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ABSTRACT
We previously reported that students’ concept-building approaches, identified a priori us-
ing a cognitive psychology laboratory task, extend to learning complex science, technolo-
gy, engineering, and mathematics topics. This prior study examined student performance 
in both general and organic chemistry at a select research institution, after accounting for 
preparation. We found that abstraction learners (defined cognitively as learning the theory 
underlying related examples) performed higher on course exams than exemplar learners 
(defined cognitively as learning by memorizing examples). In the present paper, we further 
examined this initial finding by studying a general chemistry course using a different ped-
agogical approach (process-oriented guided-inquiry learning) at an institution focused on 
health science majors, and then extended our studies via think-aloud interviews to probe 
the effect concept-building approaches have on problem-solving behaviors of average 
exam performance students. From interviews with students in the average-achieving 
group, using problems at three transfer levels, we found that: 1) abstraction learners out-
performed exemplar learners at all problem levels; 2) abstraction learners relied on under-
standing and exemplar learners dominantly relied on an algorithm without understanding 
at all problem levels; and 3) both concept-building-approach students had weaknesses in 
their metacognitive monitoring accuracy skills, specifically their postperformance confi-
dence level in their solution accuracy.

INTRODUCTION
Extensive science, technology, engineering, and mathematics (STEM) education 
research has explored the struggles of students in their introductory courses as they 
transition to college. The reasons students may struggle are complex and are depen-
dent on cognitive factors, academic preparation, and social–psychological factors. 
Many national reports call for developing and implementing strategies to help all stu-
dents succeed (Vision and Change, American Association for the Advancement of Sci-
ence, 2011, 2015, 2018; AAU Undergraduate STEM Education Initiative, Association 
of American Universities, 2017; Engage to Excel, President’s Council of Advisors on 
Science and Technology, 2012; HHMI Inclusive Excellence Initiative, Howard Hughes 
Medical Institute, 2017). In response, the STEM education research community has 
studied many evidence-based strategies (e.g., Eberlein et al., 2008; Singer et al., 2012; 
Freeman et al., 2014; Arendale, 2017; Van Dusen et al., 2015). Studies have tested 
interventions and examined the effects on the performance of an entire class, and more 
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recently the focus has included subgroups of students within a 
class (e.g., Shields et al., 2012; Hall et al., 2013; Eddy and 
Hogan, 2014; Batz et al., 2015; Connell et al., 2016; Barral 
et al., 2018). Other researchers have looked at the effect of affec-
tive characteristics and social identity on exam performance and 
retention in a class (e.g., Trujillo and Tanner, 2014; Jordt et al., 
2017; Canning et al., 2018; Fink et al., 2018). Still other studies 
have examined how students solve problems, and whether stu-
dents are understanding the concepts behind the problems or 
just solving the problems algorithmically (e.g., Jiménez-Aleixan-
dre and Erduran, 2007; Hoskinson et al., 2013; Xu and Talan-
quer, 2012; Knight et al., 2015). Within these studies, when 
considering different teaching approaches and interventions, 
the effects are examined across an entire class (or identity-based 
subgroups), and generally these studies assume that individual 
differences in student achievement are a consequence of differ-
ential aptitude (e.g., math aptitude), prior preparation (e.g., 
high school AP courses), social identity, or a combination.

In this paper, we examined students’ individual differences in 
concept building as potentially one key factor in explaining stu-
dent struggles and differing outcomes of otherwise similar stu-
dents. We did so with two approaches. First, we investigated 
how this individual difference in concept building might predict 
course performance and grade distribution in a process-ori-
ented guided-inquiry learning (POGIL)-based general chemis-
try course at an institution that focuses on health science majors 
(study 1). We then extended our understanding of these con-
cept-building differences by sampling from one achievement 
group in general chemistry (the average-achievement group), 
and probing their problem-solving behavior through detailed 
think-aloud interviews (study 2). In the interviews, we also 
examined their metacognitive-monitoring ability to evaluate 
their solutions’ accuracy as a function of their concept-building 
approaches. By doing so, we revealed relationships between 
individual differences in concept building and the underlying 
knowledge that these students apply to a range of problems.

The topic we used in the think-aloud interviews (Lewis struc-
tures) is a component of structure and bonding, nonquantita-
tive, and requires spatial and symbolic representations. Struc-
ture and bonding, as well as spatial and symbolic representations, 
are important in both biology and chemistry, and thus may 
allow us to generalize our findings to courses in biology and 
organic chemistry (e.g., Graulich, 2015; Hoskinson et al., 2013). 
In addition, focusing on Lewis structure problems allowed us to 
eliminate the possible contribution of math skills in solving a 
problem, a factor that could occur in many general chemistry 
problems (e.g., Frey et al., 2017; Ralph and Lewis, 2018).

Background
The key theoretical underpinning of this study is based on a 
learning framework from the cognitive science literature, devel-
oped by two of the coauthors (M.A.D. and M.J.C.) of the pres-
ent study (McDaniel et al., 2014). The learning framework 
assumes that, for a given conceptual task, individual learners 
extract one of two qualitatively different representations: a rep-
resentation primarily based on learning the individual training 
examples or a representation that extracts a more abstract sum-
mary of the critical features of the training examples. In a range 
of laboratory conceptual tasks—category learning (e.g., Craig 
and Lewandowsky, 2012; Little and McDaniel, 2015), function 

learning (McDaniel et al., 2014), multiple-cue prediction learn-
ing (Juslin et al., 2003; Hoffmann et al., 2014), and skill learn-
ing (Bourne et al., 2010)—recent evidence supports this major 
tenet that an individual learner relies predominantly on either 
an exemplar or an abstraction approach to learn a particular 
conceptual task. Generally, laboratory conceptual tasks require 
participants to learn to predict outcomes (or categorize) from 
particular combinations or quantities of perceptual features dis-
played in a set of simple or novel stimuli. For instance, based on 
a series of observations, participants try learn the relation 
between how much “Beros” (a fabricated element supposedly 
found on Mars) a Martian organism releases after absorbing a 
certain amount of “Zebon” (another fabricated element suppos-
edly found on Mars; McDaniel et al., 2014). Another example of 
a laboratory conceptual task is where participants try to learn to 
predict the toxicity of a bug based on a multiplicative combina-
tion of perceptual features (leg length, antennae length, wings 
and the number of spots; Hoffmann et al., 2014). The innova-
tive aspect of the present theoretical framework is the tenet that 
an individual’s concept-building approach tends to be relatively 
consistent across conceptual learning tasks, and this has been 
supported via laboratory-based concept-learning experiments 
(McDaniel et al., 2014). As developed in this paper, we recently 
reported a novel extension to the laboratory cognitive science 
findings, an extension that reveals the application of our con-
cept-building framework to complex STEM learning.

In a series of studies conducted by a cross-disciplinary team 
of cognitive scientists, a chemistry discipline-based education 
researcher, and chemistry instructors, we (Frey et al., 2017; 
McDaniel et al., 2018) showed that students approach learning 
complex concepts in general chemistry and organic chemistry 
using two distinct concept-building approaches (exemplar or 
abstraction learners). These classroom studies expanded upon 
the initial cognitive science laboratory experiments (McDaniel 
et al., 2014) in which learners were classified as having one of 
two distinct concept-building approaches via a concept-build-
ing task (described in the Methods section). This task identifies 
learners as exemplar learners (defined cognitively as learning by 
memorizing examples), who rely extensively on memorized 
algorithms or examples to solve new test problems, and abstrac-
tion learners (defined cognitively as learning the underlying 
theory), who apply different levels of understanding of the 
underlying concept to solve new test problems.

We found that abstraction learners in general chemistry per-
formed equal to exemplar learners on retention problems 
(course exam problems that were similar to those presented in 
class or homework), but performed better on far-transfer prob-
lems (course exam problems that were not similar to class or 
homework problems and required generalization) even after 
controlling for ACT Math (McDaniel et al., 2018). In Frey et al. 
(2017), we found that, in organic chemistry, abstraction learners 
performed 13 percentage points higher on exam average than 
exemplar learners, even after accounting for ACT composite 
scores and general chemistry performance. We also found that 
the concept-building approaches seem to be robust across time 
(at least for 1.5 years); that is, 85% of students who undertook 
the task using the same function in the Fall semester of General 
Chemistry I and the Spring semester of Organic Chemistry II 
consistently adopted the same concept-building approach. In 
the current study, we wanted to see whether a student’s 
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concept-building approach also affected course performance 
and grade distribution in a general chemistry course using a dif-
ferent pedagogical approach (i.e., POGIL) at a different type of 
institution, namely a health professions–focused university.

