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ABSTRACT
The instructional practices used in introductory college courses often differ dramatically 
from those used in high school courses, and dissatisfaction with these practices is cited by 
students as a prominent reason for leaving science, technology, engineering, and math-
ematics (STEM) majors. To better characterize the transition to college course work, we 
investigated the extent to which incoming expectations of course activities differ based 
on student demographic characteristics, as well as how these expectations align with what 
students will experience. We surveyed more than 1500 undergraduate students in large 
introductory STEM courses at three research-intensive institutions during the first week of 
classes about their expectations regarding how class time would be spent in their courses. 
We found that first-generation and first-semester students predict less lecture than their 
peers and that class size had the largest effect on student predictions. We also collected 
classroom observation data from the courses and found that students generally under-
predicted the amount of lecture observed in class. This misalignment between student 
predictions and experiences, especially for first-generation and first-semester college 
students and students enrolled in large- and medium-size classes, has implications for 
instructors and universities as they design curricula for introductory STEM courses with 
explicit retention goals.

INTRODUCTION
Recent national reports have cited ongoing issues in undergraduate science, technol-
ogy, engineering, and mathematics (STEM) education. Approximately half of first-
year undergraduate students who start in STEM fields graduate with a STEM bache-
lor’s degree 6 years later, and most of this loss of students occurs between the first and 
second year of college (Seymour and Hewitt, 1997; Chen, 2013; Eagan et al., 2014). 
Although they have similar rates of STEM aspiration, students from underrepresented 
minority (URM) and first-generation backgrounds leave STEM majors by either 
switching majors or leaving college at higher rates than their classmates (Engle and 
Tinto, 2008; Chen, 2013; Cataldi et al., 2018). This unequal attrition is a concern, 
because it leads to a systematic underrepresentation of certain populations within 
STEM majors, directly contributing to underrepresentation at graduate and profes-
sional school levels and within the STEM workforce (National Center for Science and 
Engineering Statistics, 2017).

Multiple studies have investigated the characteristics of students who leave 
STEM majors in college and the reasons why (Seymour and Hewitt, 1997; 
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Alting and Walser, 2007; Chang et  al., 2008; Shaw and 
Barbuti, 2010; Sithole et  al., 2017). These factors include 
demographic characteristics (including gender, URM or 
first-generation status, and income), family background, pre-
college academic preparation (including STEM courses, and 
in particular math courses taken in high school), current 
college experiences (including STEM courses taken during the 
first year of college), institutional context, campus climate, 
and institutional support (Griffith, 2010; Chen, 2013). A mul-
tivariate analysis of these factors in a study that tracked 
16,700 first-year students at multiple institutions nationwide 
found that students who switched out of STEM majors com-
pleted fewer STEM courses during their first year, took intro-
ductory instead of advanced math courses during their first 
year, and had lower grades in their STEM courses than their 
peers (Chen, 2013). Other common reasons students cited for 
leaving STEM majors include a lack or loss of interest in 
STEM disciplines or seeing other majors as offering a better 
education (Seymour and Hewitt, 1997).

Several of the factors that contribute to STEM retention 
relate to how faculty teach and the messages they send. Nota-
bly, more than 90% of students who left STEM majors men-
tioned concern about the poor quality of teaching in their intro-
ductory college courses (Seymour and Hewitt, 1997). Moreover, 
large introductory STEM courses have a reputation of being 
“weed-out” courses that focus on lecture (Mervis, 2011). Stu-
dents in passive lecture courses report general dissatisfaction 
with the classroom environment, lack of structure, and imper-
sonal nature of their courses (Cooper and Robinson, 2000).

Several national reports have called for universities to move 
away from lecture and incorporate active learning into under-
graduate STEM courses (American Association for the Advance-
ment of Science, 2011; President’s Council of Advisors on Sci-
ence and Technology, 2012). Active-learning practices such as 
peer instruction with clicker questions or small-group work 
have been shown to be more effective for student learning and 
engagement than solely lecturing in college classrooms (Haak 
et al., 2011; Smith et al., 2011; Freeman et al., 2014). Further-
more, incorporating active learning in the classroom has been 
found to increase equitable outcomes for URM and first-gener-
ation students and decrease student failure rates (Stephens 
et al., 2012; Eddy and Hogan, 2014; Ballen et al., 2017; Gavassa 
et  al., 2019). In addition to improving student learning out-
comes, active-learning approaches positively impact student 
retention. For example, peer instruction (Mazur, 1997) in phys-
ics courses resulted in both increased student learning out-
comes and persistence of students in STEM majors when com-
pared with traditional lecturing (Crouch and Mazur, 2002; 
Watkins and Mazur, 2019).

Despite the call for incorporating active learning into class-
rooms, lecture is still the predominant instructional practice in 
college STEM courses regardless of course level or class size 
(Akiha et al., 2018; Stains et al., 2018). This focus on lecture in 
college classrooms differs significantly from instructional prac-
tices used in high school classes (Akiha et al., 2018). A study 
characterizing how class time was spent in 480 middle school, 
high school, first-year college, and advanced college classrooms 
found that the median percent of 2-minute class intervals spent 
lecturing shifted from 32% in high school to 80% in first-year 
college classes (Akiha et al., 2018). Students in middle and high 

school courses spent more time working individually or in 
groups on in-class activities. The shift from high school to first-
year college is the most dramatic instructional transition stu-
dents experience between starting middle school and finishing 
college.

Because of this large shift in instructional practices, first-year 
student expectations may impact their course experiences and 
subsequent retention, particularly if those expectations are 
inaccurate. One framework in higher education that guides the 
use of student expectation data is service quality, which is bor-
rowed from commercial enterprises (Hill, 1995; Sultan and 
Wong, 2010). Through this lens, student survey and interview 
data can be used to promote increased alignment between 
instructors and students and can inform shifts from instruc-
tor-led to student-centered teaching. Specifically, these data can 
help instructors manage student expectations within course 
constraints and provide insights on how to improve the class-
room experience (Sander et al., 2000).

