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ABSTRACT
The creation and analysis of models is integral to all scientific disciplines, and modeling 
is considered a core competency in undergraduate biology education. There remains a 
gap in understanding how modeling activities may support changes in students’ neural 
representations. The aim of this study was to evaluate the effects of simulating a model on 
undergraduates’ behavioral accuracy and neural response patterns when reasoning about 
biological systems. During brief tutorials, students (n = 30) either simulated a computer 
model or read expert analysis of a gene regulatory system. Subsequently, students under-
went functional magnetic resonance imaging while responding to system-specific ques-
tions and system-general questions about modeling concepts. Although groups showed 
similar behavioral accuracy, the Simulate group showed higher levels of activation than 
the Read group in right cuneal and postcentral regions during the system-specific task and 
in the posterior insula and cingulate gyrus during the system-general task. Students’ be-
havioral accuracy during the system-specific task correlated with lateral prefrontal brain 
activity independent of instruction group. Findings highlight the sensitivity of neuroim-
aging methods for identifying changes in representations that may not be evident at the 
behavioral level. This work provides a foundation for research on how distinct pedagogical 
approaches may affect the neural networks students engage when reasoning about bio-
logical phenomena.

INTRODUCTION
Modeling is a skill that allows scientists to explore complex biological systems, synthe-
size scientific concepts, test hypotheses, generate causal explanations, and identify 
gaps in knowledge (Odenbaugh, 2005; Nersessian, 2009; Svoboda and Passmore, 
2013). Modeling and model literacy are considered core science competencies for 
primary to postsecondary students in the United States, and training in modeling and 
model-based reasoning is emphasized strongly in national standards for science edu-
cation (American Association for the Advancement of Science, 2011; Brown et al., 
2018). While models may take multiple forms, simulation-based models are gaining 
popularity in undergraduate life sciences education, because they allow students to 
experiment with mathematical and computational manipulations that expose the 
complex, nonlinear dynamics of biological systems (Abou-Jaoudé et al., 2016). For 
instance, students might construct a representation of a genetic operon on the 
computer, then manipulate components of the operon, viewing real-time changes to 
the system dynamics in graphical and numerical format as a result of their manipula-
tions. While recent reviews have examined the implications of modeling and 
model-based learning experiences for students’ behavioral understanding of scientific 
concepts and systems, including their drawn or written work related to modeling 
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(Louca and Zacharia, 2012; Seel, 2017), there are few studies 
on the neural mechanisms of scientific reasoning, let alone 
modeling (Brewe et al., 2018; Nenciovici et al., 2019). The 
current study addressed this gap by comparing the functional 
neural activity of undergraduate life sciences students who 
were briefly exposed to a modeling simulation activity versus 
traditional, reading-based instruction.

Modeling-based instruction (MBI) is a knowledge-building 
endeavor wherein students generate hypotheses about the 
mechanisms of scientific phenomena either through expert-pro-
vided, preconstructed models, or by generating their own test-
able models, and then interpret the results relative to the bio-
logical mechanisms (Windschitl et al., 2008). Coupling 
modeling with simulations allows students to evaluate the 
results of their model manipulations against expected out-
comes, that is to say, to retrieve prior relevant knowledge and 
connect it to new knowledge (Soderberg and Price, 2003; Seel, 
2017; Dauer et al., 2019). Theoretically, then, modeling can 
lead to deep disciplinary understanding as students integrate 
existing and new knowledge structures to build more sophisti-
cated, connected representations of biological systems and their 
interactions (Smetana and Bell, 2012; Mulder et al., 2016; Seel, 
2017). Accordingly, limited research suggests that undergradu-
ate science, technology, engineering, and mathematics (STEM) 
students exposed to MBI curricula show improved levels of con-
ceptual understanding, more sophisticated inquiry-based rea-
soning, and improved levels of knowledge about models, 
including their scientific purpose and utility (Bray Speth et al., 
2009; Brewe et al., 2009; Brewe and Sawtelle, 2018; Ogan-
Bekiroğlu and Arslan, 2014; Shen et al., 2014; Helikar et al., 
2015). Much of the research on MBI has been qualitative and 
lacking a control or comparison population against which rela-
tive impacts or effect sizes can be compared. There is a need for 
rigorous research both to quantify the effects of MBI relative to 
other pedagogical techniques and to articulate the mechanisms 
by which MBI might enhance student learning.

Previous research on MBI found that students initially focus 
on components, that is, the individual nodes within the models 
that describe the organisms or molecules that are interacting 
(Hmelo-Silver, 2004). With repeated modeling practice, stu-
dents increasingly focus on the relationships among compo-
nents within the model as they shift toward the interactive 
dynamics of these components (Hmelo-Silver, 2004; Dauer 
et al., 2013; Bergan-Roller et al., 2020). In a study comparing 
student dyads who constructed computational models with 
those who ran simulations with preconstructed computational 
models, there were few differences in postlesson conceptual 
models between the groups (King et al., 2019a). Instead, differ-
ences emerged in the cognitive processes employed during the 
lesson. Model simulation groups tended to rely on surface-level 
cognitive processes like paraphrasing and analyzing and 
focused their discussions on identifying components and rela-
tionships of the model rather than determining the causal 
mechanisms from the relationships. Model construction groups, 
in contrast, focused more on the underlying causal relations 
among system components, suggesting that the application of 
more complex inductive and evaluative reasoning about system 
dynamics can be fostered through modeling-based pedagogical 
techniques. Overall, then, findings suggest that the effects of 
MBI are not always evident in simple measures of student per-

formance on conceptual modeling tasks, but instead may man-
ifest in the engagement of different strategies or modes of 
reasoning.

The Roles of Hypothesis Generation and Causal Reasoning 
in Modeling
Both hypothesis generation (“the outcome of a system pertur-
bation will be X because of Y”) and causal reasoning (“when X 
changes, Y and Z change because X is linked to Y and Z 
through…”) are critically relevant to student modeling of com-
plex biological systems (Sweeney and Sterman, 2007; Wind-
schitl et al., 2008). In the context of modeling, causal reasoning 
encompasses the idea that changes in the abundance of compo-
nents or strength of relationships within a biological system will 
have direct and indirect effects on other system components 
and on overall system function (Grotzer et al., 2017). Causal 
reasoning is often the first step in understanding how system 
components interact (Fugelsang and Mareschal, 2014). From a 
cognitive neuroscience perspective, causal reasoning encom-
passes flexible attentional shifting (from perturbation to target 
effects), retrieval of prior knowledge about system components 
and relationships, and dynamic processing of system observa-
tions in relation to prior knowledge (Nenciovici et al., 2018). 
Modeling-based instructional activities allow students to 
explore the outcomes of perturbations through manipulations 
of system components and therefore are likely to inspire the use 
of causal reasoning as students evaluate and explain these 
effects.