More importantly, even though we have seen that abstrac-
tion learners outperform exemplar learners, we do not know 
exactly how these different learners solve problems. Therefore, 
in the current study, we examined via think-aloud interviews 
how abstraction versus exemplar students might solve reten-
tion, near-transfer, and far-transfer problems. We investigated 
whether students within the same achievement group differ in 
their concept-building approach, their conceptual understand-
ing, and their approach to problem solving. In addition, because 
studies have shown that a student’s metacognitive-monitoring 
accuracy can affect his or her learning (e.g., Dunlosky and Raw-
son, 2012; Stanton et al., 2015), we probed students’ postper-
formance confidence in the accuracy of their solutions. We 
wanted to see whether these students in the same achievement 
group with different concept-building approaches might also 
differ in their metacognitive-monitoring accuracy.

In these think-aloud interviews, we focused on the student 
who is at the average in exam performance. The average- 
performing student seems the logical place to start in identify-
ing how exemplar and abstraction learners might solve prob-
lems, because these students may demonstrate an incomplete, 
inadequate, or inconsistent approach to problem solving. They 
are trying, but perhaps they try by using the wrong approach or 
by not adequately implementing the correct approach to solving 
problems. In addition, even though abstraction learners outper-
form exemplar learners on average, are there abstraction learn-
ers who are performing at the average exam performance and, 
if so, why are they not performing at a higher success level? We 
anticipated that the think-aloud interviews might give us some 
insight into possible cognitive reasons.

Research Questions
We were interested in examining the generality of the Frey et al. 
(2017) results to a general chemistry course focused on health 
science majors and using a different pedagogical approach, spe-
cifically the POGIL approach (Moog, 2014; Simonson, 2019). 
We wanted to determine whether there was a difference in 
course performance and grade distribution for exemplar versus 
abstraction learners in this course. For the present purposes, we 
were most interested in the average-performing achievement 
group. An initial issue was whether the average-performing 
group contained both exemplar and abstraction learners, and if 
so, whether this group was more populated by exemplar than 
by abstraction learners. Having found both types of learners 
within the average-performing achievement group (i.e., specif-
ically, students who have average exam performances), our 
central focus in this project was to illuminate possible differ-
ences in the problem-solving approaches between exemplar 
and abstraction learners who are average-performing students. 
Specifically, we explored the following research questions:

For study 1, we examined the performance difference 
between abstraction and exemplar learners in a POGIL-based 
general chemistry course at an institution focused on health 
science majors. Hence, the research questions for study 1 are 
focused on all of the students in the POGIL-based general chem-
istry course for health science majors.

1. Do abstraction learners outperform exemplar learners in a 
POGIL-based general chemistry course for health science 
majors?

2. Within the average-exam grade range, do the relative pro-
portions of abstraction and exemplar learners differ?

In study 2, we looked more in depth at the different 
approaches to problem solving that are used by students who 
have average exam performances as a function of their con-
cept-building tendency. To do so, we followed established 
methods in basic and discipline-based education research 
(DBER) problem-solving research by collecting detailed think-
aloud protocols from a small number of participants (N = 11) as 
they solved three chemistry problems (the think-aloud method 
and typical sample size are described in a chemistry review by 
Herrington and Daubenmire, 2014).

We emphasize that the research questions in study 2 are 
restricted to students who have average exam performances. 
For retention, near-transfer, and far-transfer problems (we char-
acterize these problem types in the Methods section),

1. Is there a difference in their problem-solving accuracy as a 
function of concept-building approach?

2. Is there a difference in their problem-solving approach as a 
function of concept-building approach?

3. Is there a difference in their calibration of postperformance 
confidence of the accuracy of their solutions, as a function of 
concept-building approach?

METHODS
General Study Methodology
Institutional Board Approval. This project has been approved 
by the institutional review boards at St. Louis College of Phar-
macy (IRB ID no. 2017-39) and Washington University in St. 
Louis (IRB ID no. 201710100).

Study Setting and Course Format. Our study focused on stu-
dents enrolled in a first-semester general chemistry course at a 
small health profession–focused school in the midwestern 
United States that confers undergraduate and graduate degrees. 
The course comprised two sections taught by different instruc-
tors, with 123 total students enrolled. The sections were man-
aged as a single course with the same content, structure, and 
assignments. The course followed the POGIL approach (Moog, 
2014; Simonson, 2019), with each class session centered on 
team-based solving of problems designed to promote learning 
concepts via exploration/interpretation of data and application 
of new knowledge. After each class, students were required to 
complete an online quiz on the day’s material before the next 
class. Additionally, weekly online quizzes were assigned each 
Friday and were due before the following Monday class. The 
course had four midterm exams and a cumulative final, all of 
which comprised multiple-choice questions (73.5%) and 
free-response problems (26.5%). The classification scheme 
from the McDaniel et al. (2018) study was modified, as 
described in the Problem Selection section, and used to charac-
terize the transfer levels of the exam questions in this study. On 
average (across multiple-choice and free-response questions), 
41, 54, and 5% of the exam questions were characterized as 
retention, near-transfer, and far-transfer questions, respectively.
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Concept-Building Task. To assess students’ concept-building 
approach (classifying them as either exemplar or abstraction 
learners), we administered the same concept-building task pre-
viously employed in McDaniel et al. (2014), Frey et al. (2017), 
and McDaniel et al. (2018), and we used the same statistical 
procedure to classify the students as exemplar or abstraction 
learners as used in the prior studies. This Web-based task 
involved a fictional organism and two fictional elements, so stu-
dents had no prior knowledge about the task. The students 
were told to imagine that they had been hired by NASA to study 
a new organism found on Mars that absorbs an element called 
Zebon and releases an element called Beros. Specifically, stu-
dents attempted to learn to predict an output variable (quantity 
of Beros released) based on an input variable (quantity of 
Zebon absorbed), in which (unknown to the students) these 
input–output points followed a specific function form (in the 
current study, an inverted-V function). During a training phase, 
students made output predictions on training inputs and 
learned the true outputs via feedback. For each training trial, 
student viewed an input (a bar representing the quantity of 
Zebon absorbed), predicted the output (adjusted a bar to pre-
dict the quantity of Beros released), and received feedback (a 
bar showing the correct quantity of Beros and text specifying 
the prediction error); see Figure 1 for a sample trial. The task 
was self-paced, and participants were given no instructions on 
how much time to spend on each trial.

Training involved repeated exposure to 20 unique input val-
ues (all the odd numbers between 61 and 99). Each training 
block presented each of these input values once, and the order 
of the inputs varied across blocks. After each block, participants 
saw their mean prediction error (the mean absolute error, MAE) 
for that block. Starting with block 2, they also saw their previous 
MAE and a message depending on whether they had reduced 
their error (either “Your accuracy IMPROVED. Keep up the good 
work!” or “Your accuracy DID NOT IMPROVE. Keep working to 
improve your predictions!”). All participants completed at least 
10 training blocks (200 trials), at which point training ended for 
participants with MAE <10. Those who did not meet this thresh-
old completed up to three additional training blocks, and train-
ing ended if MAE fell below 10 in either block 11 or block 12. 
Training ended after block 13 (trial 260) for all remaining par-
ticipants, regardless of whether they met the threshold.

After training, all participants completed a 36-trial test 
phase in which they predicted the outputs for novel (untrained) 
inputs. The test procedure was identical to the training proce-
dure, except that no feedback was provided. Instead, after mak-
ing the prediction, participants saw a message that said “Predic-
tion Recorded. Get ready for the next trial.” The test phase 
included 30 extrapolation trials, in which inputs were odd num-
bers outside the training domain (all odd numbers between 31 
and 59 and between 101 and 129); it also included six interpo-
lation trials, which were even numbers contained within the 
training domain (94, 80, 64, 88, 100, and 72). The students 
were allowed to take as long as they needed to finish the task; 
however, on average, the entire task (training and test trials) 
took participants approximately 40 minutes to complete.