To begin to explore how student expectations affect course 
experiences, students in two sections of a large-enrollment 
biology course at one institution were surveyed about how they 
predicted class time would be used (Brown et  al., 2017). 
Compared with than their returning student peers, first-year stu-
dents expected more class time to be spent completing activities 
and working in small groups as opposed to listening to lecture, 
suggesting that students come in with different expectations for 
the instructional practices that they will experience. Brown 
et al., 2017 viewed the discrepancies between student predic-
tions and class practices through the lens of expectancy violation 
theory (Burgoon, 1978) and proposed that these discrepancies 
can negatively impact a student’s experience within a course. 
Another study of student expectations across 14 sections of 
math and humanities courses at one university found that first-
year students were more likely than returning students to both 
value and expect group work in their large-enrollment courses 
(Messineo et al., 2007). These student expectations are import-
ant, because they reveal underlying differences in student con-
ceptions of the college experience and reflect the degree of 
adjustment students will need to make during a course.

Although students have cited instructional practices as a rea-
son for leaving, the intersection of course expectations, percep-
tions, and instructional practices has not been investigated in 
depth across STEM disciplines. In this study, we aimed to 
expand our understanding of the expectations students have 
about the instructional styles they will encounter in their col-
lege courses beyond biology to include a larger set of STEM 
disciplines. We built upon previous work about student expec-
tations by surveying students across 10 STEM disciplines at 
three universities and by using linear mixed modeling to 
account for demographic differences within the student body. 
We also collected observation data about teaching practices 
from the classes in which these students were enrolled using the 
Classroom Observation Protocol for Undergraduate STEM, or 
COPUS (Smith et  al., 2013). Specifically, we asked, 1) What 
types of instructional practices do students predict for their col-
lege STEM courses? 2) Do those predictions vary by student 
demographics or course characteristics? 3) To what extent do 
the learning environments provided in introductory STEM 
courses align with student expectations? To address these 
research questions, we surveyed students during the first week 
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of class in the Fall semester to measure their predictions about 
instructional practices and midway through the semester to 
assess their perceptions of the instructional practices used. The 
answers to these questions help provide a more complete 
understanding of how students transition from high school to 
college STEM classes and have implications for how faculty in 
introductory STEM courses choose to structure their courses 
and communicate about expectations during the first days of 
class.

METHODS
Development of the Survey Instrument
To develop our first-week and midsemester surveys, we 1) wrote 
questions asking students about how often instructional prac-
tices such as lecture would occur, 2) gave a pilot version of the 
survey to 2540 students at two research-intensive universities 
during the Fall 2017 semester, 3) analyzed the pilot data to 
determine the types of information the survey was eliciting, 
4) met with a focus group of undergraduate students to explore 
how the questions were being interpreted, and 5) made further 
revisions based on feedback from several discipline-based edu-
cation research groups that included undergraduates, graduate 
students, postdocs, and faculty. More information about survey 
development can be found in Supplemental Appendix S1.

Data Collection
During Fall 2018, we distributed revised first-week and midse-
mester surveys to students at the two universities from the pilot 
survey as well as at a third research-intensive university. Survey 
items are included in Supplemental Appendix S2.

We identified students to participate in our study by reach-
ing out to instructors who taught large introductory STEM 
courses and who were simultaneously participating in a top-
ic-based faculty learning community (Cox, 2004) focused on 
the high school to first year of college instructional transition 
during the 2018–2019 academic year. The courses were taught 
by a total of 20 individual or groups of instructors and ranged 
in size from 20 to 565 students. The instructors distributed sur-
veys by email or through links posted on course management 
systems in a total of 22 courses. The first-week predictions sur-
vey occurred during the first week of the semester, and the 
midsemester perceptions survey occurred between weeks 6 and 
8. The course subjects in our study broadly covered all of STEM 
and included biology, chemistry, computer science, earth sci-
ence, ecology and environmental science, economics, engineer-
ing, forestry, mathematics, physics, and statistics.

Students completed the surveys online, outside class. The 
surveys were open for 1 week, starting after the end of the first 
class period. Some faculty gave extra credit or participation 
credit points as an incentive. For the first-week survey, we 
received 2436 student survey responses. The total course enroll-
ment was 3916 students, resulting in an average response rate 
of 62%. For the midsemester survey, we received 1671 
responses, resulting in an average response rate of 42%. We 
removed responses from the data set if students 1) did not agree 
to the consent form, 2) reported being under 18 years old, or 3) 
left more than 50% of the content questions blank (excluding 
optional demographic questions). If students responded to the 
survey for the same class more than once, we kept only their 
first responses.

At the end of the survey, we included several demographic 
questions (including first-generation student status, URM 
status, English language spoken at home, gender, and first 
semester on a college campus; Supplemental Appendix S3). 
These demographic questions were included based on a 
literature search to identify predictor variables that affect 
student expectations or that were included in other national 
studies related to college courses (Chen, 2013; Yee, 2016; 
Brown et  al., 2017). We also included two questions asking 
about international student status and transfer student status to 
account for students who either were unfamiliar with the U.S. 
education system or were at a new university despite being 
returning students.

We matched students who submitted responses for both the 
first and second survey by full name and student ID. For 
matched students who answered both surveys, we removed 
those who changed their answer for demographic questions 
from the first-week to the midsemester survey from the data 
set. If a matched student left a demographic question blank on 
one survey, but answered it on the other survey, the answer was 
filled in to match on both surveys. We removed responses if the 
student selected “prefer not to answer,” “other,” or left any of 
the demographic questions blank on both surveys, as these 
responses were not informative to the research questions. This 
processing yielded a data set with 1638 responses for the first-
week survey and 1269 responses to the midsemester survey, 
with 829 students who responded to both surveys. To examine 
how representative the survey population was to each course as 
a whole, we obtained course-level percentages of gender and 
URM status from each university’s registrar and compared the 
percent of male, female, and URM students who responded to 
our survey with the total percent of each group within each 
course (Supplemental Table S1). Additional student demo-
graphic information is shown in Table 1, and course character-
istic information is shown in Table 2.

Student Predictions about Class Time
We used mixed-effects model regression analyses to determine 
whether a particular set of demographic variables could be 
used to explain the variation in student responses to a first-
week survey question asking about the percent of class time 
that would be spent with the instructor lecturing (Supplemen-
tal Appendixes S2 and S3). We chose to focus on lecture, as this 
instructional teaching practice is prevalent across college 
courses (Stains et al., 2018). We used the R base package for 
testing mixed-effects models (RStudio Team, 2015) and the 
ggplot2 package for graphics (Wickham, 2016).

