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ABSTRACT
Epistemological beliefs about science (EBAS) or beliefs about the nature of science knowl-
edge, and how that knowledge is generated during inquiry, are an essential yet difficult to 
assess component of science literacy. Leveraging learning analytics to capture and analyze 
student practices in simulated or game-based authentic science activities is a potential 
avenue for assessing EBAS. Our previous work characterized inquiry practices of experts 
and novices engaged in simulated authentic science inquiry and suggested that practices 
may reflect EBAS. Here, we extend our prior qualitative work to quantitatively examine 
differences in practices and EBAS between non–science majors, biology majors, and bi-
ology graduates. We observed that inquiry practices of non–science majors and biology 
graduates were similar to the novice and expert practices, respectively, in our prior work. 
However, biology majors sometimes appeared to act like their undergraduate peers (e.g., 
performing fewer planning actions) but other times were more similar to biology grad-
uates (e.g., performing complex investigations). We noted that cognitive constructs like 
metacognition were also important for understanding which practices were most likely 
to be reflective of EBAS. This work advances how to assess EBAS using learning analytics 
and raises questions regarding the development of cognitive processes like EBAS among 
aspiring biologists.

INTRODUCTION
Science literacy, or the fundamental science knowledge needed by all members of 
society and the skills necessary to leverage that knowledge to make informed scientific 
decisions (Organisation for Economic Co-operation and Development, 2006; Crowell 
and Schunn, 2016), is an essential goal of science education. Within biology class-
rooms, students need the foundational knowledge necessary to grapple with biologi-
cal issues facing today’s society, ranging from genetic privacy to climate change. 
Underlying the attainment of science literacy are several cognitive constructs, includ-
ing epistemological beliefs about science (EBAS). EBAS are beliefs that an individual 
possesses regarding the nature of science (NOS) knowledge and how that knowledge 
is generated through inquiry. These beliefs influence how students learn about science 
and their activities in science practices, like argumentation (Elby et al., 2016) or 
inquiry (Peffer and Ramezani, 2019). Although development of sophisticated EBAS is 
acknowledged as important for attainment of science literacy, EBAS are difficult to 
define and consequently assess. Part of the challenge lies in that epistemological 
beliefs are not directly observable. Because they cannot be observed directly, indirect 
metrics must be used, which then raises concerns about the accuracy and validity of 
the measurement (Ifenthaler, 2012). Current pen-and-paper metrics of EBAS and the 
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related construct, NOS understanding, are criticized for their 
lack of reliability and validity, with some researchers calling for 
a cessation of their use (Sandoval, 2005; Sandoval and Red-
man, 2015).

A solution to this problem is to allow individuals to external-
ize these constructs. Prior work in science education suggested 
viewing EBAS in the context of an authentic task, such as argu-
mentation (Mason and Scirica, 2006; Deng et al., 2011) or 
inquiry (Sandoval, 2005; Peffer and Ramezani, 2019). Others 
have posited that new technological and methodological 
advances, such as those provided by learning analytics, can be 
harnessed to assess these important but difficult to measure 
constructs in a faster, more reliable manner (Ifenthaler, 2012; 
Knight et al., 2014). Big data tools and methods are revolution-
izing research in a wide range of disciplines, including both 
biology with next-generation sequencing and education via 
learning analytics. The field of learning analytics is relatively 
new, with the 10th anniversary of the first learning analytics 
conference being held in 2020. Learning analytics are defined 
in a variety of manners. Lockyer et al. (2013) define learning 
analytics as data about learners and/or learning environments 
that are studied and leveraged to improve learning and/or 
learning environments. Jisc, or the Joint Information Systems 
Committee, a nonprofit in the United Kingdom, defines learn-
ing analytics as the use of data about students and their activi-
ties to understand and improve educational processes and pro-
vide better support to learners (Jisc, 2015).

Here we used learning analytics to assess EBAS situated in 
authentic science inquiry. We examined the differences in prac-
tices and epistemological beliefs in a computer-based biological 
inquiry activity between non–science majors, biology majors, 
and individuals possessing at least one (if not more) biology 
degrees. We found that non–science majors tended to perform 
activities consistent with the novices in our prior qualitative 
work, whereas biology graduate practices were consistent with 
the experts (Peffer and Ramezani, 2019). However, biology 
majors sometimes appeared like the novices and at other times 
more like experts. This may suggest that there is a progression 
of EBAS that occurs during the development of an aspiring biol-
ogist that does not seem to be the result of enhanced biology 
content knowledge. The differences in practices observed do 
not seem to be the result of factors such as motivation to com-
plete a science task or the ability to regulate one’s learning 
activities in a science setting but could be the result of other 
cognitive constructs related to epistemology, such as metacog-
nition. The work presented here is interdisciplinary in that it 
includes the perspective of researchers with firsthand under-
standing of the enculturation process of becoming a biologist 
along with methodologies and theories from both the learning 
analytics and learning sciences communities.

Theoretical Framework
Defining Science Knowledge and Scientific Inquiry. Within 
the literature, there are two theoretical frameworks for defining 
what constitutes science knowledge and how generation of that 
knowledge is unique from other domains of inquiry, such as 
religion or philosophy. Generally speaking, within the science 
education literature, it is called nature of science, or NOS, 
understanding, and in the psychology literature, EBAS. Leder-
man and colleagues describe NOS as the principles and beliefs 

that undergird the practice of science and how science can be 
used as a way of knowing (Lederman et al., 2002). The authors 
also stated that there are several key aspects for differentiating 
science from other domains of inquiry, like philosophy or reli-
gion, that require particular pedagogical attention. These 
include the tentative NOS knowledge and the empirical NOS. 
EBAS are operationalized in a variety of manners, including 
“scientific epistemic beliefs,” “personal epistemology,” and 
“epistemic cognition” (Hofer and Pintrich, 1997; Elby et al., 
2016). At a fundamental level, all of these different ways of 
operationalizing EBAS are founded on the beliefs an individual 
has about what science knowledge is and how we “know we 
know” scientific knowledge. Personal epistemology and scien-
tific epistemic beliefs deal more with what beliefs an individual 
possesses, whereas epistemic cognition focuses on an individu-
al’s reasoning and consideration of knowing how we know.