Following the procedure in the prior studies, the con-
cept-building classification was a two-step process. First, indi-
viduals with final training block MAE greater than or equal to 
10 were classified as non-learners and were not included in this 

study. Further classification involved comparing remaining 
learners’ extrapolation MAEs to the extrapolation MAE from a 
simple exemplar model. Specifically, a simple exemplar model 
would predict flat extrapolation extending from the edges of 
the training domain (represented by the dashed horizontal lines 
in Figure 2). With the particular function used in this study, a 
simple exemplar model would make a prediction of 148 for 
every extrapolation trial, producing an MAE of 34.72. It is 
worth noting that any set of predictions that average 148 and 
never overestimate the output value produce the same MAE of 
34.72. The extrapolation MAE and surrounding 95% confi-
dence interval were calculated for each learner. If the upper 
limit of this interval was below 34.72 (i.e., the learner’s predic-
tions were statistically significantly better than a simple exem-
plar model), the learner was classified as an abstraction learner. 
The assumption was that, to significantly outperform an exem-
plar model, learners must have extracted some rule-based 
information in learning during the training trials that they were 
able to use during extrapolation. Learners who did not signifi-
cantly outperform the simple exemplar model were classified as 
exemplar learners, in which the assumption was that the exem-
plar learners apparently learned specific input–output associa-
tions but did not extract the function rule necessary to make 
predictions on the novel test inputs. Figure 2 shows the mean 
prediction on each extrapolation point for abstraction and 
exemplar learners, descriptively showing the diverging extrap-
olation patterns of the two groups. Abstraction learners were 
characterized by steeper extrapolation, closely following the 
function, whereas exemplar learners exhibited flatter extrapola-
tion, particularly on the right side of the function.

Study 1 Methodology
Procedure. During the Fall 2017 semester, all students in the 
course completed the concept-building task and a short survey 
during a 1-hour prelab period. The survey included questions for 
students to self-report their race, gender, and ACT/Scholastic 
Aptitude Test Math score. Completion of these tasks allowed stu-
dents to drop their lowest laboratory-experiment grade. Although 
all students completed these tasks as part of a course activity, 
students chose whether to provide consent allowing their data to 
be used as part of this research study. After the semester, one of 
the course instructors of record (author M.D.P.) shared the course 
grade book, with non-consenters removed, with the research 
team so that exam scores could be extracted and combined with 
concept-building and survey data for analysis.

Sample. One hundred eight out of 123 (87.8%) students con-
sented to be in the study. Of these consenters, 54 (50.0%) were 
classified as abstraction learners, 28 (25.9%) were exemplar 
learners, 25 (23.1%) were non-learners, and 1 student did not 
complete enough of the task to be classified. Thus, our final 
sample for analysis included 82 students (54 abstraction learn-
ers and 28 exemplar learners). Of the final sample, 44 (55%) 
were female. In terms of race, 58 (73%) were white, 13 (16%) 
were Asian, 5 (6%) were African American, and 4 (5%) were 
from other racial groups.

Analysis Overview. Primary data analysis involved two analy-
ses of variance (ANOVAs) and a Wilcoxon rank-sum test for the 
grade distribution. One ANOVA included concept building 
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(abstraction vs. exemplar) as the sole independent variable and 
final exam score as the dependent variable. The second analysis 
examined unit exam scores and was a mixed ANOVA with con-
cept building as a between-subjects factor and exam number 
(1–4) as a within-subjects factor. To examine the difference in 
the grade distributions, we used the Wilcoxon rank-sum test 
with concept-building approach as the independent variable. 
Analyses were conducted with R (v. 3.6.0; R Core Team, 2019), 
using the aov car function from the afex package (v. 0.25-1; 
Singmann et al., 2019). As is the default for aov_car (but not 
aov from base R), all analyses were conducted with orthogonal 

FIGURE 1. Screen shots from the concept-building task. Adapted from Figure 2 in McDaniel, M. A., Cahill, M. J., Robbins, M., & Wiener, 
C., 2014, “Individual differences in learning and transfer: Stable tendencies for learning exemplars versus abstracting rules,” Journal of 
Experimental Psychology: General, 143(2), 668–693, publisher: American Psychological Association (adapted with permission).

contrasts (c(“contr.sum”, “contr.poly”)) and type III sums of 
squares for factorial design.

Study 2 Methodology
Think-Aloud Procedure. For our research questions in study 
2, we used a think-aloud protocol to interview a sample of stu-
dents having an average exam performance in the class after 
exam 3. We used a protocol analysis for the interview, in which 
the students provided verbal reports of their thoughts as they 
solved a task (Ericsson and Simon, 1993; Ericsson, 2006; 
Bowen, 1994; Herrington and Daubenmire, 2014).
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The think-aloud problems were on Lewis structures, which 
were covered in exams 2 and 3. The interviews took place 
approximately 2 weeks after the third exam, approximately 
mid-November, on two sequential days at the same Midwest 
institution by M.D.P. or D.M.B. M.D.P.’s students were inter-
viewed by D.M.B. and the other instructor’s students were 
interviewed by M.D.P. The interviews took approximately 
1 hour, and students were paid for their participation.

Student Selection for the Think-Aloud Interviews. For the 
think-aloud interviews, we sought to select 10–12 students 
who were likely to receive an average exam performance in the 
course. The use of this small number of participants (N = 11) 
in think-aloud interviews for problem-solving research follows 
established basic cognitive science and DBER methods (e.g., 
Herrington and Daubenmire, 2014). Several recent examples 
underscore the prevalence of such sample sizes in think-aloud 
DBER research. Petterson et al. (2020) studied 13 college stu-
dents’ reasoning while solving organic chemistry reaction prob-
lems using one of two modalities (paper and pencil; computer 
app). These 13 students were divided into two groups (six used 
paper and pencil, and seven used a computer app) to examine 
whether modality affected reasoning processes when solving 
two acid/base reaction problems. In Webber and Flynn (2018), 
11 students from an organic chemistry course participated in 
think-aloud interviews to probe the strategies they used in 
solving familiar and unfamiliar organic chemistry mechanism 
problems. Xue and Stains (2020) interviewed six students in 
an organic chemistry course to explore students’ understand-
ing of resonance and how that understanding is related to 
course instruction.

FIGURE 2. Input and mean output values from the final training block and extrapolation 
trials for the students in this study. The vertical lines represent the boundaries of the 
training range. The dashed horizontal lines represent theoretical exemplar-model 
predictions based on learning the outputs at the boundaries of the training range and 
predicting those same outputs during extrapolation. The black squares represent the 
correct output values, based on the function. The red circles represent the mean 
prediction across all exemplar learners for each input value. The blue circles represent the 
mean prediction across all abstraction learners for each input value.

Using purposeful sampling (Patton, 
2002; Creswell, 2007), we selected students 
based on the fact that their exam average 
across exams 1–3 fell within a target range. 
Data from previous semesters of this course 
revealed that, for students who eventually 
earned a “C” in the course, the exam aver-
age across exams 1–3 was 72%, so we cen-
tered the target range around 72%. We had 
the goal of targeting approximately 20 stu-
dents, so we expanded the range out in 
both directions from 72% until this number 
was met. This process led us to target stu-
dents whose average on exams 1–3 was 
between 66% and 78%, with the intent to 
recruit approximately equal numbers of 
exemplar and abstraction learners. There 
were 20 consenting students in our target 
performance range: 11 abstraction learners, 
eight exemplar learners, and one non-
learner. We recruited all eight exemplar 
learners and eight of the abstraction learn-
ers, with the goal that five or six from each 
group would participate. For the abstraction 
learners, we selected the eight recruits by 1) 
selecting all of the female abstraction learn-
ers, a total of three (seven of eight exemplar 
learners were female), and 2) selecting five 
of the eight males based on responses to 

another survey measure (Modified Approaches and Study Skills 
Inventory [M-ASSIST]), which is a self-report of students’ use of 
deep- and surface-learning strategies (Bunce et al., 2017). We 
selected these males to obtain the broadest range of M-ASSIST 
patterns among abstraction learners. We emailed invitation let-
ters to these eight abstraction learners and all eight exemplar 
learners, offering $20 for approximately 1 hour of their time, 
and 12 students (six exemplar and six abstraction) agreed to 
participate. One student (an exemplar learner) displayed anxi-
ety during the problem-solving session, digressed from the prob-
lems, and did not finish the problems. This interview was not 
transcribed or analyzed, and thus the final sample consisted of 
six abstraction and five exemplar learners. All interviewed stu-
dents completed the course. At the end of the course, for their 
exam score average (as used in the grade distributions in the 
Results and Discussion section), six received a “C” and five were 
in the “D”/”F” range. Hence, we interviewed 31% of the avail-
able students in the “C” and “D”/”F” ranges.