Similarly, hypothesis generation using models involves pre-
dicting system behaviors and observing outcomes based on 
these predictions. Students must retrieve knowledge of the sys-
tem, infer or retrieve relationships among components in the 
system, and evaluate the consequences of the associations. Löh-
ner et al. (2005) compared student groups who used graphical 
interfaces with those who read about physics phenomena and 
found that the former developed more qualitative hypotheses 
and follow-up experiments, while the latter tested hypotheses, 
but failed to update these hypotheses based on observations. 
Behaviorally, students were better prepared to generate hypoth-
eses if they practiced this skill as opposed to just receiving an 
explanation of what hypothesis testing involves (Kwon et al., 
2009). These studies suggest that active model manipulation 
and testing encourages students to engage in hypothesis gener-
ation to a greater extent than simple, direct instruction.

Learning Transfer from System-Specific Contexts to 
System-General Contexts
Although existing literature suggests that MBI inspires the use 
of more complex forms of reasoning and hypothesizing with 
respect to the modeled system, an unanswered question is the 
extent to which MBI promotes the transfer of learning to new, 
unencountered biological systems. Theoretically, the emphasis 
of MBI on the dynamic interactions among system components 
should encourage students to generalize understanding of com-
plex inhibitory or excitatory transactions to novel systems. By 
learning about inhibitory feedback loops in one genetic system, 
for instance, students may be more likely to understand how 
inhibitory feedback loops regulate biological systems at a more 
general level. This transfer of information from one system to 
another likely places high demands on analogical reasoning, or 
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the appreciation of underlying relations between two systems 
that appear different at the surface level (Luo et al., 2003; 
Fugelsang and Mareschal, 2014; Vendetti et al., 2015). Such 
analogical reasoning relies on the ability to align representa-
tions or relationally map the novel and familiar systems and 
abstract the commonalities across these systems (Gentner and 
Colhoun, 2010). The question of whether model-based learn-
ing encourages such relational abstraction is critical, given that 
transfer of learning to new contexts is a central goal in under-
graduate education.

Neuroimaging as a Tool to Evaluate the Effects of STEM 
Instructional Interventions
While intensive qualitative analysis of behavioral data has 
yielded insight into the effects of MBI on students’ use of differ-
ent strategies and reasoning processes, neuroimaging offers a 
novel means of understanding how experiences with MBI may 
impact student processing at the more direct level of the brain. 
Functional magnetic resonance imaging (fMRI) is a particularly 
powerful tool for evaluating changes in the spatial distribution 
of neural activity in response to instruction. Characterization of 
the neural networks involved in scientific reasoning is a rela-
tively new endeavor, although studies from the last 25 years 
have established the ability of fMRI to provide insight into the 
neural bases of scientific reasoning and the effects of different 
instructional formats on these neural mechanisms (e.g., Mas-
son et al., 2014; Kontra et al., 2015; Mason and Just, 2015; 
Bartley et al., 2019; Schwettmann et al., 2019). For example, 
Kontra et al. (2015) used fMRI to examine the impact of differ-
ent instructional methods in physics. Undergraduates who 
actively manipulated objects not only showed greater behav-
ioral performance, but also increased blood oxygenation level–
dependent (BOLD) signal in the sensorimotor, superior pari-
etal, superior and inferior frontal, and superior temporal 
regions, relative to those taught using traditional, expository 
methods. The researchers argued that the experience of manip-
ulating objects afforded greater representation of the dynamic 
aspects of torque and angular momentum in sensorimotor neu-
ral regions, which then aided retrieval. This study illustrates the 
promise of fMRI for helping to clarify the mechanisms that 
make particular instructional techniques effective.

More recent studies have begun to examine the effects of 
MBI on students’ neural representations (Brewe et al., 2018). In 
one study, undergraduates exposed to an MBI-based physics 
curriculum subsequently showed increased BOLD activity in the 
posterior cingulate, left dorsolateral prefrontal cortex (PFC), 
angular gyrus, and frontal poles when answering physics prob-
lems. Because these areas have been linked to working memory 
and higher-level reasoning, the authors suggested that MBI 
might support students’ use of mental simulation and predic-
tion generation. Moreover, students used different neural net-
works during sequential phases of reasoning, drawing initially 
on brain regions associated with higher-level working memory 
and proceeding to regions linked to visual information process-
ing and memory retrieval (Bartley et al., 2019). Notably, this 
study involved pre- and postsemester MRI scans, as opposed to 
evaluating the effects of MBI relative to other forms of instruc-
tion. Nonetheless, the findings present the possibility that MBI 
may promote increased activity in prefrontal neural regions 
during subsequent model-based reasoning.

Potential Neural Mechanisms of Model-Based Instruction
Studies consistently have implicated lateral prefrontal areas in 
causal reasoning and inference (Fugelsang and Dunbar, 2005; 
Mason and Just, 2004). A meta-analysis of several reasoning 
and problem-solving studies indicated that these tasks gener-
ally activate a network encompassing the dorsolateral PFC, 
anterior cingulate and anterior insular regions, and posterior 
parietal regions (Bartley et al., 2018). In a study of undergrad-
uate students’ brain activity in response to conceptual reason-
ing in physics, students showed activity bilaterally in the dor-
solateral and lateral orbitofrontal PFC, although several other 
regions, including the posterior parietal, retrosplenial, poste-
rior cingulate, and lateral occipito-temporal regions, also were 
implicated (Bartley et al., 2019). Complex analogical reason-
ing tasks that involve the integration of multiple sources of 
information elicit activity in the most rostro-lateral regions of 
the PFC (Green et al., 2006; Krawczyk et al., 2011; Watson and 
Chatterjee, 2012). While fewer studies have examined the 
neural bases of hypothesis generation, experts in biological 
hypothesis generation show greater functional connectivity 
than novices across the middle frontal, superior and middle 
temporal, middle occipital, parahippocampal, and lingual cor-
tex regions (Lee, 2012). Moreover, undergraduate students 
showed increased activity in the left inferior and superior fron-
tal gyri after training in hypothesis generation relative to a 
control group (Kwon et al., 2009). Given behavioral evidence 
that MBI can facilitate causal reasoning and hypothesis gener-
ation, we hypothesized that exposure to a modeling-based 
instructional intervention would elicit greater activity in lat-
eral prefrontal regions that consistently have been associated 
with these cognitive processes relative to a traditional, read-
ing-based intervention.