Some have suggested that NOS and personal epistemology 
may be interchangeable, particularly within the context of 
inquiry (Deng et al., 2011; Elby et al., 2016). Our prior work 
describes the relationship between the two as bidirectional, 
with what you know about science (your NOS understanding) 
influencing what you believe about science (your epistemologi-
cal beliefs) and vice versa (Peffer and Ramezani, 2019). Some 
aspects of NOS and EBAS overlap. For example, justification, an 
aspect of epistemic beliefs about science identified by Hofer and 
Pintrich (1997), or using evidence to support scientific claims, 
is very similar to the NOS principle of the empirical NOS knowl-
edge. Another scientific epistemic belief, certainty, or how sci-
ence knowledge changes over time, is similar to the NOS prin-
ciple of the tentativeness of science knowledge. Because these 
two ways of describing NOS knowledge are both overlapping 
and distinct, we will refer to this cognitive construct as NOS/
EBAS through the article.

In addition to the wide range of ways of operationalizing 
NOS/EBAS, there is a lack of consensus regarding what pre-
cisely to teach to students. For example, do we teach a universal 
NOS understanding (Abd-El-Khalick, 2012; Schizas et al., 
2016)? Or does it need to vary depending on the discipline 
(Lederman et al., 2002; McComas, 2015)? Or is it best to focus 
on what aspects of NOS align with standards documents, such 
as the Next Generation Science Standards (McComas, 2015)? 
Furthermore, practicing scientists are not consistent in how 
they operationalize NOS (Schwartz and Lederman, 2008; San-
doval and Redman, 2015) and may possess naïve EBAS (Wong 
and Hodson, 2009, 2010). What makes an epistemological 
belief “sophisticated” is a matter of debate as well.

Given the difficulties with defining NOS/EBAS, it is not sur-
prising that there are multiple reliability, validity, and practical 
concerns with existing pen-and-paper metrics. In fact, some 
have said these metrics should no longer be used (Sandoval 
et al., 2016). Convergent metrics such as the Scientific Epis-
temic Beliefs survey (Conley et al., 2014) or the Views of Sci-
ence and Technology Survey (VOSTS; Aikenhead and Ryan, 
1992) are easy to administer, but raise questions about forcing 
student responses into a “box” that does not represent the array 
of possible answers and whether the students are interpreting 
the questions as the metric authors intended (Sandoval, 2005; 
Sandoval and Redman, 2015). Open-ended metrics such as the 
Views of the Nature of Science (VNOS; Lederman et al., 2002) 
or Views About Science Inquiry (VASI; Lederman et al., 2014) 
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allow for a wider variety of answers, but are lengthy for study 
participants to complete, making survey fatigue a concern. 
Later uses of the VOSTS include a mixture of convergent and 
open-ended responses to balance feasibility of use with allow-
ing for a wider variety of responses (Dogan and Abd-El-Khalick, 
2008).

Assessment of NOS/EBAS in Authentic Contexts. An emerg-
ing solution to these assessment challenges is to examine stu-
dent science practices in real time and authentic disciplinary 
contexts, such as inquiry or argumentation. In the context of 
argumentation, one study with middle school students found 
that quality of student arguments correlated with the sophisti-
cation of their epistemological beliefs (Mason and Scirica, 
2006). Deng and colleagues (2011) found that NOS under-
standing can be assessed based on how well students argue sci-
entific claims. For scientific inquiry, Sandoval (2005) argues 
that understanding the relationship between epistemological 
beliefs and inquiry practices is essential for understanding how 
students make sense of science.

Our prior work has examined the relationship between epis-
temological beliefs and inquiry practices within the simulated 
authentic science inquiry tool, Science Classroom Inquiry (SCI). 
SCI is a Web application that gives students a scaffolded authen-
tic science inquiry experience within the confines of a typical 
classroom setting (Peffer et al., 2015). The authenticity of the 
SCI experience is derived from its ability to model the thought 
processes necessary for performing an authentic science inves-
tigation (Peffer and Ramezani, 2019). Students are given com-
plete autonomy to complete the simulation however they wish, 
including generation of various testing strategies and the option 
to revise their hypotheses (Peffer et al., 2015). Using educa-
tional technologies like simulations not only can be leveraged 
to give students an authentic science inquiry experience free 
from many of the resource constraints in typical classrooms 
(Peffer et al., 2015), but also provides a valuable source of click-
stream and language data. These data can be used for assess-
ment of difficult to measure or latent constructs, such as meta-
cognition and EBAS (Ifenthaler, 2012; Knight et al., 2014). 
So-called stealth assessments are an evidence-based method of 
incorporating assessment directly into a learning environment 
such as a game or simulation (Shute and Kim, 2014).