It is important to note that this selection process was man-
aged entirely by M.J.C. (PhD psychologist, research scientist, 
and a nonchemist). Not at any time during the interviewing or 
coding were the interviewers (D.M.B. and M.D.P.) or the coders 
(R.F.F., D.M.B., and M.D.P.) aware of the concept-building 
approaches or the course exam scores (beyond that the scores 
were in the average-performing range) of the interviewed stu-
dents. In addition, the coders were given de-identified tran-
scripts and therefore were not aware of any demographic infor-
mation about the students.

Problem Selection. The think-aloud interviews consisted of 
three problems on Lewis structure. We selected Lewis structure 
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problems because this topic was covered extensively in this 
course, being tested on both exams 2 and 3, which allowed us 
to obtain enough performance data to determine which stu-
dents were performing at the exam average of the class. In addi-
tion, it is a topic that is not mathematically based, which 
allowed for the possibility of a richer discussion during the 
think-aloud interviews.

We selected Lewis structure problems (see Table 1) at three 
different transfer levels: retention, near transfer, and far transfer. 
We modified the rubric in the McDaniel et al. (2018) study, which 
was designed to categorize exam questions in general chemistry. 
The definitions of the three problem levels and the details of the 
problems used in the current study follow. 1) A retention problem 
is a problem that has the same structure to previously exposed 
problems (either in class or homework) and is solved with the 
same method. For this study, the retention problem was an exact 
molecule the students had seen in class. 2) A near-transfer prob-
lem is a problem that is similar to a problem that the student has 
previously been exposed to, and the solution is similar to the pre-
vious exposure, but it is a new situation. For this study, the mole-
cule was similar to but was not a molecule seen in lecture or 
homework, and it could be solved using the general algorithm for 
Lewis structures. This characterization and construction of a 
near-transfer problem parallels that of DBER work in math, in 
which near-transfer problems in geometry were based on similar 
but not identical geometric renderings provided in instruction 
and could be solved using the previously instructed theorems 
(Wong et al., 2002). 3) A far-transfer problem is a problem that 
involves previously exposed concepts but cannot be solved using 
methods similar to those used to solve prior homework problems. 
Instead, the student must understand the underlying concept(s) 
and be able to generate the solution either by applying a concept 
in a new way or integrating across concepts. This characteriza-
tion also parallels Wong et al. (2002), whose far-transfer prob-
lems required integration of some previously studied theorems 
and at least one new theorem or involved new constructions. 
Regarding cognitive theory, this orientation has parallels to the 
Barnett and Ceci (2002) taxonomy of transfer, in which the con-
tent of what is transferred is considered in characterizing the 
degree of transfer—near versus far. Note, however, that unlike 
Barnett and Ceci, our and Wong and colleagues’ scheme does not 

assume that far transfer requires that the knowledge domain 
change across problems. For the current study, the molecule was 
a cyclic molecule that was not seen in lecture or homework. 
Although cyclic molecules were introduced in lecture, Lewis 
structures for cyclic molecules do not follow an algorithm, and 
therefore students need to understand the underlying principles 
for Lewis structures in order to solve the problem correctly.

Grading of Problems. Because of their long-time experience 
teaching Lewis structures in general chemistry, R.F.F. and M.D.P. 
developed and classified the transfer level of the problems 
based on the homework given and lecture material in the course 
during the study year. They also developed the solution key, 
and M.D.P. assessed the accuracy of student solutions on a 0–3 
scale based on the following scheme: 3 = no mistakes (we have 
termed this as “correct”); 2 = 1 mistake (termed as “partially 
correct”); 1 = 2 mistakes (termed as “partially incorrect”); and 
0 = 3 or more mistakes (termed as “incorrect”).

Structure of Think-Aloud Interviews. Students completed a 
think-aloud interview designed specifically for the current 
study; we followed the standard think-aloud procedure for 
chemical education research as outlined in Bowen (1994), 
which describes in detail the interview process and the type of 
probing questions that are asked to elicit student’s thoughts 
without leading them in the solution of the problem. In addition 
to the think-aloud protocol questions, we added additional 
questions about the student’s level of postperformance confi-
dence in his or her answer. During this interview, each problem 
was on a separate piece of paper and color coded, and a periodic 
table was available for the student to use to determine the num-
ber of electrons. The prompt was the same on each page (see 
Table 1). Students were encouraged to draw their structures on 
the papers as they thought out loud, describing what they were 
doing to solve the problem. The interviews were audio-recorded, 
and the completed solutions were saved and scanned.

When the student entered the room, the interviewer used an 
IRB-approved script (see Supplemental Material) and then 
started the interview with a warm-up think-aloud exercise, 
which consisted of assembling s’mores. The problems were 
given separately in the following order: retention, near-transfer, 
and far-transfer. The interviewer’s questions were confined to 
probing questions only; for example, “What are you thinking?” 
and “Why did you write that?” At the end of each problem (i.e., 
postperformance), the interviewer asked, “How confident are 
you that your answer is correct?,” and then asked, “On a scale 
of 1–5, with 1 being very confident and 5 being very not confi-
dent, what number would you give?” For a more complete set 
of questions, see the Supplemental Material.

Development of the Codebook. We used a generative pro-
cess to interpret the think-aloud interviews (Clement, 2000), 
one in which data are systematically analyzed to identify and 
construct categories to answer specific research questions. Fol-
lowing the process described in Merriam and Tisdell (2015), 
the codes were developed using the constant comparative 
method of qualitative data analysis (Glaser and Strauss, 1967). 
To ensure the consistency and dependability of the process, we 
conducted an audit trail of our process (Merriam and Tisdell, 
2015; Miles et al., 2020) as described in more detail later.

TABLE 1. The prompt and structures used in the problems for the 
think-aloud interviews

Directions: Draw the most preferred Lewis structure that obeys the 
octet rule for the molecule given below (connectivity for each is 
shown). If there are equivalent resonance structures, please draw 
all of them. Show all lone pairs and all non-zero formal charges for 
non-hydrogen atoms. Please circle all structures to be graded. 

Retention Near-transfer Far-transfer

CO2; connectivity 
is [O−C−O]

ClONO2 C5ON2H4 (Note: Number of 
valence electrons = 40)
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The interviews were transcribed verbatim, and the transcrip-
tions were coded using the following process. The initial code-
book was generated, based on the research questions, by all five 
researchers (R.F.F., M.D.P., D.M.B., M.A.D., and M.J.C.) as they 
worked through two transcripts and iteratively developed and 
applied initial codes and updated the codebook when gaps in 
the codebook were identified during application. This initial 
coding was for the purpose of generating the codebook and 
began with open coding for the following key ideas: 1) the 
approach the student used to solve the Lewis structure problem 
and 2) the types of mistakes made by the student. On the meta-
cognitive-monitoring accuracy question (i.e., the level of post-
performance confidence the student had in the correctness of 
his or her answer), the student rated his or her confidence on a 
scale from 1 [very confident] to 5 [not very confident]). Hence, 
this answer did not have to be coded; we later binned the scale 
into low confidence, medium confidence, and high confidence 
(see end of Methods section). (We then asked and coded for 
resources the student would use if having difficulty solving the 
problem and why; this coding is outside the current paper’s 
scope and is not reported here.) During this initial generation of 
the codebook, it became obvious that most students did not 
understand the resonance question component of the prompt. 
Because this component was not an important element in our 
research questions, we decided to focus our analysis only on the 
most-preferred Lewis structure the student chose and not on the 
resonance structures (although for consistency of the coding 
process, we continued to code the portions of the transcript 
related to resonance structures).