Against this background, we examined the behavioral and 
neural impacts of simulating a computational model versus 
reading about the dynamics of a biological system. We asked 
two behavioral research questions: 1) Do students who read 
about a biological system perform differently than students 
who simulate the system on a short-term system-specific recall 
and reasoning test? 2) Do students who read perform differ-
ently than students who simulate on a test requiring them to 
generalize understanding of dynamic system properties to an 
abstract system? We also asked one primary neural research 
question: Are there differences in the neural responses of stu-
dents who read vs. those who simulate when subsequently per-
forming system-specific and system-general tests?

Given the short-term, accuracy-based nature of our behav-
ioral assessments, we expected few behavioral differences 
between the two instructional groups, further exacerbated by 
the small sample sizes inherent to MRI studies. Based on previ-
ous behavioral findings (King et al., 2019a), however, we 
expected there would be differences in cognitive processing 
during the lesson that would manifest as neural response differ-
ences during subsequent biological reasoning. Given the high 
demands that modeling places on hypothesis generation and 
causal reasoning, we expected that model simulation would 
lead to differences in the use of lateral prefrontal neural regions 
linked to these cognitive processes. We also expected the Simu-
late group to show greater transfer of reasoning from the spe-
cific genetic system they studied to more abstract, generalized 
modeling concepts. At the neural level, we hypothesized that 
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this increased transfer would manifest as increased activity in 
the rostro-lateral PFC in this group, given the reliance of trans-
fer upon analogical reasoning.

METHOD
Participants
Participants included 30 undergraduate students enrolled in an 
introductory life sciences course (LIFE 120) at the University of 
Nebraska–Lincoln in the United States. Students were recruited 
through class announcements. All activities took place between 
weeks 4 and 10 of the semester, after students had been intro-
duced to the computational modeling platform but before they 
had covered the specific instructional content used in the study. 
Students were carefully screened to ensure that they did not 
have a learning disability, attention-deficit/hyperactivity disor-
der, experience of concussion or another neurological diagno-
sis; that they were right-handed; and that they had no condi-
tions that contraindicated MRI. In terms of describing our 
sample, 60% of those recruited were first years, 33% were soph-
omores, and 3% were seniors. Thirteen percent were first-gen-
eration students. The majority of students (87%) were white, 
two (7%) were African American, one (3%) was Asian, and one 
(3%) was Hispanic. All students were native English speakers, 
and 47% were male. Reported ACT scores ranged from 19 to 34 
(M = 27). Students were randomly assigned to the model simu-
lation (Simulation) or control (Read) conditions, as described 
later. Only two students (one per condition) indicated they had 
previously taken biology or anatomy courses. As shown in Table 
1, groups did not differ significantly in their demographic 
characteristics.

Procedure
Procedures were approved by a university institutional review 
committee (IRB 20170917322 EP), and all participants pro-
vided written, informed consent to participate. Students were 
paid $40 upon completion of the study. Students attended a 
2-hour appointment at the university’s imaging center, where 
one of the authors (C.A.C.C.) explained lesson activities to stu-
dents and provided them with necessary materials (see Supple-
mental Material for these activities). Students then completed 
the lesson module independently in a quiet room. Students 
were allowed approximately 75 minutes to work on lesson 
activities. The lesson used in this research study is nearly iden-
tical to the published version (Crowther et al., 2018) minus the 
student-constructed model portion. The two instructional con-
ditions were as follows:

Read condition: Students in the Read group were provided 
with an introductory reading about prokaryote gene regulation, 
specifically the lac operon. The reading outlined the learning 
objectives for the module and detailed key concepts of gene 
expression (e.g., the idea that some gene products are regulated 
in their abundance and timing). The reading then provided 
information about the components of the lac operon and the 
way that they interact to support lactose metabolism. Students 
were provided with a table in which they identified the positive 
and negative regulators (also called activation/inhibition mech-
anisms) within the system and explained their relationships. 
Thereafter, students read the answers to several example sce-
narios that applied understanding of the lac operon. For exam-
ple, students were provided with a model and scenario in which 
only lactose was present, followed by a summary of how the 
presence of lactose would affect other components within the 
lac operon.

Simulate condition: Students in the Simulate group were pro-
vided with an introductory reading and positive/negative regu-
lators table identical to those supplied to the Read group. How-
ever, rather than reading a written summary of the effects of 
manipulations to the lac operon system, they used the online 
Cell Collective platform (https://cellcollective.org; Helikar 
et al., 2012, 2015) to interact with and test the model. The Cell 
Collective software was designed to make computational mod-
eling and simulations broadly accessible in life sciences research 
and education, regardless of the user’s prior modeling experi-
ence. The home page of the software allows students to select 
and access either the research or the education side of the plat-
form. The education-focused area of Cell Collective provides 
access to scaffolded, interactive modeling and simulation activ-
ities focused on nearly 15 different topics (Bergan-Roller et al., 
2017; King et al., 2019b). Students in this study used a compu-
tational model of the lac operon (Crowther et al., 2018) to 
make predictions, test scenarios, and respond to questions 
about model components and interactions. For example, Cell 
Collective allowed students to manipulate levels of lactose and 
glucose within the computational model and test the effects of 
mutations to specific genes. As they worked, students received 
diagrammatic feedback from the simulation regarding the 
effects of their manipulations on component activation, like lac 
operon transcription. Students wrote responses to questions 
regarding the effects.