In our prior work, we noted that middle and high school 
students have a wide variety of strategies for completing SCI 
simulations, which we hypothesized could be reflective of dif-
ferences in underlying EBAS (Peffer and Renken, 2015). To 
identify epistemologically relevant episodes in SCI, we con-
ducted a mixed-methods analysis with experts and novices, 
wherein experts and novices were defined by prior experience 
with authentic science practices (Peffer and Ramezani, 2019). 
In this case, experts were all individuals who had published a 
first-author peer-reviewed journal publication in the natural sci-
ences. Novices were undergraduate non–science major students 
with little to no experience with authentic science practices. We 
observed that novices and experts had distinct inquiry practices 
and that performance on existing metrics of NOS/EBAS was 
predictive of their inquiry practices. In particular, we observed 
that looking for information as part of their investigation, per-
forming an investigation aimed at revealing an underlying 
cause and effect relationship for the phenomenon at hand, and 

using hedging or tentative language like “may” and “support” 
when making conclusions were key expert practices (Peffer and 
Kyle, 2017; Peffer and Ramezani, 2019).

Current Study
In Peffer and Ramezani (2019), we noted a wide range of prac-
tices within our novice population. In particular, we noted that 
novices existed on a spectrum from more to less expert-like, 
which suggests that diversity of inquiry practices could be 
reflective of differences in NOS/EBAS and could serve as poten-
tial avenues to personalize instruction. However, our prior anal-
ysis was largely qualitative due to our sample size and did not 
control for affective components that could influence EBAS, 
such as self-efficacy beliefs (Tsai et al., 2011) or science identity 
(Peffer et al., 2018). Because the experts in our prior study also 
had more experience within biology than the novices, none of 
whom were majoring in biology, it was also possible that the 
differences observed in the earlier study could be the result of 
experience with biology. Given concerns with reliability of 
NOS/EBAS assessment, we also wished to test whether we 
could replicate our prior results in a different part of the 
country.

In this study, we expanded our original analysis to include 
an optimal sample size, therefore facilitating learning analytics 
modalities, including generation of predictive models and 
machine learning. This application of learning analytics meth-
odologies to detect practices is particularly important for creat-
ing a scalable, high-throughput assessment of practices. Using 
this quantitative approach, we proposed the following research 
questions:

Research question 1. What other aspects (affective factors, 
experience with biology) influence practices and/or our 
understanding of NOS/EBAS as seen through inquiry?

Research question 2. What new insights into practices are 
revealed using machine learning techniques?

Research question 3: How do our populations differ in terms 
of their NOS/EBAS as seen through practices, and what does 
this tell us about the process of becoming a biologist?

METHODS
Participants
131 individuals participated in this study, including 71 non–sci-
ence majors, 46 biology majors, and 15 biology graduates. All 
participating students were enrolled at the same midsized pub-
lic research institution located in a small city in the Rocky 
Mountain region of the United States. Non-students, namely 
the postdoctoral associates included in our biology graduates 
sample, were recruited from several different research-intensive 
institutions. The non–science majors were predominantly 
female (80.3%), and the two predominant ethnic groups 
were white/European American (57.7%) and Hispanic/Latin 
American (19.7%) and the remainder was a mix of Black/
African American, Asian/Asian American, and multiracial; 
4.2% of students declined to identify. Non–science majors were 
53.5% freshmen, 26.8% sophomores, 5.6% juniors, and 14.1% 
seniors. Biology majors were 58.7% female, and the two pre-
dominant ethnic groups were white/European American 
(65.2%) and Hispanic/Latin American (41.3%), with the rest a 
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mix of Black/African American, Asian/Asian American, Native 
American, and multiracial students. The majority of majors 
were in their senior or junior year (71.7% and 17.4%, respec-
tively), with 8.7% sophomores and 2.2% freshmen. All study 
procedures were performed in accordance with Institutional 
Review Board protocol 1106538.

Among the biology graduates, there were five master’s stu-
dents, five doctoral students, and five postdoctoral associates. 
We detected no statistically significant difference between any 
of our biology graduate populations on any of the pretest 
assessments or inquiry practices analyzed, and therefore 
grouped them together into one category of biology graduates 
for analysis. The biology graduates were predominantly female 
(80%), and the two predominant ethnic groups were white/
European American (46.7%) and Asian/Asian American (20%), 
with the remainder of participants being Hispanic/Latin Ameri-
can, Middle Eastern, or multiethnic.

The majority of non–science majors were recruited through 
M.P.’s non-science majors biology course, which included 
instruction on NOS, and received extra credit for their participa-
tion in this study. The remaining non–science majors were 
recruited via word of mouth and were entered in a raffle to 
receive a gift card. Non–science majors were defined as students 
from programs such as music, education, business, criminal jus-
tice, and psychology who also needed to take a certain number 
of science credit hours. Biology majors and some of the biology 
graduates were recruited from upper-division biology courses 
and completed study requirements as part of course activities. 
Biology majors were defined as students who had officially 
declared biology as their major, whereas biology graduates 
already had a degree in biology and were students in a biology 
graduate program. Postdoctoral associates participating in the 
study had a doctoral degree at the time of the study. Other biol-
ogy graduates were recruited via word of mouth and were com-
pensated for their time with a $20 gift card.

Data Collection
All data were collected during a single meeting that lasted 
approximately 1–2 hours. Although the majority of participants 
completed activities in either a classroom or laboratory setting 
on campus under the supervision of a member of the research 
team, a few of the biology graduates participated virtually via 
Web conferencing software. Some of the biology majors com-
pleted the pretest before attending class, and the simulation 
was performed under the supervision of a member of the 
research team. First, participants completed a pretest that 
included both the motivation and learning strategies items from 
the Motivated Strategies and Learning Questionnaire (MSLQ; 
Pintrich, 1991), and also an assessment of science identity, or 
how much they identified as a “science person” (Hazari et al., 
2010; Cribbs et al., 2015; Godwin et al., 2016). Both of these 
surveys were Likert-scale based. MSLQ items were slightly 
rewritten to be specific to science classes, rather than course 
work in general. The MSLQ included 81 items divided into 15 
subscales about students’ motivation and use of learning strate-
gies. Motivation items included both intrinsic and extrinsic 
motivation (known respectively as intrinsic and extrinsic goal 
orientation), student’s evaluation of interest in and/or utility of 
a task (task value), students’ beliefs that their efforts will result 
in a positive outcome (control of learning beliefs), self-assess-

