburg, 2011). Both studies collect paired data: 
pretest scores at the start of the semester and posttest scores at the end. Part of the 
analysis explores the relationship between initial score and change in score (posttest 
minus pretest). The authors bin the responses into quartiles by pretest score, then 
analyze each quartile separately. However, this analysis does not control for regres-
sion to the mean (RTM), a statistical phenomenon that creates patterns of change 
by chance alone (Galton, 1886; Marsden and Torgerson, 2012). I outline here how 
RTM appears in paired testing data, what this suggests for Blumer and Beck’s conclu-
sions, and how numerical statistical methods can help disentangle RTM from real 
effects.

RTM occurs whenever you compare paired numerical or ordinal measurements 
that are not perfectly correlated; the most extreme measurements in one data set will 
tend to be closer to the middle of the other. In educational research, RTM can occur in 
pre–post testing, as some students with high or low test scores will score closer to the 
mean upon retesting (Smith and Smith, 2005). This produces a negative relationship 
between initial score and change in score. For a reader curious to learn more about 
RTM, Kahneman (2011, pp. 175–184) presents wide-ranging examples, and Barnett 
and colleagues (2005) outline the problem of RTM in epidemiological studies.

Experimental design can prevent this issue altogether. With randomization or 
matching between a control group and an intervention group, one can observe 
whether an effect is larger for the intervention group. Alternatively, binning or rank-
ing by a separate variable (e.g., students’ entering grade point average) also avoids 
RTM.

When one is not able to avoid RTM, how can one identify it? Consider a model in 
which variation in test scores stems from among-student variation (e.g., relevant skill 
level, constant across testing instances) and independent within-student variation 
(random error across testing instances). In this case, the correlation ρ between pretest 
and posttest scores tells you the proportion of all variation that is explained by 
among-student variation, and the coefficient for a regression of change in score on 
pretest score is ρ – 1 (see Section S1 in the Supplemental Material). This coefficient is 
one way to measure the strength of RTM and is more negative for weaker pre–post 
correlations. The mean and the variance should be similar for both pretest and posttest 
scores in this null model. However, if the lowest-scoring students truly do improve the 
most across testing instances, then the overall variance in posttest scores may 
decrease. This could occur because some of students with the lowest pretest scores 
will have improved, and will be likely to score closer to the mean. See Section S3B of 
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the Supplemental Material for a simulated example. Blumer 
and Beck (2019) do not observe this; they report similar stan-
dard errors of the mean for both pretest and posttest EDAT 
scores (0.16 and 0.17, respectively).

For normally distributed data, the RTM effect is well quanti-
fied (Davis, 1976), but educational assessment data are often 
discrete, ordinal, or otherwise poorly approximated by a nor-
mal distribution. In these cases, numerical simulations of a null 
model can show the expected strength of RTM. To analyze the 
expected effect of RTM on EDAT data binned by pretest quar-
tile, we simulate a bivariate binomial random variable with 
expected mean of 3.75 and expected pre–post correlation of 
0.6. For each simulation, we then calculate the per-quartile 
mean change. Figure 1 summarizes the distributions of the 
mean changes across 10,000 simulations. The differences in the 
distributions among quartiles are solely due to RTM. By chance 
alone, a large increase in score is expected in the lowest quar-
tile, while a large decrease is expected in the highest quartile. 
The t tests by quartile performed by Blumer and Beck (2019) 
are based on the assumption that each quartile should have 
zero expected mean change, which neglects the impact of RTM. 
Consequently, their comparisons are likely to exaggerate the 
magnitude and significance of any real effect mediated by stu-
dent preparation level. Section S2 in the Supplemental Material 
presents the statistical model and code using the programming 
language R (R Core Team, 2018) with package dplyr (Wickham 
et al., 2019).

One can also use permutations of the original data to gener-
ate a null distribution (Edgington and Onghena, 2007; 
Huo et al., 2014). The objective is to permute scores while pre-
serving key relationships in the data, then to calculate relevant 
statistics for each permutation. In practice, permutation testing 
may be easier to apply than simulation-based approaches, as 
one does not need to choose an appropriate null model to sim-
ulate. Instead, permutation testing makes the null hypothesis 
that the values being permuted are “exchangeable” (Edgington 
and Onghena, 2007). When pretest and posttest scores are per-
muted, this hypothesis is that the distribution of scores is the 
same in either testing instance. It is usually not computationally 
feasible to examine every permutation, so one instead looks at 
a random subset of all possible permutations (this is called ran-
domization testing). Considering again Blumer and Beck’s 
(2019) EDAT data, one can randomly permute which score is 
“pre” and which score is “post” across the pairs. This negates 
any effect of test order in the permuted sample while maintain-
ing similar means, variances, correlation, and strength of RTM. 
Permuting many times and calculating per-quartile means for 
each permutation allow the comparison of the original per-quar-
tile means with these generated null distributions. Section S3 
and Supplemental Figure S1 in the Supplemental Material 
demonstrate randomization testing applied to two simulated 
EDAT data sets: one with random bivariate binomial data and 
one in which the least- and most-prepared students truly expe-
rienced stronger than expected shifts toward intermediate 
scores. Although the code presented uses base functions in R for 
the permutations, readers can use the R package permute for 
flexible permutation-testing tools (Simpson, 2016).

Some interventions may create real disproportionate gains 
for the least-prepared students. However, researchers must 
carefully define their null expectations when looking at biased 
subsets of paired data. Simulations or permutations can approx-
imate the expected distribution of RTM effects for paired test 
data under a null hypothesis in which an educational interven-
tion does not have any effect. These null distributions offer con-
text for the original statistics calculated from the data, helping 
to disentangle real effects from statistical artifacts. Although the 
choice of model or permutation approach affects the exact con-
clusions to be drawn, these numerical methods offer valuable 
intuition about what to expect by chance alone.
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FIGURE 1.  Distributions of mean change in test score (posttest 
minus pretest) by pretest quartile for bivariate binomial simulated 
EDAT data. The model simulates 145 students, with expected mean 
of 3.75 points and expected pre–post correlation of 0.6. The 
distributions summarize mean change by quantile calculated for 
each of 10,000 simulations. The differences in mean change 
between quartile represent regression to mean, and appear solely 
due to chance. Of the calculated simulation means, 95% lie 
between the upper and lower horizontal lines within each 
distribution, with 2.5% at each extreme.
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