Magnetic Resonance Imaging Protocol. Following the com-
pletion of instructional activities, students underwent MRI in a 
3 Tesla Siemens Skyra scanner (Siemens AG, Erlanger, Ger-
many). Students were provided with ear protection, directed to 
recline on the scanner bed, and fitted with a 32-channel head 
coil. A mirror on the head coil allowed students to view task 
stimuli on a projection screen. First, a T1-weighted single-shot 
magnetization prepared rapid-acquisition gradient echo-pulse 
sequence was acquired (TR = 1 s, TE = 2.95 ms, voxel size = 
1 mm3, flip angle = 9°, field of view [FOV] = 270, 176 sagittal 
slices). This was followed by two T2*-weighted echoplanar 
imaging runs (TR = 1 s, TE = 25 ms, 3 mm3 voxels, flip angle = 
90°, FOV = 224 mm), during which students answered ques-
tions using a response pad.

TABLE 1. Demographic characteristics of Simulate and Read 
groups

Group

p
Read  

(n = 15)
Simulate  
(n = 15)

N (%) male gender 8 (57) 6 (43) 0.25

N (%) white, non-Hispanic 12 (80) 14 (98) 0.36
N (%) first year statusa 8 (53) 10 (67) 0.45
M (SD) ACT scoreb 26.6 (3.63) 27.3 (3.79) 0.61
aOne student did not report year.
bThree students did not report ACT scores.
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Functional Magnetic Resonance Imaging Task. There were 
two runs of scanning, the first comprising the system-specific 
task, which included questions about the lac operon, and the 
second comprising abstract, system-general questions about 
broader modeling concepts. In both tasks, students read and 
answered questions (trials) about model dynamics (hereafter 
referred to as model-based trials) and also completed control 
trials. For each model-based trial, students saw a diagram of 
and read a question related to the system-specific or system-gen-
eral model over a period of 16 seconds (see Figure 1 for task 
description). During this time, it was not possible for students 
to make a response, but the question and response options were 
visible and outlined in a gray-colored box. The 16-second 
reading interval was based on pilot tests, which showed that 
students required a lengthy time period to read and process 
stimuli. Thereafter, the box turned green and students were 
allocated a maximum of 30 seconds to press a button on the 
right or left side of a response pad corresponding to their 
answer. For both the system-specific and system-general tasks, 
model-based trials were administered in the same order for all 
participants, although two versions of the tasks with varying 
orders for the control trials were created.

System-Specific Task. The eight system-specific model-based tri-
als involved thinking about manipulations to the previously 
studied lac operon system (e.g., the effects of a mutation on a 
system component) and required a two-choice response 

(Active/Inactive or Correct/Incorrect; see Supplemental Mate-
rial for a complete list of questions). Three of the trials were in 
a format asking students to either recall the relationship or per-
form simple direct reasoning between components, whereas 
five questions required more sophisticated reasoning about why 
a particular component would be active/inactive. Students also 
completed control trials that included questions with similar 
vocabulary as the model-based trials and a requirement to 
respond using the button box. However, the control trials did 
not include any biology- or model-based reasoning. Given the 
visual complexity of the model-based trials, we also input the 
model-based and control trial stimuli into MATLAB and 
randomized the pixels in each image to generate meaningless 
baseline stimuli that had color and luminance properties similar 
to those of the model-based trials. These baseline stimuli were 
presented between trials for jittered time intervals ranging from 
5 to 20 seconds to enhance efficiency and mitigate trial antici-
pation effects (Poldrack et al., 2011).

System-General Task. The second task focused on students’ abil-
ity to transfer their reasoning about system dynamics to a more 
abstract, general system of interacting components. Mod-
el-based trials were organized similarly to the system-specific 
trials, with increasing numbers of components, interactions, 
and “distance” between perturbation and effect. The structure 
of questions in the system-general task differed somewhat from 
the specific task, as the requirement was to transfer the 

FIGURE 1. Description of the fMRI paradigm used in the study, showing (A) examples of system-specific model-based and control trials, 
(B) examples of system-general model-based and control trials, and (C) a general timeline for the trials. ISI: inter-stimulus interval.
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reasoning about how interactions of excitatory and inhibitory 
relationships result in active/inactive components. Instead of 
using known components from the computational modeling 
lesson (e.g., lactose, CAP), letters of the alphabet (e.g., “A” and 
“B”) were substituted and arrow representations (e.g., inhibi-
tory, activation) remained the same. Letters were highlighted 
with color to indicate whether they represented active or inac-
tive components, and students were required to determine 
whether other letters within the model would be active or inac-
tive based on the feedback dynamics depicted (see Figure 1 and 
Supplemental Material). Control trials also comprised high-
lighted letters but required students to simply answer whether 
the component the letter represented was active or inactive, 
based on the letter’s color. Baseline trials were created in the 
same way as for the system-specific trials. For each student, 
depending on response times, between 443 and 497 volumes of 
data were acquired for the system-specific task and between 
496 and 517 volumes were acquired for the system-general task 
after removing the first five volumes of each task to adjust for 
steady-state magnetization.

Statistical Analyses
Group differences (Read vs. Simulate) in behavioral accuracy, 
measured as correct (1) and incorrect (0) trials, were analyzed 
for each task using a generalized linear regression model with a 
logit link function and binomial error distribution. A Wald test 
was used to determine whether students selected a correct 
response at levels greater than chance. One student in the Read 
group achieved accuracy scores of 0 for all model-based trials in 
the system-specific task and was therefore excluded from both 
behavioral and fMRI analyses for this task. We did not evaluate 
differences in response time, given that all students were pre-
vented from making a response for 16 seconds until cued. A 
statistical threshold of p = 0.05 was used for behavioral 
analyses.

MRI data were analyzed separately for each fMRI task using 
the FMRIB software library v. 6 (Jenkinson et al., 2012). Prepro-
cessing involved skull stripping the T1 images using the Brain 
Extraction Tool (Smith, 2002), realignment, boundary-based 
registration to the structural T1 image (Jenkinson and Smith, 
2001), high-pass filtering at 60 s, linear registration with 12 df 
to the Montreal Neuroimaging Institute (MNI) 2-mm template, 
and smoothing to a 5-mm Gaussian kernel.