ment of competency toward performing a science task (self-ef-
ficacy), and concern over performance (test anxiety). Learning 
strategies items included skills such as practicing to learn infor-
mation (rehearsal), building connections between new and 
prior knowledge (elaboration), logically structuring knowledge 
(organization), applying prior knowledge in new situations 
(critical thinking), as well as participants’ awareness of their 
own thinking (metacognition), how to create an environment 
conducive for studying (time and study environment), ability to 
control their efforts toward attaining a goal (effort regulation), 
ability to seek help from peers (peer learning) or others, such as 
instructors (help seeking). The science identity metric included 
12 items divided into three subscales representing contributors 
to science identity: recognition from others of being a “science 
person,” feelings of competence when learning science, and 
interest in science. Taken together, these factors inform one’s 
self-assessment of seeing oneself as a science person (Carlone 
and Johnson, 2007).

Participants also completed two assessments of NOS/EBAS, 
the multiple-choice VOSTS (Aikenhead and Ryan, 1992) and an 
open-ended NOS assessment with modifications suggested by 
Dogan and Abd-El-Khalick (2008) to include the option for 
open-ended responses. The NOS assessment included items 
originally published on either the Views of the Nature of Sci-
ence (VNOS; Lederman et al., 2002) or VASI (Lederman et al., 
2014; Supplemental Table 1). We decided not to include the full 
versions of either the VNOS or VASI, because not all aspects 
were relevant to our study and survey fatigue was a concern. 
Items were chosen based on our prior work with this instru-
ment and the SCI simulations (Peffer and Ramezani, 2019) and 
assessed on two NOS principles: principle 1, the lack of a uni-
versal scientific method; and principle 2, the tentative NOS 
knowledge. These aspects were chosen because they are reflec-
tive of both EBAS and NOS theory. Sophisticated scores were in 
line with current scholarship on EBAS and NOS. For example, 
acknowledging that scientific knowledge is subject to change in 
light of new evidence. Naïve scores were opposite of what is 
accepted in the literature; for example, stating that science 
knowledge never changes. Mixed responses reflected an under-
standing that was both in line with the literature and the oppo-
site of accepted theory. Pretest items were counterbalanced, 
and the MSLQ included items that were reverse coded.

We opted not to include any of the VOSTS results in our 
analyses due to concerns about reliability and validity. In this 
study, individual VOSTS items’ reliability measures as well as 
the overall Cronbach’s alpha of the VOSTS instrument, which 
was 0.45, were poor. Our exploratory factor analysis, used to 
establish a preliminary construct validity, demonstrated the 
majority of items either cross-loaded (indicating nonspecificity 
of VOSTS items to assess what we wanted) or had low factor 
loading (indicating that the factors were not strongly reflective 
of the underlying construct we wanted to assess).

After completing the pretest, students were instructed to 
activate Windows’ Steps Recorder and launch the SCI simula-
tion. SCI captured all actions and open-ended responses to 
embedded questions within the simulation, and the Windows’ 
Steps Recorder captured all information-seeking activities from 
outside the simulation. These two data streams were merged 
after data collection was completed to generate a single com-
plete log file for each user. All participants completed “The 
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Invasion of the Grackles” SCI simulation. In this simulation, stu-
dents were tasked with determining a cause for the range 
expansion of a nuisance bird species, the great-tailed grackle. 
Originally from South America, great-tailed grackles are mov-
ing northward. Much like other SCI simulations, the authentic-
ity of the experience is derived from the lack of a single answer 
to explain this phenomenon and the complete autonomy given 
to the students to generate their own hypotheses, revise their 
hypotheses, pursue a testing strategy, and decide when to con-
clude. The version of SCI completed by the simulation was an 
upgraded version of the Web app used in Peffer and Ramezani 
(2019). Although the overall design and flow of the simulation 
was the same, the user interface was streamlined. Demographic 
information was collected after students had completed the 
simulation to avoid any potential stereotype threat.

Data Analysis
Pretest Metrics. The MSLQ was coded as described in the scoring 
guide (Pintrich, 1991), and an average score for each construct 
was calculated. For the science identity metric, participant 
scores for each of the three subscales (competence, interest, and 
recognition) were averaged, and then the mean of those scores 
was calculated as a “proxy variable” to overall science identity 
(Wang and Hazari, 2018). The proxy variable was significantly 
and positively correlated (r = 0.91, n = 117, p < 0.001) to the 
self-recognition item of the metric (“I see myself as a science 
person”), suggesting that this proxy variable is valid to use as a 
measure of science identity, and therefore we only used the 
proxy variable in our analyses.

For the open-ended NOS items, as in our prior work, two 
members of the research team (M.P. and E.R.) coded all open-
ended responses based on two NOS principles, the lack of a uni-
versal scientific method (principle 1) and the tenuous NOS 
knowledge (principle 2). Coding was blinded, and overall agree-
ment was 64% for principle 1 and 61% for principle 2. Kappa 
values were 0.31 and 0.38, respectively, indicating fair agree-
ment (McHugh, 2012). Disagreements were settled through 
mutual discussion.