Our first step was to classify predictor variables as random or 
fixed effects. We followed the recommendations outlined in 
Theobald (2018) for classifying predictor variables as random 
or fixed effects and for model selection. We treated gender as a 
binary, categorical predictor, as the majority of students (99.7%) 
self-identified as either male or female. All other demographic 
responses were binary predictors, except for course size, which 
was a three-level categorical predictor (small, medium, and 
large based on course size designations in Freeman et al., 2014). 
We included gender, first-generation status, URM status, trans-
fer student status, international student status, English lan-
guage spoken at home, and course size as fixed effects. We were 
interested in the effects of these specific demographic variables 
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and whether students had predictions that differed about large 
introductory courses. Although university type has been associ-
ated with student retention, for example, private versus public 

or selective versus nonselective (Chen, 2013), the effect of each 
university was not a primary research question. Consequently, 
we treated instructor and university as random effects to 
account for clustering of student responses within a course or 
university.

After classifying predictors as fixed or random, we measured 
associations between potential categorical predictors using the 
Goodman Kruskal package in R (Pearson, 2016). We did not 
include subject as a factor in our models, because subject was 
highly correlated with course size, instructor, and university, 
and some disciplines were represented by multiple courses in 
our data set, but other subjects had only one course. The ran-
dom effect of instructor was correlated with university, so 
instructor was nested within university.

Our first-week survey data set included 79 responses from 
students who were enrolled in more than one STEM course par-
ticipating in our study. Before performing model selection, we 
tested whether students who were enrolled in multiple courses 
were more likely to submit similar predictions about lecture. We 
hypothesized that students would have prior expectations 
about what college courses would be like regardless of course 
and, consequently, students enrolled in multiple courses would 
submit similar predictions for each of those courses. We ana-
lyzed the responses from students enrolled in multiple courses 
and used a one-way analysis of variance (ANOVA) to test 
whether there were significant differences in predictions based 
on the individual students (Supplemental Table S2). The results 
from the one-way ANOVA indicated that students enrolled in 
multiple classes were more likely to predict similar amounts of 
lecture for each of their classes. To account for clustering of 
student responses, we included a random effect for individual 
students.

Once we had determined which predictor variables to test, 
we used model selection to identify which variables to include 
in a final linear mixed-effects regression model using the R 
package lme4 (Bates et al., 2015). We performed model selec-
tion using Akaike’s information criterion (AIC) and a Bayesian 
information criterion (BIC) to decide which random effects to 
include in our model and then to determine which combination 
of fixed effects best explained our data (Supplemental Appen-
dix S4). As instructor and course were highly correlated, we did 
not include them together in models. We chose to include 
instructor and student ID as random effects in our final model 
and not course for the following reasons: 1) models with 
instructor and student ID had the lowest AIC and BIC values, 
2) some courses had multiple lecture sections that were taught 
by different instructors participating in our study, and 3) instruc-
tors may vary in how they introduce the class on the first day. In 
addition, a model with instructor nested within university as 
random effects as well as student ID had an equivalent AIC 
value as a model with only instructor and student ID. An 
ANOVA between the two models showed that the models had 
equivalent fits (Supplemental Appendix S4). We chose to use 
the simplest model, and included only instructor and student ID 
as random effects.

To select fixed effects, we used the R package MuMIn, which 
also uses AIC values to select the best-fitting model among all 
combinations of variables (Barton, 2019). We also used MuMIn 
to calculate conditional and marginal coefficients of determina-
tion (R² values). We compared the best-fitting mixed-effects 

TABLE 1.  Demographic characteristics of the student responses for 
the first-week (n = 1638 students) and midsemester (n = 1269 
students) surveys, with total numbers within each group and 
percent out of the total number of responses reported

Student variables
First-week 

survey
Midsemester 

survey

College experience
  First-semester 779 (48%) 647 (51%)
  Returning student 859 (52%) 622 (49%)
English spoken at home
  English spoken at home as a child 1483 (91%) 1172 (92%)
  English not spoken at home as a child 155 (9%) 97 (8%)
First-generation status
  First-generation 443 (27%) 379 (30%)
  Continuing generation 1195 (73%) 890 (70%)

Gender
  Male 798 (49%) 652 (51%)
  Female 840 (51%) 617 (49%)

International student
  Domestic 1546 (94%) 1216 (96%)
  International 92 (6%) 53 (4%)
Transfer student
  Nontransfer 1466 (89%) 1153 (91%)
  Transfer 172 (11%) 116 (9%)

URM status
  URM 281 (17%) 192 (15%)
  Non-URM 1357 (83%) 1077 (85%)

TABLE 2.  Course characteristics of the student responses for the 
first-week (n = 1638 students) and midsemester (n = 1269 students) 
surveys, with total numbers within each group and percent out of 
the total number of responses included

Course variables
First-week 

survey
Midsemester 

survey

Course size
  Small (<50 students): 3 sections 45 (3%) 47 (4%)
  Medium (51–110 students): 6 sections 219 (13%) 227 (18%)
  Large (>110 students): 13 sections 1374 (84%) 995 (78%)

Subject
  Biology 563 (34%) 381 (30%)
  Chemistry 191 (12%) 187 (15%)
  Computer science 159 (10%) 116 (9%)
  Earth science 47 (3%) 26 (2%)
  Economics 113 (7%) 24 (2%)
  Engineering 17 (1%) 11 (1%)
  Forestry 38 (2%) 36 (3%)
  Math 66 (4%) 90 (7%)
  Physics 214 (13%) 241 (19%)
  Statistics 230 (14%) 157 (12%)

University
  1 878 (54%) 513 (40%)
  2 574 (35%) 597 (47%)
  3 186 (11%) 159 (13%)
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model with a null model that included only the random effects 
(Supplemental Appendix S4). The best-fitting model was fur-
ther analyzed for significance using the R package lmerTest and 
by calculating variance inflation factor values using the car 
package (Fox and Weisberg, 2011; Kuznetsova et al., 2017).