The statistical analysis of task-related fMRI data typically 
entails a “mass univariate approach,” to the general linear 
model (GLM), where, for each small, three-dimensional seg-
ment (called a “voxel”) in each volume of the brain, the tempo-
rally organized BOLD signal measurements are regressed on 
timing parameters for each trial of the task, that is, the trial 
onset and duration. To provide a more authentic characteriza-
tion of the hemodynamic response to sensory stimuli, trial 
onsets are convolved with a prototypical inverted U-shaped 
function. In this study, we used a gamma function and its tem-
poral derivatives. We modeled the first 16-second reading phase 
of each trial separately from the phase in which students were 
cued to make their response. Response phases were treated as 
nuisance regressors of no interest so that analyses concentrated 
on equivalent 16-second time periods for each trial. Estimates 
of the parameters used to align each fMRI volume relative to 
the middle volume of the run, known as motion regressors, also 

were included in the subject’s GLM design matrix to statistically 
correct for subject motion. In addition, we used FMRIB’s (Jen-
kinson et al., 2012) motion outliers function to identify time 
points with large motion artifacts (>0.5-mm framewise dis-
placement) and remove their effects from the GLM design 
matrix.

For each participant, we derived regression parameters for 
brain activity during the reading phase of model-based trials 
relative to baseline (model > baseline). We also conducted a 
more stringent contrast of estimates for model-based trials ver-
sus control trials (model > control trials). Note that these param-
eters provide different information regarding neural effects. The 
first contrast provides a measure of change in brain activity 
during model-based trials relative to baseline brain activity. 
These estimates therefore incorporate all neural activity related 
to reading, visual processing, and anticipating a response. The 
model-based > control trial contrast provides an estimate of 
brain activity for the model-based trials over and above brain 
activity associated with reading and response anticipation pro-
cesses that also were embedded in the control trials. This latter 
contrast therefore provides a purer estimate of neural activity 
associated specifically with processing biological models.

The resulting estimates for each participant were then 
passed to a second-level, group phase of analysis. Group analy-
ses were carried out using FMRIB’s Local Analysis of Mixed 
Effects tool. In all of the group-level mixed models, participant 
self-reported gender and average accuracy for all model-based 
trials were included as mean-centered statistical covariates. The 
GLM therefore allowed us to identify spatial clusters where, on 
average, students’ BOLD responses differed significantly during 
model-based trials relative to 1) baseline or 2) control trials. 
The estimates for the Simulate and Read groups were compared 
using independent t tests. We also examined the relation of stu-
dents’ average behavioral accuracy to their brain activity for 
each of the contrasts. We used a cluster-defining threshold of 
Z = 3.1 (p < 0.001) and a cluster-corrected significance thresh-
old of p < 0.05 as the cutoff for significance. For illustrative 
purposes only, maximum parameter estimates shown in figures 
were extracted using FMRIB’s (Jenkinson et al., 2012) Featquery 
tool using cluster masks derived from the group analyses. The 
Talairach Client (Research Imaging Institute, 2009) was used to 
provide anatomical labels (within a range of 2 mm) associated 
with peak statistical coordinates.

RESULTS
Variation between Read and Simulate Groups
System-Specific Task. Table 2 describes the behavioral accu-
racy of each group during the fMRI tasks. As shown, during the 
system-specific task, students correctly answered most control 
trials. For the model-based trials, students performed signifi-
cantly better than chance (Z = 2.71 [df = 28], p < 0.001), and 
there was no significant group effect (Z = 0.57 [df = 28], p = 
0.57) with students’ predicted probability of a correct response 
being similar across the groups (Read = 63% [confidence limit 
= 4.4%], Simulate = 66% [confidence limit = 4.5%]; Figure 2).

For the fMRI system-specific task, the sample of students as 
a whole showed activation across widespread neural regions, 
including the cerebellum, middle and superior frontal gyri, 
and caudate nucleus for the model-based > baseline contrast 
(Table 3A and Supplemental Figure S1). For this contrast, the 
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Simulate group showed greater BOLD activity than the Read 
group in the cuneus, as well as in the right postcentral gyrus, 
extending into the inferior parietal lobule (Table 3B and Figure 
3). For the model-based > control trial contrast, the whole sam-
ple of students showed activation in the bilateral precuneus and 
lingual gyri, extending through parahippocampal regions (Table 
3C and Supplemental Figure S2). However, there were no sig-
nificant group differences for this more stringent model-based > 
control trial contrast (Table 3D). In summary, while there were 
no differences in behavioral accuracy between the groups, 
groups did show differences in neural activity relative to base-
line when they processed system-specific model-based trials.

System-General Task. During the system-general task, all stu-
dents correctly answered all control trials. Students performed 

no better than chance for the model-based trials (Z = −0.37 [df 
= 28], p = 0.72), and there was no significant group effect (Z = 
0.93, p = 0.35) with the predicted probability of a correct answer 
being similar across the two groups (Read = 48% [confidence 
limit = 4.6%], Simulate = 54% [confidence limit = 4.7%]; 
Figure 2).

During the system-general task, students showed activation 
across a number of neural regions for the model-based > base-
line contrast, including in the medial and middle frontal gyri, 
posterior cingulate, and thalamus (Table 4A and Supplemental 
Figure S3). There were no group differences for this contrast 
(Table 4B). For the more stringent model-based > control con-
trast, both groups combined showed increased BOLD activity in 
middle and medial frontal regions, as well as in the insula and 
cerebellum (Table 4C and Supplemental Figure S4). The Simu-
late group showed a higher level of activity than the Read group 
in the right posterior insula, extending into the inferior parietal 
lobule, as well as in the left posterior cingulate gyrus (Table 4D 
and Figure 4). In summary, while there were no differences in 
the behavioral accuracy of the groups, groups did differ in the 
neural regions deployed when considering model-based rela-
tive to control trials.

Variation in Individual Students’ Behavior 
and Neural Patterns
Students’ mean behavioral accuracy for the model-based trials 
of the fMRI tasks was included as a covariate in the GLM anal-
yses for each task, allowing us to evaluate the association of 

accuracy with brain activity. Independent 
of instructional group, this regressor was 
associated with students’ BOLD response 
patterns during the system-specific task. 
Specifically, for the model-based > control 
trials, higher mean accuracy was related to 
increased activity in bilateral middle fron-
tal regions (Figure 5 and Supplemental 
Table S1). In contrast, behavioral accuracy 
for the system-general task did not relate 
significantly to brain activity during per-
formance of that task.