SCI Practices
Prior work has suggested that clickstream or trace data, that is, 
the activity records of the participants as they engage with SCI, 
can be mapped to theoretically relevant activities (Quigley 
et al., 2017) or cognitive constructs (Ifenthaler, 2012) in a real-
world activity, including SCI (Peffer and Ramezani, 2019; Pef-
fer et al., 2019). As in our prior work, actions within SCI were 
categorized as either investigative, information seeking, or 
planning. Investigative actions included generation of a hypoth-
esis (H), performing a test (T), or concluding (C). Informa-
tion-seeking actions (I) included any time a participant looked 
for information as part of the investigation, such as through the 
internal simulation library or external to the simulation, such as 
through Internet search engines. Planning actions were defined 
as any information seeking that occurred before the generation 
of the first hypothesis. We were particularly interested in plan-
ning actions, as both our prior qualitative work with SCI (Peffer 
and Ramezani, 2019) and expert/novice studies in engineering 
(Atman et al., 2007) indicate that planning is an expert-like 
practice within an authentic activity. These actions were also 
chosen not only because they are important parts of science 

inquiry, but because certain aspects, such as the decision to 
search for more information, could be reflective of underlying 
epistemological beliefs about the source of science knowledge 
(see Peffer and Ramezani, 2019).

Using the log data for each participant, we counted the num-
ber of each action type, including the number of each individual 
action type and total number of actions. Because the total num-
ber of actions could vary among participants, we also calcu-
lated the relative rate of each action (i.e., count of that action 
type from that participant divided by the total number of actions 
from that participant). In addition, we calculated bigrams of 
actions (e.g., IT would represent an individual looking for infor-
mation, I, immediately before performing a test, T) and maxi-
mum repeated I or T actions in a row. This was important, 
because, as identified in our prior qualitative work on SCI, 
experts often switched between testing and looking for infor-
mation and/or had long information-seeking or planning 
phases (Peffer and Ramezani, 2019).

As in our prior work (Peffer and Ramezani, 2019), we also 
assessed investigative strategy. Each log file was assessed by 
two independent coders as simple or complex in nature. Simple 
investigations were neither systematic or mechanistic and were 
reminiscent of simple inquiry as described by Chinn and Malho-
tra (2002). Simple inquiry is straightforward and generally 
does not include iteration or offers an explanation for the 
observed phenomenon that includes any information regarding 
an underlying mechanism. For example, one simple investiga-
tion began with the hypothesis “The reason for the great-tailed 
grackle’s range expansion is the changing climate in their origi-
nal homes.” The user then performed two tests (examining 
temperature and moisture data in original vs. expanded range) 
before concluding that “precipitation is the main cause of the 
great-tailed grackle’s range expansion,” because “where they 
are migrating from has extreme precipitation as compared with 
where they are migrating to. They are migrating to drier places.”

In contrast, complex investigations were often geared toward 
finding an underlying mechanism, logical, and evidence based. 
Complex investigations moved beyond a simple linear relation-
ship between a few data sources and the question at hand, seek-
ing to connect information together in a way that tells an inter-
connected story. This can involve generating a mechanistic 
conclusion that presents multiple pieces of interconnected infor-
mation or systematically exploring all aspects of a hypothesis. 
For example, one complex investigation opened with “due to 
human alteration of the environment, factors such as climate 
change have caused the great-tailed grackle to expand its range.” 
The user then proceeded to complete two tests (same as the 
simple investigation described earlier, except that the user exam-
ined nesting behavior and differences in temperature between 
original and expanded ranges). This user concluded that “cli-
mate change has had a significant influence on the grackles’ 
range expansion,” because “climate change is influenced by 
human alteration of the environment, including urbanization. 
Because the grackles tend to nest near human habitations, 
human expansion will also lead to grackle expansion.” The user 
in question performed the same number of tasks as in our simple 
example, but instead connected the information at hand in a 
logical manner to generate a stronger conclusion. For additional 
examples, our prior work included detailed case studies of 
simple/complex investigations (Peffer and Ramezani, 2019). 
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Coding disagreements were settled by mutual discussion, and 
Cronbach’s alpha was 0.71, indicating acceptable agreement.

Cluster Analysis
We used k-means clustering, an unsupervised machine learning 
algorithm, to determine whether inquiry practices (i.e., H, T, I, 
C, described earlier) would cluster together. The goal of 
k-means clustering is to group samples with similar features for 
the purpose of revealing an underlying pattern. Therefore, anal-
ysis of the various investigative features could reveal distinct 
groups that are potentially representative of underlying EBAS/
NOS. We extended our prior work with this data set (Peffer 
et al., 2019) to include an expanded sample of undergraduate 
students as well as biology graduates. We also expanded our 
features used for classification beyond relative rate of action 
type to include two unit groups of actions, or bigrams. For the 
k-means clustering analysis, we broke the individual log files 
into relevant features (Table 8, discussed later in the article). 
Weka, a machine learning tool (Hall et al., 2009), was then 
used to generate emergent clusters. Features used did not 
include demographics, major, or pretest performance. This 
allowed us to use these emergent activity-based clusters as a 
new basis in our models for exploring both connections to the 
demographic features and differences in outcome measures. 
The elbow method (Ketchen and Shook, 1996) was used for 
determining the optimal number of clusters that would best 
represent the data while also minimizing error. The elbow 
method compares how well the clusters have captured the total 
amount of variance within the data across different potential 
numbers of clusters. We observed a strong “elbow” at three 
clusters, and therefore based our analysis on three clusters.