Although we had accounted for the clustering of responses 
from a single student by including student as a random effect 
(Supplemental Table S2), we also performed model selection 
using a data set in which we randomly removed responses so 
that we only had one response per student (Supplemental 
Appendix S5). This process allowed us to confirm that the pre-
dictors identified from our analyses with the complete data set 
were significant regardless of how many times students were 
represented. The best-fitting model using either the full (multi-
ple-response-per-student) data set or the one response per stu-
dent (single-response-per-student) data set output the same 
significant predictor variables, indicating that including multi-
ple responses from students does not change the overall pattern 
of student predictions. Because both the single-response-per-stu-
dent and multiple-response-per-student sets showed similar 
patterns, we chose to keep responses from students enrolled in 
multiple classes. This decision allowed us to maintain a more 
representative pool of students within each course.

Classroom Observations
Because we are interested in the transition from high school to 
college, we observed the first four to five class periods each 
instructor taught using the COPUS (Smith et  al., 2013). 
Although previous studies using classroom observations have 
used two to three class periods either over 1 week of a course or 
from different points in the semester (Smith et al., 2014; Lewin 
et al., 2016; Durham et al., 2018; Pelletreau et al., 2018), four 
class periods have been found to reflect variation in an instruc-
tor’s teaching practices (Stains et al., 2018). For courses with 
one instructor, the class periods were all at the beginning of the 
semester, excluding the first day of class, which typically 
includes a higher level of the administration code. For courses 
cotaught by multiple instructors, the class periods were spaced 
throughout the semester but included the first four or five peri-
ods of the participating instructor’s teaching. For courses in 
which where the instructor taught multiple sections of the same 
course, only one lecture section per instructor was observed. In 
total, we conducted 108 class period observations.

The COPUS consists of coding 25 instructor and student 
behaviors at 2-minute time intervals over the course of a class 
meeting. There are various ways to explore COPUS observa-
tion data (Smith et  al., 2013; Stains et  al., 2018; Erdmann 
and Stains, 2019). We used the COPUS analyzer tool at 
COPUSprofiles.org to incorporate all 25 student and instruc-
tor behaviors into an aggregated cluster between 1 and 7, 
which can be further coded into either didactic, interactive 
lecture, or student-centered teaching practices. We used R to 
visualize the differences between the classroom COPUS pro-
files in a heat map.

The percent of 2-minute intervals that included lecture for 
each course was determined by counting the 2-minute intervals 
in which lecture was marked and then by dividing that number 
by the total number of 2-minute intervals in a class session. For 
example, if instructor lecturing (Lec) was coded 25 times 
during a 50-minute lecture, then 100% of the possible 2-minute 

time intervals contained lecture. We then determined the aver-
age percent of 2-minute intervals that students experienced 
within any given course that included lecture. These calcula-
tions slightly overestimate the amount of time that an instructor 
spends on any one activity, because the instructor may have 
also included other activities within the space of any of the 
2-minute intervals. To explore the impact of this possible over-
estimation, we identified the total number of 2-minute intervals 
that included lecture, and then examined the co-occurrence of 
lecture with active learning or other codes (Supplemental 
Appendix S6).

Correlation Analysis
We plotted the average percent of 2-minute intervals coded as 
lecture with the average percent of in-class time instructors 
spent lecturing reported by individual students within that 
course. A regression line was fitted in R to calculate the linear 
relationship between observed and reported lecture. For visual-
ization of any differences in reporting between different demo-
graphic groups, within each course, the student survey data 
were disaggregated by the demographic variable and plotted 
against observed time.

Open-Response Question Analysis
The first-week predictions survey included a short-answer ques-
tion asking students to describe what information or experi-
ences they used to predict the percent of instructional 
approaches that would be used in the courses. We used induc-
tive coding to analyze student responses. First, coauthors A.K.L. 
and J.K.S. read through 100 responses from the question at one 
institution and together developed a list of ideas appearing in 
those responses. The list served as the initial codebook. Second, 
these two coders tested the initial codebook on responses from 
another institution, further refining the ideas. This second stage 
continued with sets of responses from each institution until the 
coders felt that no further refinements were needed, because no 
new ideas were emerging. Third, each coder independently 
coded 48 responses, which included responses from all three 
institutions. Once each code had a percent agreement of 90% or 
greater, a single coder coded the remaining responses. Any 
responses that could not be readily coded using the established 
codebook were marked as “other” and reviewed by both coders 
to confirm that these responses could not be coded with any 
established code. After coding was complete, we reviewed the 
codes and illustrative responses, which revealed three themes 
described in the Results.

RESULTS
What Types of Instructional Practices Do Students Predict 
for Their College STEM Courses?
To explore how students predicted class time would be spent in 
their introductory college STEM courses, we analyzed data from 
the first-week survey (Supplemental Appendix S2). A multipart 
question asked students to predict the percent of class time the 
instructor would lecture to students, ask students to work alone, 
ask students to work in groups, or ask students to do other 
things. The responses were required to add to 100% for students 
to submit their responses and move to the next question. The 
survey data showed variation in responses, but overall, students 
predicted that the majority of class time would be spent listening 
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to lecture (Figure 1). Specifically, the mean predictions were that 
the instructor would spend 64% (SD ±21) of class time lecturing 
to students, 11% (SD ±9) of class time asking students to work 
individually, 17% (SD ±13.5) of class time asking students to 
work in groups, and 8% (SD ±7) of class time on “other.”

Next, we determined what information students were using 
to make their predictions. Students were asked, “What experi-
ences or information did you use to make your predictions 
about how class time will be spent (for example, experiences or 
information you received before or during the semester)?” 
Analysis of the open-ended question responses revealed a vari-
ety of sources students used to inform their predictions, and 
these sources could be divided into three major themes: first-
hand experiences with the course or instructor, course charac-
teristics, and information acquired outside the course (Table 3). 
These responses provide insights into experiences and precon-
ceptions that shape student predictions.