DISCUSSION
Teaching university biology steeped in sys-
tem dynamics requires knowledge of how 
students develop their abilities to concep-
tually relate the components of biological 
systems and the dynamics of the system, 
processes that likely draw on hypothesis 
generation and causal reasoning skills that 
have been linked to lateral prefrontal brain 
regions (Nenciovici et al., 2018). This 
study makes a unique contribution to 
knowledge on educational neuroscience 
and life sciences instruction by showing 
that a short, modeling-based instructional 
intervention produced differences in func-
tional brain activity, even when behavioral 
measures of learning were similar between 
the instructional groups. Group differences 
in neural activity were evident when 

FIGURE 2. Predicted probability (±95% confidence interval, calculated as 1.96*SE) of 
correctly responding for Read and Simulate groups, distinguished by system-specific tasks 
related to the lac operon system and system-general task related to an abstract system 
(see Figure 1). Students performed significantly better than chance on the system-specific 
task and no different than chance on the system-general task.

TABLE 2. Mean fMRI task accuracy (total correct trials) for Simulate 
and Read groups

Group

p
Read M  

(SD)
Simulate M  

(SD)

System-specific model-based trials 5.2a (1.47) 5 (1.89) 0.75
System-specific control trials 6.53 (1.85) 6.8 (1.26) 0.49
System-general model-based trials 4.36 (0.84) 3.87 (1.30) 0.24
System-general control trials 8 (0) 8 (0) — b

aThere were eight trials for each task.
bThe t test was not valid, because neither group had variance > 0.
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students were evaluating the specific sys-
tem they had learned about, as well as in a 
task that involved transferring this learn-
ing to general biological system dynamics. 
These differences, however, were not in 
the hypothesized lateral prefrontal regions. 
Instead, students’ behavioral accuracy 
during the system-specific task correlated 
with brain activity in bilateral middle fron-
tal regions independent of mode of instruc-
tion, highlighting a need for research to 
understand this interstudent variation and 
how it can be leveraged to support effec-
tive teaching.

Behavioral and Neural Differences 
between Read and Simulate Groups 
during the System-Specific Task
The computational modeling lesson was 
designed to support student exploration 
of the lac operon system and evaluation 
of the likelihood of specific events as a 
result of manipulations of that system. 
The system-specific fMRI task challenged 
students to decide between plausible and 
implausible causal explanations of envi-
ronmental conditions and perturbations 
to that same system. Students completing 
the computational modeling lesson 
invested differently from the Read group 
in understanding the system dynamics, 

FIGURE 3. Regions where students in the Simulate condition showed higher levels of 
activation than Read students for model-based trials in the system-specific task (mod-
el-based > baseline; Simulate > Read). Note that there were no group differences for the 
model-based > control trial contrast in this system-specific task. For illustrative purposes, 
bar graphs reflect the group average maximum parameter estimate (PE) in the cluster. 
Error bars reflect group standard deviations.

TABLE 3. Peak coordinates for significant contrasts in the system-specific taska

Contrast Brain region

MNI coordinates

N voxels Max Zx y z

Model based > baseline

A. Whole sample R. cerebellum 6 −74 −20 20,669 7.51
L. middle frontal gyrus (BA 6) −36 2 52 4981 6.68
R. middle frontal gyrus (BA 9) 48 32 34 1432 5.76
L. medial frontal gyrus (BA 6) −6 10 52 1258 6.41
L. thalamus −4 −28 −4 255 4.75
R. cerebellum 22 −36 −40 226 6.28
L. caudate −14 4 12 215 4.77
L. cerebellum −22 −34 −42 182 5.51
R. claustrum 32 24 4 181 6.54
L. superior frontal gyrus (BA 10) −28 52 16 110 4.12
R. caudate −22 −26 −4 104 4.09
R. caudate 34 −32 2 83 4.07

B. Simulate > Read group

R. cuneus (BA 19) 16 −78 36 96 4.4
R. postcentral gyrus (BA 2) 62 −22 38 81 3.97

Model-based > control trials

C. Whole sample L. precuneus (BA 7) −8 −70 44 4025 5.8
L. lingual gyrus (BA 17) −10 −98 2 546 4.86
R. cuneus (BA 18) 18 −100 14 541 4.66

D. Simulate > Read group n.s.
aParticipant gender and accuracy are covaried in the models. R, right; L, left; BA, Brodmann’s area; MNI, Montreal Neuroimaging Institute; N voxels, number of voxels 
included in the cluster; Max Z, maximum z-statistic in the cluster; n.s., not significant.
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as they systematically manipulated the lac operon model and 
sought explanations for the effects of these manipulations 
during the simulation lesson. Based on their more active 
exploration of model dynamics, we expected students in the 
Simulate group to show greater hypothesis generation and 
causal reasoning about why a perturbation resulted in the 
observed phenomena that would manifest as increased activ-
ity in lateral prefrontal regions. Students on the whole did 
show robust patterns of task-related lateral prefrontal activity, 
in line with previous studies relating these regions to complex 
reasoning (Fugelsang and Dunbar, 2005). They also showed 
activity, specifically during the model-based trials, in the 
superior parietal and posterior cingulate regions, areas where 
students showed increased activity after an intensive model-
ing-based physics course (Brewe et al., 2018). Contrary to our 
hypotheses, however, there were no group differences in the 
activation of prefrontal regions. Instead, the Simulate group 
showed higher levels of activity in the cuneus, as well as in 
the postcentral gyrus, extending into the inferior parietal 
lobule.

The MBI literature has highlighted the connection between 
physical and mental models, suggesting that the physical 
practice of modeling or interacting with external models 
encourages students to build and revise their internal, mental 
models of phenomena (Clement, 2000). Over the course of a 
semester, for instance, Brewe et al. (2018) determined that 
an MBI curriculum encouraged the use of different mental 
models by physics students when answering system-specific 
questions. Although the students in our Simulate group did 

not show the hypothesized pattern of greater activity in lat-
eral prefrontal regions, they may have been drawing on dif-
ferent mental models from the Read group to reason through 
their responses, reflected in their different neural response 
patterns. Both Bartley et al. (2019) and Lee (2012) found 
that students used an array of posterior brain regions, includ-
ing posterior parietal, lingual, and parahippocampal areas, 
when reasoning about physical and biological systems, sug-
gesting that educational strategies designed to support these 
reasoning processes may affect neural networks extending 
beyond lateral prefrontal areas. Given the role of Brodmann 
area 2 in somatosensory processing (Grefkes et al., 2001; also 
see Supplemental Material, which includes a meta-analytic 
functional decoding analysis of our fMRI results), it is possi-
ble that students in the Simulate group were re-instantiating 
the more interactive sensory process of manipulating models 
when re-exposed to those models in the scanner. That is, 
their experience of modeling may have afforded different 
access points to those memories, which they drew upon 
during recall. It is also possible that, during recall, students in 
the Simulate group were studying the model to a greater 
degree than the control group to determine how system com-
ponents were interacting. While our data indicate that the 
nature of processing differed for students exposed to MBI, it 
is important to note that we cannot draw conclusive infer-
ences regarding specific cognitive processes or mental states 
based on correlational fMRI data (Poldrack, 2011). It is also 
important to acknowledge that group differences were con-
fined to model-based trials and did not emerge when the 