Statistical Analysis
Statistical analyses were performed in SPSS v. 26, SAS v. 9.4 
(SAS Institute Inc, 2014), and R (R Core Team, 2017). Figures 
were generated in R. The significance level of α = 0.05 was used 
throughout this study. To determine differences in MSLQ and 
science identity between our three populations (non–science 
majors, biology majors, and biology graduates), we performed 
a one-way analysis of variance (ANOVA) to evaluate statistical 
differences, with a Tukey’s post hoc test to detect the pairwise 
differences between populations. Tukey’s test was developed to 
account for multiple comparisons and maintains the appropri-
ate alpha level to prevent the inflation of type I error (Lee and 
Lee, 2018). Due to small counts for certain variables, NOS per-
formance was compared using Fisher’s exact test. One-way 
ANOVA tests were performed to compare differences in prac-
tices among our three populations as well, and chi-squared or 
Fisher’s exact tests were performed, as appropriate, to compare 
practices to educational background. A Bonferroni correction 
was applied to adjust for multiple testing and avoid type I error. 
This adjustment is recommended (Noble, 2009) when multiple 
tests are performed in a study.

Predictive Analysis
We used generalized linear models, an extension of linear 
regression modeling used when response variables are not con-
tinuous and/or normally distributed, to build predictions of key 
outcomes based on learner activity within the system. Logistic 
regression and Poisson regression models are specific cases of 

generalized linear models and were used here as predictive 
models. Random forests and group least absolute shrinkage and 
selection operator (LASSO; Kukreja et al., 2006) were per-
formed in SAS v. 9.4 to select only important variables within 
some of the predictive models that required a higher statistical 
power. Random forests and LASSO models are dimension-re-
duction statistical approaches appropriate to use when working 
with many predictor variables. We used them here, as they can 
also be used as variable selection methods before fitting predic-
tive models. Next, the important variables were entered into 
logistic regression models in SAS v. 9.4 to build the predictive 
models and identify the variables that were significant contrib-
utors in the modeling of the binary and multinomial/categori-
cal response variables. Because predicting simple or complex 
investigations is a dichotomous task, we used a binary logistic 
regression model. Similarly, for predicting cluster assignment 
(which was a categorical variable with three populations), we 
used a multinomial logistic regression model. When modeling 
the count response, we had sufficient power to keep all the pre-
dictors in the model. We fit a Poisson (count) regression model, 
in SAS v. 9.4, to predict both the total number of actions and 
planning actions performed.

RESULTS
Baseline Differences between Non–science Majors, Biolo-
gy Majors, and Biology Graduates
Because cognitive constructs like self-efficacy can influence 
epistemological beliefs (Tsai et al., 2011), we first compared 
baseline differences in motivation (including self-efficacy), 
learning strategies, and science identity between our three pop-
ulations of interest. A one-way between-subjects ANOVA was 
conducted to compare the pretest performance between our 
three populations of interest with a Tukey’s post hoc test to iden-
tify differences within samples. We found that each cognitive 
construct fell into one of four groups (Figure 1 and Table 1). 
Within group 1, there was no difference between our three pop-
ulations (extrinsic goal orientation, rehearsal, time and study 
environment, help seeking). We also note only marginal signifi-
cance for control beliefs and effort regulation. Group 2 rep-
resents cognitive constructs that are very similar among under-
graduates regardless of major, but differ from those of biology 
graduates (Figure 1A). These include aspects that were similar 
among the undergraduates, but different from those of biology 
graduates, such as test anxiety, organization, effort regulation 
(marginally significant), and metacognition (marginally signifi-
cant). Group 3 represents cognitive constructs that were very 
similar between biology majors and biology grads, but different 
from those of non–science majors (Figure 1B). These included 
intrinsic goal orientation, task value, elaboration, critical think-
ing, and science identity. Group 4 was a catch-all category and 
included self-efficacy, which was similar between biology majors 
and biology graduates, but lower for non–science majors. We 
also noted that, for peer learning, biology majors and non–sci-
ence majors differed, but there was no difference between either 
undergraduate population or the biology graduates (Figure 1C).

We next looked at differences between each population and 
performance on the NOS assessment. Table 2 shows the results 
of the NOS assessment. Due to small counts for some observa-
tions, a chi-square test of association was no longer appropri-
ate, and instead Fisher’s exact test was used. We observed no 
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statistical difference among various populations, although we 
do note our observation that biology graduates scored lower on 
average (indicating a more sophisticated answer) than either 
population of undergraduates on both NOS principles assessed 
(Table 2).

Differences in Practices between Non–science Majors, 
Biology Majors, and Biology Graduates
Our prior qualitative work indicated a diversity of practices 
between experts and novices (Peffer and Ramezani, 2019). In 
particular, we noted that novices varied in the amount of 
expert-like practices present, whereas experts were more con-
sistent. Therefore, in this study, we wished to determine 
whether the diversity of practices was due to experience with 
subject matter. Figure 2 demonstrates the diversity of practices 
between our three populations organized in two different ways, 
first by educational background (Figure 2A) and second by clus-
ter assignment, which is discussed later in this article (Figure 
2B). Each row represents a single participant. Across all three 
populations (non–science majors, biology majors, and biology 
graduates), we see two subpopulations: those whose investiga-
tions contained planning phases before generation of their first 
hypothesis and those whose investigations did not contain plan-
ning phases (Figure 2A). Given that the average number of 
actions performed across all participants was nine, we also see 
that the majority of biology graduates and biology majors per-
formed more than the average number of actions, whereas the 
non–science majors were more variable.

We next looked specifically at several features distinctly 
identified in experts in our previous work (Peffer and Ramezani, 
2019) and putatively reflective of more sophisticated EBAS. 
First, we looked at total actions performed, as this was found in 
our prior work to be predictive of expertise (Table 3). The 
results of our one-way ANOVA indicated that the mean scores 

among our three populations were significantly different, 
F(2,128) = 9.40, p < 0.0001. We also used a Tukey’s post hoc 
test as a follow-up of the one-way ANOVA to identify with-
in-sample pairwise differences (Figure 3). We noted that, for 
total actions, the undergraduate populations were not different 
from each other, only different from the biology graduates 
(Figure 3A).