After the codebook was generated, all transcripts were 
coded and discussed by the three chemistry members of the 
research team (R.F.F., M.D.P., and D.M.B.). To check and refine 
the codebook, we coded the transcripts in four separate rounds. 
In each round, M.J.C. selected each set and made it available to 
the three coders. The transcripts were coded independently by 
at least one of the authors (R.F.F., M.D.P., and D.M.B., who are 
PhD chemists and have taught general chemistry) and then 
group discussions were held in which these three authors delib-
erated about all coding in every transcript to resolve any dis-
crepancies by group consensus (Saldaña, 2015). When neces-
sary, the codebook was refined. This coding process was 
repeated for each of the three rounds (2–4) on separate dates, 
with saturation of coding changes occurring by the third meet-
ing. Coding was conducted via Comments in Microsoft Word.

Coders were blind to the student’s concept-building 
approach, removing this potentially concerning source of bias. 
The transcripts did not contain any identifying information, but 

D.M.B. and M.D.P. likely were not completely blind to students 
for transcripts of interviews that they conducted. The inter-
viewers’ familiarity with the students they interviewed poten-
tially could have introduced bias into their coding. That is, the 
interviewers might have remembered things about the students 
or the interactions themselves that influenced their interpreta-
tions of the transcripts. Although potentially influential, the 
influence of this kind of bias was mitigated by the team-based, 
group-consensus coding process. Even if an interviewer initially 
coded one of his or her own interviews, the final codes resulted 
from discussions of three coders, two of whom had no familiar-
ity with the student or interview beyond what was in the tran-
script and on the problem-solving sheet.

Subsequently, M.J.C. inputted the documents into NVivo 
v. 12 (QSR International, 2018) converting the comments into 
nodes. As he did so, he did a final check for potential uncertain-
ties in the coding. The main uncertainty was that for one prob-
lem in two students’ protocols, two approaches were coded; 
whereas, for every other problem and student, only one 
approach was evident (and coded). These two problems were 
reviewed by the three-member coding team, and the team 
agreed to assign the one approach code that captured the 
approach leading to the attempted solution.

There were four approaches students used to solve the Lewis 
structure problems: 1) memory of an answer or memory of a 
related problem; 2) algorithm without understanding; 3) algo-
rithm with understanding; and 4) reasoning using their under-
standing of concepts, not tied to an algorithm. These four 
approaches were valid for all three problem levels; see Table 2 
for the descriptions of the four approaches and Supplemental 
Table S1 for example quotes. For the students’ postperformance 
confidence level of their solutions accuracy, we binned the stu-
dent responses as reflecting high (1 to < 2.5), medium (2.5 to < 
3.5), or low (3.5 to 5) confidence.

Analysis. Primary outcomes of interest in study 2 were prob-
lem-solving accuracy (determined by scoring the scanned prob-
lem sheets), accuracy confidence (binned into three confidence 
levels), and problem-solving approach (determined via coding 
of transcripts). Analyses focused on examining the variation of 
these outcomes across concept-building approach and prob-
lem-transfer level. After transcripts and codes were uploaded to 
NVivo, cases were created linking each transcript to a student. 
This allowed the coded transcripts to be linked to student-level 
information, including concept-building approach. Each tran-
script was also given three overarching nodes, each covering 
the entirety of one problem (retention, near transfer, or far 

TABLE 2. Types of approaches and descriptionsa

Type of approach Approach description

Memory of an answer or 
related problem

The student does not follow any set of steps or cannot explain what he or she is doing; student just starts 
drawing a “completed” Lewis structure.

Reasoning, not tied to a 
specific algorithm

The student tries to use the underlying principles for drawing the most preferred Lewis structure and explain the 
concepts behind the steps takes, but is not following any specific steps in an algorithm.

Algorithm without 
understanding

The student tries to use the general algorithm for drawing the most preferred Lewis structure, but either does 
not explain the concepts behind the steps taken or explanations are completely incorrect.

Algorithm with understanding The student tries to use the general algorithm for drawing the most preferred Lewis structure and tries to explain 
the concepts behind the steps taken.

aExample quotes are in the Supplemental Material.
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transfer), allowing the frequency of codes to be separated by 
problem type. Analyses were descriptive in nature, examining 
how solution accuracy level, problem-solving approach, and 
accuracy confidence level vary across both concept-building 
approach and transfer level.

To study the students’ metacognitive monitoring of the 
accuracy of their solutions, we analyzed students’ postperfor-
mance accuracy confidence as a function of concept-building 
tendency (abstraction, exemplar) and type of problem. Due to 
the small sample size, we focused on characterizing the 
matches or mismatches between confidence ratings and actual 
solution accuracy, rather than computing correlations between 
the confidence ratings and solution accuracy scores. Responses 
for both accuracy confidence and solution accuracy were res-
caled with the lowest possible value set to 0 and the highest 
possible value set to 1 for each measurement type. The binned 
accuracy confidence values were rescaled to 0 (low), 0.5 
(medium), and 1 (high). The solution accuracy values were 
rescaled to 0 (incorrect), 0.33 (mostly incorrect), 0.67 (mostly 
correct), and 1 (correct). Using the rescaled values for both 
measures, we determined the calibration comparisons as fol-
lows: 1) if the student’s confidence was higher than his or her 
solution accuracy by more than 0.25, we denoted the calibra-
tion as overconfident; 2) if a student’s confidence was within 
0.25 of his or her solution accuracy, we denoted the calibration 
as accurate; and 3) if a student’s confidence was lower than his 
or her solution accuracy by more than 0.25, we denoted the 
calibration as underconfident.

RESULTS AND DISCUSSION
Study 1 Results and Discussion
Having identified students’ concept-building approaches, we 
examined the association between a student’s concept-building 
approach and course exam performance for this POGIL course. 
Abstraction learners (N = 54) tended to perform better than 
exemplar learners (N = 28) on every exam and on their average 
exam performance (overall: M = 83.57, SE = 2.16, and M = 
78.77, SE = 3.61, respectively); see Supplemental Material for 
Supplemental Figure S1 and more detail about this analysis. 
The mixed ANOVA on students’ exam 1–4 scores indicated that 
the overall advantage for abstraction learners was not signifi-
cant (F(1, 79) = 2.78, MSE = 612.39, p = 0.10, ηp

2 = 0.034). The 
ANOVA on the cumulative final exam scores showed again that 
abstraction learners (M = 74.37, SE = 2.17) scored nominally 
but not significantly better than exemplar learners (M = 72.12, 
SE = 3.19; F(1,80) = 0.353, p = 0.554).

Though the current performance differences between 
abstraction learners and exemplar learners for this POGIL 
health science–oriented general chemistry course are not statis-
tically different, they do show descriptively similar (and even 
slightly stronger) patterns compared with our previous report 
(Frey et al., 2017) that examined course performance in a 
first-semester college-level general chemistry course; the mean 
difference in exam performance was 4.80 versus 4.32 in the 
previous report, and effect size was ηp

2 = 0.036 versus 0.02 in 
the previous report. Recently, researchers (Wilson et al., 2020) 
have made the strong case that effect size is more informative 
when discussing replication or generalization of a previous 
study, and on this index, the current study has successfully gen-
eralized the previous study.

Two possibilities for the current study not reaching statistical 
significance are the difference in the exams between this study 
and the Frey et al. (2017) study, and the difference in the statis-
tical power between the two studies. The exams in the two 
studies differed in format and in problem-transfer level. Regard-
ing format, the exams in the current study consisted of mostly 
multiple-choice questions (75%) and some free-response ques-
tions (25%), whereas the exams in the previous study were 
largely free response with short-answer justifications (87%) 
and just a few multiple-choice (8%) and true-false (4%) ques-
tions. In addition, the exams in the current study contained 
fewer far-transfer questions than the previous study (5% vs. 
36%, respectively). (Note: Although we had characterized these 
exams during the original study, this is the first report of these 
data concerning the exams in the previous study.) Consequently, 
because the exams in the current study contained fewer free-re-
sponse questions, or they contained far fewer far-transfer ques-
tions, or due to both these reasons, the differences across the 
exemplar and abstraction learners may have been attenuated.