TABLE 4. Peak coordinates for significant contrasts in the system-general taska

Contrast Brain region

MNI coordinates

N voxels Max Zx y z

Model based > baseline

A. Whole sample R. cerebellum 8 −82 −20 37,387 7.83
L. medial frontal gyrus (BA 6) −4 18 48 8625 6.92
R. middle frontal gyrus (BA 6) −24 4 54 5093 6.25
L. superior frontal gyrus (BA 10) −30 58 8 1533 5.3
R. claustrum 32 22 0 421 7.02
L. claustrum −28 24 2 408 6.61
L. medial frontal gyrus (BA 10) −20 54 −14 242 5.45
L. posterior cingulate (BA 23) −4 −30 28 149 5.11
L. thalamus −18 −30 0 91 4.18

B. Simulate > Read n.s.

Model based > control trials
C. Whole sample R. middle occipital gyrus (BA 18) 32 −84 10 25,117 6.93

L. middle frontal gyrus (BA 6) −26 10 60 4034 6.16
R. middle frontal gyrus (BA 6) 28 16 62 3138 6.06
L. medial frontal gyrus (BA 6) 0 18 48 656 5.8
L. superior frontal gyrus (BA 10) 26 58 6 403 4.58
L. cerebellum −38 −38 −36 199 4.73
L claustrum −28 24 2 122 5.94
R. insula (BA 13) 34 24 −2 108 5.55

D. Simulate > Read R. insula (BA 13) 44 −32 26 85 4.23

L. cingulate gyrus (BA 31) −14 −24 40 83 4.05
aParticipant gender and accuracy are covaried in the models. R, right; L, left; BA, Brodmann’s area; MNI, Montreal Neuroimaging Institute; N voxels, number of voxels 
included in the cluster; Max Z, maximum z-statistic in the cluster; n.s., not significant.
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system-specific task, as accuracy levels for 
the system-general task were low. It may 
be the case that students drew on more 
familiar, automatic representations for the 
system-specific task, with meta-analytic 
decoding hinting that patterns of activity 
during the task may reflect the use of epi-
sodic memory processes (see Supplemen-
tal Material). In contrast, the system-gen-
eral task may have demanded greater use 
of neural networks associated with effort-
ful, higher-level working memory and 
reasoning processes (Niendam et al., 
2012; Bartley et al., 2018; Schwettmann 
et al., 2019), especially if the students did 
not infer the link between the principles 
in the task and those of the biological sys-
tem they had studied. This evidence for 
limited transfer across the tasks replicates 
classic studies in cognitive psychology 
describing students’ failure to transfer 
problem-solving strategies to tasks with 
different surface features (Novick and 
Holyoak, 1991; Green et al., 2012) and 
underscores a need for educational strate-
gies that scaffold the abstraction of sys-
tem dynamics to novel contexts and 
scenarios.

There were no behavioral differences 
between the instruction groups during the 
system-general task, although there were 
qualitative performance differences 
between groups on specific trials. While 
the sample size limited our capacity to 
analyze per-question differences with suf-

ficient statistical power, a descriptive analysis of the data indi-
cated that both groups performed poorly on questions incorpo-
rating negative or positive feedback loops (less than 30% 
correct in each group), with Read performing better on a posi-
tive feedback question and Simulate performing better on the 
negative feedback question. Students in both groups were able 
to perform well (Read = 64% correct, Simulate = 95% correct) 
when ancillary positive and negative feedback loops were 
included as distractors, highlighting the participants’ ability to 
focus on the necessary component interactions.

We hypothesized that the Read and Simulate groups would 
differ in their recruitment of rostral prefrontal regions linked to 
analogical reasoning during the system-general task. This 
hypothesis was not supported. However, the Simulate group 
did show higher activity in the posterior insula extending into 
supramarginal cortex, as well as in the posterior cingulate. 
Again, meta-analytic decoding suggested that group differences 
corresponded with regions involved in somatosensory and 
motor processing, perhaps indicating variation in the sensory 
representations that groups were drawing on to perform the 
task. That is, the experience of actively modeling the biological 
system may have amplified encoding of sensory information in 
the Simulate group, which they could subsequently use to sup-
port the analysis of the interacting components within the 
models.

general reading and response demands of the trials were 
controlled for (i.e., for the model-based > control trial con-
trast), raising the possibility that group effects were not spe-
cific to biological reasoning, but instead reflected differences 
in the deployment of more general processes.

Behavioral and Neural Differences between Read and 
Simulate Groups during the System-General Task
One goal for science instructors who teach biological systems 
is for students to recognize both the unity and diversity of 
these systems. That is, these systems have general principles 
that dictate how components interact to produce observable 
patterns, even while these principles are maintained differ-
ently in different systems and apply differently at hierarchical 
levels of molecules, cells, organisms, and communities (Wilen-
sky and Resnick, 1999; Goldstone and Wilensky, 2008). In 
modeling parlance, that would mean students could profi-
ciently change from diverse system-specific models to sys-
tem-general models (Brewe and Sawtelle, 2018). Our sys-
tem-general task was developed to determine students’ ability 
to transfer system-specific reasoning to more abstract contexts 
and incorporated similar inhibitory and excitatory feedback 
loops while increasing the number of components and interac-
tions. Despite efforts to make the tasks similar, participants 
evidently viewed the system-general task as different from the 

FIGURE 4. Regions where students in the Simulate condition showed higher levels of 
activation for model-based > control trials in the system-general task (model > control; 
Simulate > Read). Note that there were no group differences for the model-based > 
baseline contrast in this system-general task. For illustrative purposes, bar graphs reflect 
the group average maximum parameter estimate (PE) in the cluster. Error bars reflect 
group standard deviations.
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ble cognitive characteristics, including 
error checking or motivation, that differ-
entiate these students from their peers.