To determine possible explanations, and contributing fea-
tures, for why we observed this difference in total actions, we 
built a predictive model that identified which factors were 
associated with performing more or fewer actions. A Poisson 
(count) regression model was fit to figure out which variables 
were predictive of total number of actions (Table 4). Table 4 
shows the analysis of effects results and the p values of each of 
the predictors. Supplemental Table 2 shows the parameter 
estimates, standard errors, confidence intervals, and hypothe-
sis test results of every predictor within this Poisson regression 
model. We found that educational background, critical think-
ing, metacognition, time and study environment, effort regu-
lation, science identity, NOS principle 2, gender, and whether 
or not the participant revised his or her hypothesis contrib-
uted significantly in predicting the total number of actions. In 
particular, we noted that higher scores on metacognition, 
effort regulation, and science identity were more likely to cor-
respond to an increase in total numbers of actions. In contrast, 
increased critical thinking and time and study environment, 
which is how a student regulates the area where they study 
and how they study, were associated with predicting fewer 
actions.

Significance of educational background was due to the total 
number of actions performed by non–science major students 
compared with biology graduates but not the biology majors 
versus biology graduates (Supplemental Table 2). For NOS 
principle 2, the tentative NOS knowledge, the main difference 

TABLE 1. Baseline differences on motivation, learning strategies, and science identitya

Item
Non–science majors 

mean (SD)
Biology majors 

mean (SD)
Biology graduate 

students mean (SD) p value F

Motivation subscales
Intrinsic goal orientation 3.94 (1.49) 5.10 (1.3) 5.87 (0.56) 0.00 F(2, 109) = 13.67
Extrinsic goal orientation 4.93 (1.22) 5.19 (1.47) 4.58 (1.23) 0.50 F(2,109) = 0.71
Task value 4.26 (1.36) 5.66 (1.44) 6.15 (0.63) 0.00 F(2, 109) = 16.80
Control beliefs 5.00 (1.19) 5.24 (1.36) 5.87 (0.75) 0.05 F(2, 109) = 3.13
Self-efficacy 4.34 (1.40) 4.90 (1.37) 5.86 (0.82) 0.00 F(2, 109) = 7.12
Test anxiety 4.43 (1.52) 4.6 (1.73) 3.15 (1.41) 0.04 F(2, 109) = 3.46

Learning strategies subscales
Rehearsal 4.67 (1.16) 4.69 (1.05) 4.37 (1.55) 0.57 F(2,109) = 0.57
Elaboration 4.16 (1.31) 4.95 (1.12) 5.60 (82) 0.00 F(2, 109) = 8.58
Organization 4.4 (1.11) 4.67 (1.3) 5.71 (1.02) 0.00 F(2, 109) = 5.81)
Critical thinking 3.31 (1.22) 4.31 (1.19) 5.05 (1.06) 0.00 F(2,109) = 13.05
Metacognition 4.14 (0.95) 4.47 (1.06) 4.91 (0.80) 0.04 F(2,109) = 3.26
Time and study environment 5.02 (0.98) 4.84 (1.05) 5.69 (0.89) 0.10 F(2,109) = 2.38
Effort regulation 4.91 (1.28) 4.25 (1.32) 5.87 (0.80) 0.05 F(2,109) = 3.20
Peer learning 3.51 (1.39) 4.11 (1.14) 4.03 (1.27) 0.01 F(2,109) = 4.42
Help seeking 4.01 (1.20) 3.27 (0.64) 4.62 (1.18) 0.17 F(2,109) = 1.79

Science identity

Science identity 1.82 (0.96) 3.27 (0.64) 3.57 (0.31) 0.00 F(2, 109) = 42.90

aBold type indicates statistically significant values.
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in the total number of actions is seen between level 1 (sophisti-
cated) and level 3 (naïve) individuals and not among level 2 
(mixed) versus level 3 (naïve) participants. Said otherwise, the 
more sophisticated the response on NOS principle 2, the more 
actions a student was likely to perform.

We next looked at planning actions, or the amount of infor-
mation-seeking actions that occurred before the generation of 
the first hypothesis, which is an expert-like process in both SCI 
(Peffer and Ramezani, 2019) and engineering (Atman et al., 
2007). Using a one-way ANOVA followed by a Tukey’s post hoc 
test to identify within-sample differences, we noted that, for 
planning actions, the undergraduate populations did not differ 
from each other, but did differ from the biology graduates, 
F(2,128) = 3.40, p = 0.04 (Table 3 and Figure 3A).

To determine possible explanations for why we observed this 
difference in planning actions, we built another predictive 
model capable of identifying the significant predictors associ-
ated with performing a higher or lower number of planning 
actions. A Poisson (count) regression model was fit to all predic-
tors (Table 5). Supplemental Table 3 shows additional informa-
tion, such as the parameter estimates, standard errors, confi-
dence intervals, and hypothesis test results, for this Poisson 
regression model. These results showed that educational back-
ground, extrinsic motivation (extrinsic goal orientation), elabo-
ration, ability to regulate their study environment (time and 
study environment), peer learning, science identity, NOS princi-
ple 1, NOS principle 2, race, and gender significantly predicted 
the number of actions performed before generating the first 
hypothesis. We noted that higher scores on elaboration or 
increased identification as a science person, plus more sophisti-
cated understanding of the lack of a universal scientific method 
(principle 1) and the tentativeness of science knowledge (prin-
ciple 2) were more likely to be associated with a higher number 
of planning actions. In contrast, we noted that extrinsic goal 
regulation, time and study environment, and peer learning were 
most likely to be associated with decreased planning actions.