Alternatively, the similarity of the effect sizes in the two 
studies suggests that a more likely reason for the current study 
not finding statistical differences rests on the much greater 
power in the Frey et al. (2017) study (N = 470) than in the cur-
rent sample (N = 82). Using the effect size ηp

2 = 0.02, as obtained 
in the previous study (which is slightly smaller than the current 
study), achieving 0.8 power to obtain significance would 
require 387 participants (G*Power 3.1.9.4; Faul et al., 2007).

More aligned with the goals of the current study, in a more 
fine-grained analysis, we tabulated the average exam grade dis-
tributions (i.e., all four exams and the cumulative final weighted 
appropriately) for abstraction and exemplar learners. Though 
the distributions of abstraction and exemplar learners were not 
significantly different from one another, as revealed by Wil-
coxon rank-sum test (W = 887, p = 0.18), Figure 3 reveals 
potentially important descriptive differences in these distribu-
tions. Interestingly, the percentages of abstraction and exemplar 
learners that populated the “A” and “B” grade ranges were simi-
lar (59% vs. 50%, respectively), but divergences in con-
cept-building building approaches were manifested in the lower 
exam grade ranges (“C”–”F”). As seen in Figure 3, of the 
abstraction learners in the “C”–”F” exam grade range, 73% are 
in the “C” range; by contrast, of the exemplar learners in the 
“C”–”F” exam grade range, only 36% of them are in the “C” 
range (64% are in the “D”–”F” exam grade range). Viewed 
another way, only 27% of the abstraction learners in the “C”–
”F” exam-grade range dropped to the “D”/”F” categories. At 
these lower achievement levels, the knowledge representations 
of the abstraction learners confer advantages. Next, we elabo-
rate on the possible advantages of abstraction learners’ knowl-
edge representations and then report a second study to inform 
that theoretical interpretation.

The general interpretation of the performance difference 
between abstraction learners and exemplar learners offered in 
Frey et al. (2017) was that science courses focus on complex 
problem solving. The basic cognitive science work suggests that 
the more abstract the representations of problem-solving knowl-
edge the learner has (i.e., general principles and concepts that 
apply to and reflect particular example problems and solutions), 
the more likely the learner will succeed at solving new problems 
in that domain (e.g., Gick and Holyoak, 1980; Novick, 1988). 
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Hence, given exemplar learners’ reliance on memorized prob-
lems and solutions, it would be expected that exemplar learners 
would have a more difficult time than abstraction learners. This 
should especially be the case for assessments (exams) that pres-
ent problems requiring generalization and transfer from train-
ing problems (e.g., homework).

McDaniel et al. (2018) provided initial evidence for this 
expectation. They reported that for chemistry exam items that 
relied on retention of homework and in-class problems, abstrac-
tion and exemplar learners performed at similar levels. In con-
trast, for chemistry exam items that required transfer from pre-
vious examples, abstraction learners demonstrated higher 
performance levels than example learners. The implication is 
that abstraction learners were relying on abstractions and gen-
eral concepts gleaned from instructed problems, whereas exem-
plar learners were relying on memorized solutions to instructed 
problems. Critically, however, this interpretation has not yet 
been directly evaluated. To do so, techniques to reveal the under-
lying representations and processes that learners access to solve 
new problems are needed. Study 2 applied a think-aloud meth-
odology to examine just those aspects of abstraction and exem-
plar learners’ approaches to solving new chemistry problems.

Study 2 Results and Discussion
In these results, we report the kinds of approaches that students 
adopted to solve the test problems, as gleaned from the think-
aloud protocols, and then examine the accuracy of the students’ 
solutions to the retention, near-transfer, and far-transfer prob-
lems in two ways. First, we focus on both mean accuracy and 

the distribution of the accuracy scores as a function of the con-
cept-building approach. We also look at the types of mistakes 
that students made to see whether any patterns could be 
gleaned from the think-aloud protocols. Finally, we consider 
students’ postperformance confidence in the accuracy of their 
solutions and relate their rated accuracy confidence levels to 
actual performances.

Problem-Solving Approaches. The basic theoretical and 
empirical work in cognitive science has established several 
kinds of approaches that characterize how people solve prob-
lems. One prominent approach is to rely on memory for solu-
tions from previously experienced problems (e.g., Gick and 
Holyoak, 1983; Gick and McGarry, 1992; Ross, 1984; Novick, 
1988). Another approach is to apply an algorithm developed 
from experience and practice with previous problems (e.g., 
Gick and Holyoak, 1983; McDaniel and Schlager, 1990). A 
third is to use general strategies or reasoning (e.g., means-ends 
analysis; Atwood and Polson, 1976). From the think-aloud 
transcripts, we found evidence for each of these general 
approaches in solving the target chemistry problems. As 
expected for the retention problem, some students relied on 
memory for a previous solution/problem that they had seen 
(see Figure 4). By contrast, for the near- and far-transfer prob-
lems, students did not mention a particular previous problem; 
instead they mostly applied a learned algorithm relating to 
Lewis structures. For the far-transfer problem, some use of gen-
eral reasoning based on understanding the underlying princi-
ples was sprinkled in with application of an algorithm.

FIGURE 3. The average exam grade distribution for abstraction and exemplar learners. The height of each rectangle represents the 
proportion of the given concept-building group performing at each exam grade level.
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A major objective of this study was to inform potential 
differences in the approaches (and by extension, knowledge) 
that exemplar learners and abstraction learners brought to 
bear when solving the target chemistry problems. Two gen-
eral trends were evident on inspection of Figure 4. First, for 
the retention problem, all of the abstraction students applied 
an algorithm, but only three of the five exemplar students did 
so. This is because exemplar students were nearly as likely to 
rely on memory for a previously seen problem as they were to 
rely on an algorithm. Notably, this pattern dovetails with the 
a priori characterization of these abstraction learners as 
favoring abstraction versus exemplar learning tendencies for 
concept building. Moreover, this finding reinforces the theo-
retical idea motivating this study: Different concept-building 
approaches (and resulting knowledge representations) may 
support relatively equivalent performance on retention prob-
lems (see Figure 4), despite important differences in the 
underlying cognitive processes recruited to solve retention 
problems.

Moving to the transfer problems, the clear distinction was 
that the abstraction students were more likely than not to show 
understanding of the algorithm as they attempted to apply it, 
whereas the exemplar students, while uniformly indicating use 

of an algorithm, did so without understanding. In other words, 
the exemplar-oriented students seemed to have memorized an 
algorithm without the understanding of why it generally 
applied (i.e., they could not figure out how to map the algo-
rithm to the transfer problems; cf. Novick, 1988, in the basic 
problem-solving literature).

Problem-Solving Accuracy. Figure 5 shows the distribution of 
accuracy scores and the average score (0–3 scale) across the 
five exemplar and the six abstraction learners for each problem. 
The first point is that accuracy declines across the retention, 
near-transfer, and far-transfer problems. This finding reinforces 
the a priori selection of the problems to reflect tests of retention, 
near transfer, and far transfer, respectively. With this “contin-
uum” in mind, the patterns across the two concept-building 
approaches are quite revealing. For the retention problem, 
abstraction learners demonstrated somewhat higher accuracy 
in their solutions than did the exemplar learners. This advan-
tage displayed by abstraction learners was augmented in the 
near-transfer problem and became substantial in the far-trans-
fer problem. For that problem, exemplar learners’ solution accu-
racy was near zero; by contrast, abstraction learners displayed 
partially accurate solutions.