Do Student Predictions about Instructional Practices Vary 
by Student Demographics or Course Characteristics?
Given the range of responses for student predictions about the 
percent of class time that would be spent listening to lecture, we 
wanted to determine whether certain demographic variables 
predicted student responses. We included each of the demo-
graphic variables (Table 1) as a fixed effect in a linear mixed-ef-
fects model, along with course size. The best-fitting model 
includes first-generation student status, first-semester on a col-
lege campus status, and course size as significant predictors and 
explains 56% of the variation in the data (Table 4).

According to the model, a first-generation, first-semester stu-
dent in a large course (specified by the model intercept) pre-
dicted that ∼64.29% of in-class time would be dedicated to lec-
ture (Table 4). The model also provided estimates based on 
demographic variables or course size relative to the intercept. For 
example, continuing-generation students predicted that ∼3.33% 
more class time would be spent listening to lecture compared 
with their first-generation student peers. Similarly, returning stu-

dents predicted ∼4.40% more lecture than their first-semester 
student peers. Adding the estimates together (64.29% + 3.33% + 
4.40% = 72.02%) yields the percent of lecture predicted by con-
tinuing-generation students who were returning students in 
large-enrollment courses. Course size also was a significant fac-
tor, and the negative values associated with medium and small 
classes indicate that students predicted that 20.62% (medium) 
and 19.41% (small) less class time would be spent listening to 
lecture compared with students in large-enrollment classes.

We visualized the variation in student predictions about 
in-class time that would be spent on lecture in their college 
STEM courses with box plots (Figure 2). These box plots were 
consistent with the results from our model and showed that 
first-generation students predicted less time would be spent lis-
tening to lecture compared with their continuing-generation 
peers (Figure 2A) and that first-semester students on a college 
campus also predicted that less class time would be spent listen-
ing to lecture compared with students who were returning to 
college (Figure 2B). First-generation college students predicted 
a mean of 59% (SD ±21) of class time would be dedicated to 
lecture, while continuing-generation college students predicted 
that 65% (SD ±20) of class time would be dedicated to lecture. 
The mean percent of class time students predicted would be 
dedicated to lecture was 61% (SD ±19) for first-semester stu-
dents and 66% (SD ±22) for returning students. These differ-
ences in predictions for first-generation and first-semester stu-
dents are slightly higher than the predicted differences from our 
linear mixed model, which accounts for both first-generation 
student status and first-semester status together, along with 
course size. To determine whether the broader differences in 
overall student predictions were consistent across courses, we 
investigated patterns of differences in student predictions at the 
course level. We found that, in the majority of courses, first-gen-
eration and first-semester students predicted less lecture than 
their peers (Supplemental Appendix S7), indicating that these 
demographic factors impact student predictions across courses.

On the first-week survey, course size was also a predictor in 
the best-fitting linear regression model (Table 4). Students in 
large-enrollment courses (n = 13 courses) predicted a mean of 
67% (SD ±19) of class time dedicated to lecture, while students 
in medium (n = 6 courses) and small courses (n = 3 courses) 
predicted a mean of 47% (SD ±21) and 48% (SD ±22), respec-
tively (Figure 2C).

To What Extent Do the Learning Environments Provided 
in Introductory STEM Courses Align with Student 
Expectations?
Analysis of the first-week survey data led to questions about 
how student predictions compared with the amount of lecture 
that actually occurred in their college STEM courses. We 
observed the first four to five class periods taught by each 
instructor and analyzed the relative frequency of the “lecture” 
code. We calculated the mean percent of 2-minute intervals that 
included lecture across all of the courses. This observed number 
(74%) is higher than the average student predictions about the 
percent of class time that the instructor would lecture to the 
students (Figure 2D). Notably, the predictions of first-genera-
tion and first-semester students on the first-week survey are 
most distant from the observed average of 2-minute intervals 
with lecture within each course.

FIGURE 1.  Box plot of the percent of in-class time that students 
predicted would be dedicated to lecture, working alone, working 
in groups, or other activities. The boxes represent the interquartile 
range (IQR) of responses for each category. Lines within each box 
represent the median, and diamonds represent the mean response. 
Whiskers represent 1.5 times the IQR. Dots represent outliers.
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Students enrolled in large courses predicted more lecture 
than students in medium and small courses (Figure 2C). The 
classroom observation data also followed this trend, with the 
observed percent of class time involving lecture increasing as 

course size increased (Figure 2E). The observed number of 
2-minute intervals with lecture in the large and medium classes 
was higher than the amount of lecture that students predicted 
(Figure 2E). For the small courses, the mean predicted amount 

TABLE 3.  Open-response question analysis of a survey question asking students about what experiences or information they used to make 
their predictions about how class time would be spent

Theme Experience or information

Responses 
containing a 

particular code Example quotationa

Firsthand experiences with 
course and/or instructor

First day(s)—nonspecific 26% I also used my experience from this morning’s [course number] 
class.

First day(s)—activities in class 8% So far [the class] has mostly been lecture with some student 
involvement.

First day(s)—instructor’s 
description of instructional 
practices

13% I based it on what the instructor described during our first 
lecture.

Syllabus/course website 11% The online class website provides details on what will be 
covered during class.

Interacting with the instructor 
outside of class time

1% My teacher gave a presentation [at a student orientation event], 
which included how class time would be typically spent.

Course characteristics Based on the subject or content 
of the course

11% I inferred that due to this class being about software engineer-
ing [time] would be spent working in groups and working 
on coding.

Based on class size or structure 11% Mostly because the course is called lecture. There are far too 
many students to be trying to split into groups etc. I assume 
that is what lab time is to be used for.

Information acquired 
outside course

Nonspecific prior knowledge/
experience and assumptions

14% This is what other classes usually are set up like.

Experience in previous classes—
in general

13% I based my predictions on past experiences with college classes.

Talking to individuals who are 
not in the course

10% My older sisters have told me a lot about college, and I made 
predictions based off what they said.

Experience in high school  
classes

8% In the past, with high school classes, many lectures involved 
student interaction so I feel as though this may also be the case.

Miscellaneous I do not know/complete guess 2% I guessed.
Off-topic 2% —
Other 4% —
No response 6% —

aExample quotations are included to provide context for how codes were generated.