Limitations and Future Directions
Several limitations of our study should be 
noted. First, given the complexity of the 
stimuli and the time required by students 
to answer questions, we used an unusual 
fMRI paradigm with relatively few trials. It 
is possible that low trial numbers, coupled 
with a small number of participants in 
each group, limited our capacity to detect 
group differences. Relatedly, the control 
trials for the system-specific task were 
complex, as illustrated by the fact that stu-
dents were not always accurate in their 
responses to these trials. This may have 
obscured our capacity to capture differ-
ences in neural activity between the mod-
el-based and control trials. We did not find 
group differences in behavioral accuracy, 
but it is important to note that students 
were confined to making binary responses 
to simplify the response demands in the 
MRI scanner. Thus, our measures of behav-
ior were coarse and likely not sensitive to 
behavioral changes that may have been 
evident had students been able to express 
their reasoning verbally. We elected to use 
a reading exercise as the control condition 
in the study, as we felt that this control 
reflected the common practice of present-
ing complete visual models in textbooks or 
lectures. In the future, it would be interest-
ing to extend comparisons to other modes 
of instruction, such as video or auditory 
lectures. It is also clear that there are indi-
vidual differences that may drive neural 

effects, and careful analysis of students’ levels of engagement 
with and performance during the lesson activities would be use-
ful in specifying the learning conditions that promote changes 
in neural activity. Notably, participants in this study had already 
completed two computational modeling activities in their biol-
ogy labs earlier in the semester and therefore likely had over-
come some of the challenges associated with orienting them-
selves to the software and interpreting data outputs. Prior 
exposure to MBI may also have obscured some of the effects of 
our brief instructional manipulation, as some students in the 
Read group may already have been drawing on these modeling 
activities to support their reasoning.

More generally, there often exists a gap between cognitive 
neuroscience studies, which rarely map onto the messiness of 
postsecondary classrooms, and postsecondary instructional 
methods, which rarely connect to the neurocognitive underpin-
nings of how people learn. This study sought to bridge that gap 
by blending the rigor of neurocognitive methods with the 
authenticity of cognitive psychology–informed postsecondary 
instruction to examine mechanisms of learning in university 
biology. Although we believe there is applied knowledge to be 

Individual Differences in Neural Activity Contribute to 
Variation in Behavioral Performance
While instructional group differences were evident at the neural 
level, it is important to call attention to the variability in behav-
ioral performance within the instructional groups. Although the 
practice of simulating biological models did not lead to hypoth-
esized differences in students’ recruitment of lateral prefrontal 
brain regions, there was a correlation between students’ mean 
behavioral accuracy for the system-specific model-based trials 
and their level of BOLD activity in middle frontal brain regions. 
These findings are consistent with previous studies linking lat-
eral prefrontal activity to more advanced or expert scientific 
reasoning (Brault Foisy et al., 2015; Mason and Just, 2015; 
Nenciovici et al., 2019). Regardless of instructional method, 
then, it seems that some students naturally draw on prefrontal 
networks specifically when evaluating biological models and 
that the use of these networks corresponds with better task per-
formance. The frontal response patterns of these students pro-
vide a neural benchmark for instructional interventions to pro-
mote more effective biological reasoning. They also highlight a 
need for ongoing research to understand the potentially mallea-

FIGURE 5. Correlation between students’ accuracy and their BOLD activity for mod-
el-based > control trials in the system-specific task. For illustrative purposes, scatter-plot 
values reflect maximum parameter estimates (PE) for the model-based > control contrast 
extracted for each participant from this cluster and plotted against students’ percent 
accuracy for model-based task trials.
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gained from such an approach, there are continued challenges 
in blending neuroscientific research with authentic educational 
practice (Masson et al., 2012). Although fMRI currently has the 
best spatial resolution for determining human brain processes 
in vivo, it is an artificial environment devoid of the usual peer 
interactions of the classroom and with different motivational 
features relative to the classroom. The dynamic process of 
modeling is also difficult to capture within an artificial MRI 
scanning environment that allows for limited motion, and our 
study instead concentrated on students’ retrieval of informa-
tion, as opposed to the learning process itself. Longitudinal 
studies that track the effects of MBI dosage on student’s lon-
ger-term behavioral and neural response patterns are a key 
direction for future research. Optimally, these studies would 
incorporate detailed think-aloud paradigms to gain greater 
insight into student’s actual reasoning processes and how these 
align with individual differences in neural response patterns.

CONCLUSIONS
Student knowledge and understanding of complex system 
dynamics are central to undergraduate biology education, yet 
the complex hypothesis generation, error detection, and causal 
reasoning processes involved in such systems thinking are not 
easily assessed through traditional behavioral measures. Uni-
versity science students are developing their abilities to use 
models more like experts (Hester et al., 2018) through repeated 
modeling activities that build neural networks associated with 
these experiences. Instructional considerations that may fur-
ther advance students toward “modeling like an expert” include 
providing more support to analogize between scenarios (Green 
et al., 2012; Mareschal, 2016) and encouraging hypothesis 
generation (Kwon et al., 2009) and model construction in mul-
tiple modalities. In this study, students who briefly engaged in 
a modeling simulation showed higher levels of activity than 
those who simply read about the system across parietal and 
occipital brain regions. These neural differences were present 
despite similar behavioral performance across the groups, indi-
cating that model simulation exercises may alter the types of 
strategies students employ when reasoning about biological 
systems even in the absence of obvious behavioral change. 
Knowledge that such neural change is occurring even in the 
absence of behavioral evidence of learning is a helpful consid-
eration for instructors. Much more research is needed to deter-
mine how these neural response patterns align with specific 
cognitive strategies and subsequent student achievement. 
Nonetheless, this study takes an important first step in address-
ing calls for research on the neural effects of instructional 
methods (Hayes and Kraemer, 2017; Owens and Tanner, 
2017), which ultimately could inform understanding of which 
interventions are most effective for eliciting change in biology 
students’ neural representations.
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