FIGURE 4. General problem-solving approaches used by students in the think-aloud interviews. Each set of squares and arrows represents 
a single student’s dominant approach on each problem as the student progresses from retention to near-transfer to far-transfer problems.
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These observations are strengthened and refined by examin-
ing the distributions of scores on each problem for each type of 
learner, as displayed in Figure 5. For the retention problem, 
nearly all abstraction learners (83%) derived the correct solu-
tion, resulting in an average accuracy score (i.e., average num-
ber of errors) of 2.67 out of 3, whereas the exemplar learners 
were more likely to derive a solution that was partially correct, 
with an average accuracy score of 1.80. For the near-transfer 
problem, abstraction learners’ solutions generally were partially 
correct, with an average score of 1.83, but almost all of the 
exemplar learners’ solutions (80%) were partially incorrect, 
resulting in an average accuracy score of 0.80. An even greater 
difference in the solutions emerged for the far-transfer problem. 
Abstraction learners (67%) were still partially correct, with an 
average score of 1.67, and now exemplar learners (80%) largely 
produced completely incorrect solutions, with an average score 
of 0.20. However, it should be noted that none of these students 
produced a totally correct solution (i.e., received a score of 3, 
which denotes zero errors) for the far-transfer problem.

Types of Mistakes. A second way we characterized solution 
accuracy was to look at the type of mistakes that the average 
exam performing students made in their incorrect solutions. In 
this analysis, we did not find major differences between the 
abstraction and exemplar learners. From the coding, we discov-
ered three main categories of mistakes: 1) applying an incorrect 

algorithm, 2) misapplying a correct algorithm, and 3) misun-
derstanding underlying concepts. Table 3 contains more 
in-depth descriptions of these three categories. Of the mistakes 
made by abstraction learners, 11% were made in the “applying 
an incorrect algorithm” category and 22% were made in the 
“misapplying a correct algorithm” category; whereas, of the 
mistakes made by exemplar learners, 18% were made in the 
“applying an incorrect algorithm” category and 9% were made 
in the “misapplying a correct algorithm” category. For both 
learner types, the most mistakes were in the “misunderstanding 
underlying concepts” category, which included 67% of the mis-
takes made by abstraction learners and 73% of the mistakes 
made by exemplar learners.

In addition, in the “misunderstanding underlying concepts” 
category, we coded the types of conceptual misunderstandings 
students made. Again, we did not find major differences 
between abstraction and exemplar learners. There were two 
key types of conceptual misunderstandings: 1) using the octet 
rule incorrectly, usually allowing more than an octet (four and 
six instances for abstraction learners and exemplar learners, 
respectively), and 2) using formal charges incorrectly, either 
assuming the formal charges are zero, miscalculating them, or 
calculating them correctly but not using them correctly to deter-
mine the most preferred structure (three and two instances for 
abstraction and exemplar learners, respectively). The fact that 
the most mistakes were in the “misunderstanding underlying 

FIGURE 5. Accuracy of solutions (0–3 scale) for students in the think-aloud interviews across the different transfer levels and as a function 
of concept-building approach (exemplar vs. abstraction). The height of each rectangle represents the number of students at each level of 
correctness (for the given problem and concept-building group). The number above each bar is the mean accuracy computed from the 
numeric values listed in the legend. For example, the left-most bar has five scores of 3 (termed correct) and one score of 1 (termed partially 
incorrect). The mean of these six scores comes out to 2.67.
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concepts” category might be the reason all of these students are 
in the average-performing group. Whether the student is learn-
ing by examples and therefore does not know the underlying 
concept or the student is attempting to learn the underlying 
concept but is missing principal elements of the concept, both 
types of students are missing key knowledge about the target 
concept and thus are not performing at a successful level, espe-
cially on transfer problems.

Metacognitive Monitoring for Solution Accuracy. Figure 6 
contains the rescaled values of students’ postperformance accu-
racy confidence and the corresponding solution accuracy as a 
function of concept-building tendency (abstraction, exemplar) 
and type of problem. In Figure 6, we denoted the calibration 
comparisons between the rescaled values of accuracy confi-
dence and the solution accuracy by using circles of purple, 
magenta, and green representing overconfident, accurate, and 
underconfident, respectively. There are three key observations.

The first observation is that, for the majority of the problem 
solutions (66% of the solutions for both abstraction and exem-
plar learners), the students’ solution accuracy confidence ratings 
did not match their corresponding solution accuracy. Of these 
confidence ratings, the majority were higher than the solution 
accuracy (75% for abstraction learners, 91% for exemplar learn-
ers), with a minority being lower than the solution accuracy 
(25% for abstraction learners, 9% for exemplar learners). Turn-
ing to the 33% of problem solutions for which students’ postper-
formance confidence rating accurately gauged solution accuracy 
(i.e., matched solution accuracy), the majority were for the 
retention problems (6/11 [55%] of the retention problems).

The second key observation is that six of the 11 students 
(55% of the students) did not modify their postperformance 
accuracy confidence ratings across the three transfer levels of 
problems even though their solution accuracies did change 
(i.e., their solution accuracy confidence was the same for their 
retention, near-transfer, and far-transfer solutions). One excep-
tion was a student (E1) who showed fairly accurate tracking 
across problems.

The third key observation concerns the misalignment of the 
postperformance accuracy confidence rating with the solution 
accuracy for the far-transfer problem. Recall that the far-trans-
fer problem, as one would have expected, produced low solu-
tion accuracy, and importantly, no student produced a correct 
solution. However, eight out of the 11 students (73%) had 
higher confidence ratings for their solutions than the actual 
accuracy of their solutions. The three exceptions to this pattern 
were either students (A4 and E1) with confidence ratings that 
accurately tracked actual performance for this problem or a stu-
dent (A6) with lower confidence relative to his/her solution 

accuracy. (Note that Student A6 was also underconfident in his/
her solution accuracy on the retention problem.)

In general, then, this sample of average-achieving students 
demonstrated low metacognitive-monitoring accuracy on the 
transfer problems. Despite failing to arrive at correct solutions, 
students were fairly confident, postperformance, that their 
solutions were correct. As discussed later, it is perhaps this inac-
curacy in metacognitive monitoring that obscures for the aver-
age-achieving student the gap in what they know and what 
they need to know to fare well in the chemistry course. That 
said, this may be a point for intervention, especially for the 
abstraction students, who are striving for conceptual under-
standing but may not be aware that their understanding is 
incomplete (as shown by their less than accurate solutions on 
the near- and far-transfer problems).

GENERAL DISCUSSION AND IMPLICATIONS
We examined students’ individual differences in concept building 
as potentially one key factor in explaining student achievement 
in STEM courses (in this case, a POGIL-based general chemistry 
for health science majors) and differing outcomes of students 
with similar academic preparation. Specifically, we examined 
the effect of concept-building approach on exam performance 
and grade distribution, and then extended our understanding 
of these approaches by probing the problem-solving behavior 
and metacognitive-monitoring accuracy of average-performing 
students through think-aloud interviews. We believe these 
results are of importance and generalizable to both biology and 
chemistry, because the topic we probed is Lewis structures: a 
component of structure and bonding, nonquantitative, and 
requiring spatial and symbolic representations—all constructs 
important to the learning of both biology and chemistry.

In study 1, we assessed the students’ concept-building 
approaches using the same laboratory-based concept-building 
task previously employed in a similar study with general chem-
istry and organic chemistry courses at a select research-inten-
sive institution (Frey et al., 2017). In investigating the effect of 
concept-building approach on course performance, both studies 
showed modest advantages (with small effect sizes) for abstrac-
tion learners compared with exemplar learners in exam aver-
ages. However, the difference in exam performances between 
abstraction and exemplar learners was not statistically signifi-
cant in the present study (unlike in the previous study), possibly 
due to the differences in exam format or percentage of far-trans-
fer questions. However, the most likely reason is the relatively 
small sample size in the current study (the previous study’s 
sample had more than 450 students). The effect sizes were very 
comparable (in fact, the current study had a slightly higher 
effect size), and there is recent literature (Wilson et al., 2020) 

TABLE 3. Types of mistakes made on the think-aloud problems

Type of mistake Approach description
Applying an incorrect algorithm The student is attempting to apply a procedure (or algorithm), but either the majority of the steps 

are not in the correct order or a significant number of steps are missing from the algorithm.
Misapplying a correct algorithm The student is using a procedure (or algorithm) and has the majority of steps and is applying them 

in the correct order, but either missed a step or made a mistake in one or two steps.
Misunderstanding underlying concepts The student either 1) is not using an algorithm and is attempting to reason through the process to 

obtain a correct Lewis structure, or 2) is using a correct algorithm and makes a conceptual error 
when attempting to explain the reasoning behind the steps taken. During this reasoning process, 
the student makes a critical error in some underlying concept.
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that suggests that effect size is the best index when looking at 
replication or generalization of previous findings. Hence, the 
value of our finding is establishing along with Frey et al. (2017), 
by at least one statistical index, the generality of the result that 
concept-building approaches derived from basic cognitive 
science work and assessed with laboratory learning tasks 
(McDaniel et al., 2014) relate to general chemistry course per-
formances across different institutions with different instructors 
and different curricula.