TABLE 4.  Estimated coefficients for variables from the best-fitting linear mixed-effects model that examines how different predictors 
impact the percent of in-class time students expect the instructor to spend lecturing

Predictors Estimate SE t value p valuea

2.5% Confidence 
interval

97.5% Confidence 
interval

(Mean intercept) 64.29 3.04 21.14 5.97 e−15*** 58.45 70.16

Course size
  Medium course −20.62 4.87 −4.24 0.00046*** −30.03 −11.28
  Small course −19.41 6.19 −3.14 0.0035** −31.28 −7.53
  Continuing generation 3.33 1.06 3.15 0.0017** 1.26 5.41
  Returning student 4.40 0.96 4.57 5.33 e−06*** 2.50 6.28
Random effects 

Instructor + Student ID 
Intraclass Correlation  
Coefficient (ICC) = 0.48 
Observations: 1638 students 
R²m = 0.14/R²c = 0.56

The intercept represents a first-generation, first-semester student in a large course. The t value reported is the (regression coefficient)/(standard error).
aStatistical significance is indicated by **, p < 0.01; and ***, p < 0.001.
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of lecture matched more closely to the observed. Owing to the 
limited number of small courses in our study and the smaller 
number of student responses due to smaller course size (n = 3 
courses and 43 student responses), the differences seen in small 
classes may not be representative of student predictions across 
small courses. However, the trend we observed of more lecture 
in larger classes and less lecture in smaller classrooms matches 
with observations across other North American institutions 
(Stains et al., 2018).

When the percentage of 2-minute time intervals was aver-
aged across courses, the overall average was 74% (Figure 2D). 
We identified that, while the majority of 2-minute intervals con-
sisted of only lecture or lecture-related codes, there were 2-min-
ute intervals that had lecture and active learning or other activ-
ities coded, which could have resulted in an overestimation of 
how much time instructors spent lecturing (Supplemental 
Appendix S6). Therefore, we selected a random sample of fifty 
2-minute time intervals that included lecture as well as active 

learning or other activities and timed the seconds dedicated to 
lecture. The timing analysis suggests that, overall, ∼68.5% of 
total in-class time was dedicated to lecture. This corrected total 
amount of time is higher than the mean amount of lecture pre-
dicted by students overall (64%) and, notably, is also higher 
than the amount predicted by first-generation (59%) and 
first-semester students (61%).

Because the lecture code can co-occur with other COPUS 
codes and instructional styles may differ across class periods, 
we also used COPUSprofiles.org to gain a more holistic view of 
the instructional practices. This profile program aggregates the 
observation data into seven different types of instructional 
practices spanning the range from didactic to student-centered 
for each class period (Stains et al., 2018). Our results show that 
instructors in large courses used primarily didactic instructional 
practices, with some interactive lecture and a few student-cen-
tered class periods (Figure 3). In contrast, instructors from 
medium courses represented a range of teaching styles, with no 

FIGURE 2.  Box plots of student-predicted lecture disaggregated by variables identified in linear mixed-effects models and box plots of 
COPUS observations. Student predictions of in-class time that would be dedicated to lecture disaggregated by (A) first-generation or 
continuing-generation status, (B) first-semester on a college campus or returning student status, and (C) course size. Average percent of 
2-minute intervals that contained lecture for each COPUS observed class period (D) for full sample and (E) disaggregated by course size. 
The boxes represent the interquartile range of responses for each category. Lines within each box represent the median, and diamonds 
represent the mean response. Whiskers represent the largest and smallest values within 1.5 times the IQR. Dots represent outliers.
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instructor using solely didactic practices. Although we only had 
three instructors from small courses in our study, 10 out of 14 
of the observed class periods featured student-centered prac-
tices. The aggregate COPUS profiles are consistent with our 
analysis of the “lecture” code alone, indicating that our focus on 
the percent of 2-minute intervals that included lecture reflects 
broader student experiences within a course. Our results are 
also similar to previous studies that showed that instructors are 
generally consistent in their instructional patterns across multi-
ple class periods (Pelletreau et al., 2018) and that any variation 
tends to be between just two of the broad COPUS profiles teach-
ing styles (Stains et al., 2018).

Is Variation in Student Predictions about How Class 
Time Will Be Spent Due to Differences in How Students 
Perceive Time?
Although we found differences between the predictions of stu-
dents about the percent of class time dedicated to lecture 

(Figure 1), a confounding question is whether students are 
accurate in reporting the amount of lecture they receive. To 
answer this question, we gave students a survey at the midse-
mester time point and asked them to report the percent of class 
time during which the instructor lectured on a typical day (Sup-
plemental Appendix S2).

To visualize how closely student perceptions at the midse-
mester point matched COPUS observation data from within 
each course, we plotted the data on scatter plots and fitted sim-
ple linear regressions (Figure 4A). The slope of the regression 
line (0.94) indicates that, at the midsemester point, students 
were accurate in reporting the amount of in-class time dedi-
cated to lecture.

We also plotted individual student predictions about lec-
ture from the first-week survey and compared them with the 
amount of time the instructor spent lecturing using COPUS 
observation data (Figure 4B). Although there was a positive 
relationship between student predictions and COPUS obser-
vations, the slope of the regression (0.48) is lower than at 
the midsemester point, likely because the students have less 
experience in the class. Taken together, the comparison of 
student responses and COPUS observations indicates that 
differences between student predictions about lecture 
on the first-week survey are due to differences in expecta-
tions and not due to differences in how students experience 
time.

In addition, one explanation for the differences between the 
predictions of different demographic groups (Table 4 and 
Figure 2) is that first-generation and first-semester students 
perceive class time and teaching practices in different ways. To 
address this question, we disaggregated the data by first-gener-
ation and first-semester student status and performed addi-
tional correlation analyses between the observed percent of 
class time and midsemester survey data (Supplemental Appen-
dix S8). Disaggregating students by demographic group had 
borderline to no significant effect on the strong correlation 
between perceptions and COPUS observations. Taken together, 
these data suggest that first-generation and first-semester stu-
dents perceive the amount of lecture in similar ways as their 
classmates and lend further credence to the finding that these 
groups report different predictions on the first-week survey 
(Figure 2).

Discussion and Implications
To investigate student experiences of the high school to first-
year college instructional transition, we surveyed more than 
1500 students from three research-intensive universities in 
courses across 10 STEM disciplines. Our results showed that 
student predictions about the instructional practices in intro-
ductory STEM courses differed modestly based on certain 
demographic variables, including first-semester and first-gener-
ation student status, and by course size (Table 4 and Figure 2). 
Although the estimates from students with the two significant 
demographic variables (first-generation and first-semester stu-
dent status) were lower than the estimates from students 
enrolled in different course sizes, these demographic differ-
ences are notable when we consider that none of the other 
demographic predictors were identified in the best-fitting model 
and also that the trends were consistent at the course level 
(Supplemental Appendix S7).

FIGURE 3.  COPUS profiles of each individual instructor’s first four 
or five class periods, disaggregated by course size. Each row 
includes observations from an individual instructor, arranged 
chronologically from left to right. COPUS profiles represent seven 
types of instructional styles, indicated by 1 to 7 on the heat map, 
and range from majority lecture to student centered. Clusters 1 
and 2 are “didactic” and are primarily lecture based: Cluster 1 (dark 
green) has no student involvement except questions to and from 
students, while cluster 2 (green) sometimes incorporates clicker 
questions. Clusters 3 (light green) and 4 (lightest blue) are 
categorized as “interactive lecture” and include either other group 
activities or clicker questions in groups, respectively. Clusters 5, 6, 
and 7 (light blue, blue, dark blue) are “student-centered” class 
periods, with cluster 5 representing regular usage of group work, 
cluster 7 slightly less usage, and cluster 6 including group 
worksheets and one-on-one assistance from the instructors. 
Instructors are organized from most didactic to most student 
centered on the y-axis. Blank spaces indicate when only four 
observations of a particular instructor occurred.
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Student Predictions about the In-Class Time of Their 
Introductory College STEM Courses
There was a wide range of student predictions for the percent of 
class time that would be dedicated to lecture (Figure 1) and 
what experiences students used to inform their predictions, 
including the first days of class (Table 3). However, students 
generally predicted that the majority of their in-class time 
would be spent listening to lecture, but still underpredicted the 
amount of lecture they would actually experience (Figure 2). 
This underprediction of the amount of lecture was more pro-
nounced for first-semester and first-generation students. These 
results are consistent with previous studies of first-semester stu-
dents who predicted more active learning in a course than their 
upper-class peers (Messineo et al., 2007; Brown et al., 2017).

Differences in student predictions is of interest to educa-
tors and researchers, as first-generation students leave STEM 
majors at higher rates than their peers, and students overall 
leave STEM majors at high rates after their first year of intro-
ductory courses (Chen, 2013; Eagan et al., 2014). The predic-
tions from first-semester and first-generation students reveal 
that students from various backgrounds may perceive college 
courses differently, which could be indicative of larger discon-
nects in their college experiences. For example, most first-
semester students likely recently experienced more active 
learning in their high school courses (Akiha et al., 2018), and 
they may expect their college courses to be similar to their 
high school courses (Lowe and Cook, 2003). Similarly, 
first-generation students may have less overall familiarity 
with the norms of college, in particular of faculty expectations 
(Collier and Morgan, 2008), or with the study skills needed 
to succeed (Horowitz, 2019). First-generation students may 
require more time than their peers to understand faculty 
expectations within courses and may also continue to expect 
that their college courses will be more similar to their high 
school courses.

There are at least two ways instructors can address the dis-
connect between student predictions and student experiences: 
1) talk more explicitly to students about the instructional prac-
tices in the course and 2) change instructional practices in intro-
ductory courses to include less lecture and more active learning. 
These two responses are aligned with the service quality frame-
work recommendations of using student feedback to inform 
how instructors can better manage expectations and improve 
instruction (Hill, 1995). Furthermore, both of these responses 
do not require instructors to explicitly focus on particular demo-
graphic groups in class, but rather use approaches that could be 
beneficial to all students in a variety of course sizes.

Talking to Students about Course Instructional Practices
Although instructors may not know what assumptions individ-
ual students are making about how class time will be spent, 
they can be fairly confident that there is a mix of student expec-
tations in their classroom on the first day, with some students 
expecting their college courses to use instructional practices 
similar to those used in their high school courses. Encouraging 
instructors to be explicit and deliberate in their explanations 
and activities during the first day of class can set the tone for 
what instructional practices students can expect during the 
semester (Gaffney and Whitaker, 2015). Our data reveal that 
students use within-course experiences such as syllabi, course 
websites, or instructor talk and actions during the first day of 
class to inform their expectations (Table 3). Moreover, aligning 
student expectations early on is recommended as a way to 
increase student buy-in and student engagement with 
active-learning practices (Brazeal et  al., 2016; Brazeal and 
Couch, 2017; Cavanagh et al., 2016; Tharayil et al., 2018). For 
example, instructors can describe that they are using 
active-learning techniques such as clicker questions with peer 
discussion or small-group discussion activities because these 
techniques have been shown to decrease failure rate and 

FIGURE 4.  Scatter plots of in-class time spent lecturing reported by students (y-axis) compared with the average observed percent of 
2-min intervals that contained lecture for that course (x-axis). Each dot represents perceptions or predictions from one student, increased 
opacity indicates that several students reported similar percents of time. (A) Midsemester perceptions, regression line 0.94x – 7.3, R² 0.26. 
(B) First-week predictions, regression line 0.48x + 26.26, R² 0.08.
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increase learning (Freeman et al., 2014; Ballen et al., 2017). In 
addition, faculty can show summary data (Wieman, 2014) 
and/or assign articles about the benefits of active learning 
written for a general audience for their first week reading 
(Bajak, 2014; Wieman, 2014). Notably, professional develop-
ment programs and general advice articles (Lang, 2019) give 
recommendations for how to structure the first day of class to 
set student expectations, but more research is needed on what 
instructors do during the first day, how often introductory 
instructors mention changes from high school to college, and 
how the information emphasized impacts students.