The current study also revealed an interesting pattern 
regarding the grade distributions across the abstraction and 
exemplar learners, although the group difference in these distri-
butions did not reach statistical significance. The percentages of 
abstraction and exemplar learners were similar in the “A”/”B” 
exam grade range, but were very different in the “C”–”F” exam 
grade range. Within this latter range, the majority of abstrac-
tion learners (73%) were in the “C” exam grade range; whereas, 
the majority of the exemplar learners (64%) were in the “D”/”F” 

FIGURE 6. Student accuracy confidence for their solutions and actual accuracy of their solutions as a function of concept-building 
tendency (abstraction, exemplar) and type of problem for the students in the think-aloud interviews. Both solution accuracy and accuracy 
confidence measures are rescaled with the corresponding lowest value set to 0 and highest value set to 1. Possible rescaled binned values 
for accuracy confidence are low (0.0), medium (0.5), and high (1.0). Possible rescaled values for solution accuracy are incorrect (0.00), 
partially incorrect (0.33), partially correct (0.67), and correct (1.00). The calibration comparison of solution accuracy and accuracy confi-
dence are denoted by the circles of purple, magenta, and green representing overconfident, accurate, and underconfident, respectively.
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exam grade range. We suggest that, at the lower achievement 
levels, this advantage of the abstraction learners may at least in 
part be due to the differences in their problem-solving 
approaches (relative to the exemplar learners) that were docu-
mented in study 2.

In study 2, we examined via think-aloud interviews how 
abstraction and exemplar learners who have average exam per-
formance solve Lewis structure problems at different levels of 
transfer. The important contribution of study 2 was the novel 
application of think-aloud interviews to reveal for the first time 
how abstraction and exemplar learners (who have average 
exam performance) might differ in their approaches to solving 
retention, near-transfer, and far-transfer problems (specifically 
on Lewis structure problems). The implication from earlier 
studies (both cognitive laboratory studies; McDaniel et al., 
2014; and classroom studies; Frey et al., 2017; McDaniel et al., 
2018; and the current study 1) is that abstraction learners were 
relying on abstractions and general concepts gleaned from 
instructed problems, whereas exemplar learners were relying 
on memorized solutions to instructed problems. However, the 
evidence for this implication was indirect. The three key find-
ings from the think-aloud data included relatively direct evi-
dence regarding the differences in problem-solving approaches 
across abstraction and exemplar learners.

Finding 1: Abstraction Learners Outperformed Exemplar  
Learners even for Students at the Average Exam Perfor-
mance. For both abstraction and exemplar learners, as one 
might expect, their accuracy declined as the problems went 
from retention to near transfer to far transfer. However, we saw 
that, even at the retention level, the abstraction learners on 
average performed better than the exemplar learners; 80% of 
abstraction learners had correct solutions, but 60% of exemplar 
learners had partially correct solutions. And by the far-transfer 
level, all of the exemplar learners had incorrect (80%) or par-
tially incorrect (one learner) solutions, whereas 67% of the 
abstraction learners had solutions that were partially correct. 
However, it should be noted that, for the far-transfer problem, 
none of these students had a completely correct solution. Hence, 
we see that, even with average exam performing students, the 
abstraction learners have solutions that are more correct than 
the exemplar learners, but still are not successful at the far-trans-
fer level.

Finding 2: Abstraction Learners Relied on Understanding 
and Exemplar Learners Dominantly Relied on Algorithm 
without Understanding at all Problem Levels. Looking at the 
problem-solving approaches that the different learners used, we 
found that the abstraction learners principally used an approach 
that relied on understanding (predominantly algorithm with 
understanding for retention [100%] and near-transfer [67%], 
and algorithm with understanding and reasoning for far trans-
fer [67%]). Thus, even on the retention problem, the abstrac-
tion learners were using an understanding of the underlying 
principles of the Lewis structure topic, rather than attempting 
to apply a memorized solution. By contrast, the exemplar learn-
ers indicated using a memorized solution for the retention 
problem (40%), and they predominantly relied on algorithm 
without understanding for the near-transfer (100%) and 
far-transfer (80%) problems. So, the exemplar learners were 

generally relying on memorization or using an algorithm with-
out understanding the underlying principles on which the algo-
rithm was developed. Therefore, even though the students in 
this study were all performing at the exam average, they seemed 
to be approaching the same problems differently depending on 
their concept-building approaches. This possibly implies that 
different interventions are needed for the two types of learners, 
even though they are in the same achievement group.

Finding 3: Both Concept-Building Learners Have Weaknesses 
in Their Metacognitive Monitoring Accuracy Skills. One key 
area in which these average-achieving students were similar 
was their inaccuracy in calibrating their postperformance solu-
tion accuracy confidence with the actual accuracy of their solu-
tions. In general, for the majority of the problems, students’ 
confidence ratings for solution accuracy in both concept build-
ing–approach subgroups were relatively high no matter how the 
students actually performed on the problem. In addition, 
although the abstraction learners did overall perform relatively 
better than the exemplar learners, their ratings of confidence 
did not track with their declining problem-solving accuracy 
from retention to far-transfer problems. Thus, despite not 
achieving correct solutions, for the majority of the problems, 
both types of learners were fairly confident in the accuracy of 
their solutions. This lack of calibration seems to be a weakness 
in the metacognitive-monitoring skills of both types of learners 
and may be one key reason these learners are at the average 
exam performance level despite approaching the problems in 
different ways.

Implications Superficially (based just on exam performance), 
our abstraction and exemplar interviewees would look similar 
to instructors; however, on deeper inspection, these two groups 
show very different types of cognitive processing in the prob-
lem-solving process. The three findings about students perform-
ing at the exam average may suggest that multiple interven-
tions are necessary to help all students in the average-achieving 
group. This area of which interventions would best help stu-
dents having different concept-building approaches is a highly 
interesting one that warrants more research. For example, it 
seems that the exemplar learners in the average-performing 
achievement group need help in developing an understanding 
of the underlying principles; hence pedagogies that include 
more immediate feedback during problem solving from instruc-
tors about how the underlying principles are embedded in prob-
lems might spark these exemplar learners to start developing 
this insight. By contrast, the abstraction learners in the aver-
age-performing achievement group are striving to understand 
the underlying principles. Consequently, having the opportu-
nity during problem solving to gauge their level of understand-
ing compared with others might allow the abstraction learners 
to see where their understanding of the underlying principles 
have fallen short. Hence, these students might better benefit 
from other social constructivist methods such as peer-led team 
learning (PLTL in biology; Preszler, 2009; Snyder and Wiles, 
2015; Kudish et al., 2016) or learning assistant method (LA in 
biology; Batz et al., 2015; Talbot et al., 2015; Van Dusen et al., 
2015; Sellami et al., 2017), in which students are encouraged 
and prompted to discuss the underlying principles in depth as 
they solve the problems together.
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In addition, both types of learners might benefit from meta-
cognitive-monitoring interventions that would help them learn 
to calibrate the accuracy rating of their solutions. Although 
there are studies comparing student’s preperformance 
confidence accuracy compared with their performance, not 
much is known about a student’s postperformance confidence 
accuracy compared with their performance accuracy. This is a 
rich area for development, because it is known that students’ 
metacognitive-monitoring accuracy is deficient in learning and 
memory (e.g., see the recent handbook on metamemory edited 
by Dunlosky and Tauber, 2016), and here we have shown it is 
deficient for problem solving.
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