Changing Instructional Practices in Introductory Courses 
to Include Less Lecture and More Active Learning
In addition to being explicit about their instructional practices, 
introductory STEM course instructors could also increase the 
amount of active learning. Our work, along with that of Brown 
et al. (2017) and Messineo et al. (2007), suggests that introduc-
tory students would be amenable to more active learning in 
their courses. The addition of more active learning would both 
better align with the expectations of first-semester and first-gen-
eration students (Figure 2) and would likely improve student 
pass rates and learning outcomes (Freeman et al., 2014), partic-
ularly for first-generation and URM students (Eddy and Hogan, 
2014; Ballen et  al., 2017). Beyond increasing course perfor-
mance, active learning can promote inclusive teaching practices 
and has been shown to increase student self-efficacy (Ballen 
et al., 2017), which is another known factor that contributes to 
STEM retention (Lent et al., 2008; Sawtelle et al., 2012). Fur-
thermore, using active learning promotes student–student 
interactions, which provide specific benefits for first-generation 
students, who often interact less with their teaching teams, aca-
demic support staff, and fellow classmates (Yee, 2016).

Student predictions of more active learning than they are 
experiencing are notable, because the discipline-based educa-
tion literature has focused on how student resistance to active 
learning is a barrier (Seidel and Tanner, 2013). Instructors 
often expect students to resist active learning and cite this per-
ceived student resistance as a reason for not incorporating more 
individual and group work into their classrooms (Felder and 
Brent, 1996; Michael, 2007). One lens that has been used to 
investigate the interactions between student predictions, stu-
dent perceptions, and instructional practices is expectancy vio-
lation theory (Burgoon, 1978). This theory was originally 
developed in studies of psychology about personal space and 
suggests that, when an event differs from what was predicted, 
expectations are violated, which may impact one’s experience. 
In the discipline-based education research literature, it has been 
used as a framework to examine the implications of student 
expectations (Gaffney et al., 2010; Brown et al., 2017) and has 
most often been discussed in relation to student resistance to 
active-learning practices (Gaffney et al., 2010; Seidel and Tan-
ner, 2013; Keeley, 2014). For example, instructors who wish to 
add more active learning to their courses often express concern 
about violating their students’ expectations of what a “typical” 
college course should look like (i.e., predominantly lecture). 
Our survey data suggest that faculty in introductory courses are 
violating student expectations by lecturing more than is 
expected, and these results could be used to encourage addi-
tional course transformations.

The Impact of Course Size on Student Expectations
The variable that had the largest impact on student predictions 
was course size (Table 4), with students in the large class sizes 
predicting and experiencing the most lecture (Figures 2 and 3). 
These results align with a national trend that students in larger 
classes experience more lecture (Stains et al., 2018). The num-
ber of students in large courses can seem like a barrier to imple-
menting in-class problem solving or active-learning strategies 
(Michael, 2007). However, students cite that instructors can 
make large courses feel like small ones by using instructional 
practices such as group work (Cash et al., 2017). Furthermore, 
there are large STEM courses that have successfully imple-
mented individual and small-group work in their classrooms for 
up to 1000 students (Exeter et  al., 2010; Deslauriers et  al., 
2011; Ballen et al., 2017). Resources such as Allen and Tanner 
(2005) provide strategies for faculty interested in implementing 
active learning into large courses. In addition, faculty profes-
sional development programs can focus on providing support 
for using active learning in large-enrollment classes, and uni-
versities can work to highlight large-enrollment active-learning 
courses to attract potential new students.

Future Directions
Previous research about retention in STEM revealed that stu-
dents who leave STEM majors are often dissatisfied with the 
instructional practices they experienced (Seymour and Hewitt, 
1997). As instructors make changes to their courses to more 
explicitly set and better meet student expectations, investiga-
tions that include student interviews could provide additional 
insights into student perceptions of instructional practices, in 
particular for large introductory courses. Interviews with stu-
dents who have large differences between how much lecture 
they predict and receive could reveal the extent to which dis-
crepancies in expectations impact personal experiences in a 
course. Furthermore, as more courses incorporate active learn-
ing, it will be interesting to explore whether these changes 
impact student expectations. Future longitudinal studies are 
needed to track how student predictions about instructional 
practices correlate with retention in STEM majors. Specifically, 
it is important to explore whether or not students whose predic-
tions are more closely aligned with teaching practices are more 
likely to persist in STEM than those whose predictions are less 
aligned. Additionally, it is important to conduct similar studies 
of student expectations and instructional practices at primarily 
undergraduate institutions and community colleges. The preva-
lence of lecture at research-intensive institutions has been doc-
umented on a national level (Stains et al., 2018), and yet we 
identified a disconnect between student expectations and expe-
riences. Given the consistency of our results across three institu-
tions, we would predict similar findings at primarily undergrad-
uate institutions and community colleges, but the potential for 
smaller class sizes and emphasis on student–faculty connec-
tions could reveal variations in student expectations and/or fac-
ulty teaching practices.

The type of survey data that we collected, which ranges 
across multiple universities and disciplines, is useful for identi-
fying general trends in student thinking. However, it is also 
important to consider how these data can be used by faculty to 
promote change for individual introductory STEM course 
instructors. While many faculty care about student thinking and 
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want to explore data (Hora et al., 2017), few have personal or 
institutional systems that support their attempts. Rather, most 
faculty deal with data on their own without collaboration from 
colleagues or experts (Hora et  al., 2017). Therefore, one 
approach to addressing these factors and sharing data with fac-
ulty is through faculty learning communities (FLCs), which are 
small groups of faculty who meet regularly over the course of a 
year to discuss and reflect on a common goal (Cox, 2004). Top-
ic-based FLCs that address a specific issue or concern, such as 
the transition from high school to college STEM courses, enable 
faculty to work together to devise solutions. Furthermore, FLCs 
can inform instructional practices and improve student learning 
(Pelletreau et al., 2018).

CONCLUSION
Our survey- and observation-based study of student predictions 
and experiences within introductory STEM courses shows that 
first-generation and first-semester college student predictions 
are less well aligned with actual teaching practices than those 
of their peers. In addition, course size has a large influence on 
student predictions of the amount of lecture time, and students 
in medium and large STEM courses underpredict the amount of 
class time they will spend listening to lecture. Encouraging 
introductory STEM instructors to talk more explicitly to stu-
dents about the instructional practices in the course and use 
active learning could help students more successfully navigate 
the transition between high school and college and pursue their 
intended STEM majors.
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