We note that the statistically significant difference we 
observed between educational backgrounds is due to the varia-
tion in the performance of non–science major students versus 
biology graduates and not the biology majors versus biology 
graduates (Supplemental Table 3). As seen in this table, the 
comparison of non–science majors with biology graduates is 
statistically significant (p = 0.01), meaning the overall 

FIGURE 2. Visualization of participants’ actions in SCI simulation 
by (A) educational background and (B) k-means cluster assign-
ment. Each row represents a single participant. Within each 
grouping, individuals are then organized based on the total 
number of information-seeking actions performed.

TABLE 2. Average scores by level on NOS assessment

Principle 1 mean 
(SD)

Principle 2 mean 
(SD)

Non–science major 2.67 (0.50) 2.07 (0.79)
Biology major 2.64 (0.59) 2.12 (0.62)
Biology graduate 2.37 (0.63) 1.69 (0.63)

FIGURE 1. Scatter plots of participants’ scores on pretest items. 
(A) Items for which the two undergraduate populations were 
similar to one another. (B) Items that were similar between biology 
majors and biology graduates, but different from non–science 
majors. (C) Constructs that were statistically different between 
populations, but did not fit the patterns shown in A or B. Black 
squares indicate means and error bars represent 1 SD. NS, non–sci-
ence majors; B, biology majors; and BG, biology graduates. ANOVA 
tests for all items shown are statistically significant at the α = 0.05 
level, corrected for multiple comparisons.
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significant difference in the education background was due to 
the difference in performance of non–science majors versus 
biology graduates, rather than the biology majors versus biol-
ogy graduates (p = 0.11). For NOS principle 1, the lack of a 
universal scientific method, the main difference in number of 
planning actions is observed between level 1 (sophisticated) 
and level 3 (naïve) participants and not between level 2 (mixed) 
and level 3 (naïve) of NOS principle 1 individuals. For NOS 
principle 2, the difference in number of planning actions is 
observed both among level 1 versus level 3 and among level 2 
versus level 3. Said otherwise, the more sophisticated the 
understanding of the lack of a universal scientific method, the 
more planning actions individuals were likely to perform.

Although not observed in our prior qualitative work (Peffer 
and Ramezani, 2019), we also noted statistically significant dif-
ferences in both the total number and relative rate of tests, 

F(2,128) = 23.80, p = 0.00, and F(2,128) = 6.54, p = 0.00, 
respectively (Table 3). Because the relative rate and total num-
ber of tests are consistent with one another, this suggests that 
the variance between populations is not due to differences in 
total actions performed. When controlling for the total number 
of actions, we noticed that relative rate of testing actions was 
similar between biology majors and biology graduates, with 
non–science majors performing fewer tests (Figure 3B). We 
observed no statistically significant differences in either the rel-
ative rate or total number of hypotheses generated or informa-
tion-seeking actions.

Because our prior work suggested that experts performed 
more complicated investigations with some kind of mechanistic 
or systematic focus (Peffer and Ramezani, 2019), we next 
examined differences in complexity of investigations. A chi-
square test of independence was performed to examine the 
relationship between educational background and complexity 
of investigation. The relationship between the variables was 
significant, χ2 (2, n = 125) = 16.49, p < 0.0001, and Cramer’s V 
= 0.363 indicated a large effect size (Figure 4). We noted that 
non–science majors performed predominantly simple investiga-
tions (59%) compared with both the biology majors (23%) and 
biology graduates (21%). Therefore, complexity of investiga-
tion reflected educational background.

We next performed a binary logistic regression model to 
examine which factors were important for predicting whether a 
participant would perform a simple or complex investigation. 
The predictive model was significant, χ2 = 67.6315, p < 0.0001, 
indicating that it was an efficient model in which predictors 
significantly contributed to forecasting whether students would 
perform simple or complex investigation. Additionally, this 
model had a good fit according to the Hosmer-Lemeshow good-
ness-of-fit test, χ2 = 5.0610, p = 0.751, meaning that the model 
fit to the data was adequate. Table 6 shows the results of this 
logistic regression model.

We found that participants who believed that their efforts in 
a science learning environment (control beliefs) would lead to 
a positive outcome or that their ability to self-regulate their 
learning (effort regulation), increased metacognitive ability and 
who identified as a science person were all predictive for per-
forming a complex investigation. Conversely, we observed that, 
the higher the values of self-efficacy and/or help seeking are, 
the more likely students are to perform simple actions over 
complex actions. Therefore, more positive beliefs about ability 
to complete a science task (self-efficacy) and ability to find help 
in a science learning environment were predictive of perform-
ing a simple investigation. Supplemental Table 4 (results from 
the same logistic model presented in Table 6) shows the para-
meter estimates for this logistic regression model.

FIGURE 3. Scatter plots of (A) counts of participants’ actions in SCI 
simulation and (B) proportion of participants’ actions in SCI 
simulation. Black squares indicate means and error bars represent 
1 SD. NS, non–science majors; B, biology majors; and BG, biology 
graduates. Double asterisk (**) indicates statistical significance at 
the α = 0.05 level.

TABLE 3. Differences in actions performed among participantsa

Planning 
mean (SD)

NumI mean 
(SD)

NumH mean 
(SD)

NumT mean 
(SD)

Total mean 
(SD)

RateI mean 
(SD)

RateH mean 
(SD)

RateT mean 
(SD)

Non–science majors 1.97 (3.57) 2.54 (3.89) 1.16 (0.61) 2.42 (1.65) 7.49 (4.08) 0.23 (0.28) 0.19 (0.10) 0.36 (0.21)
Biology majors 1.69 (3.22) 2.25 (3.69) 1.30 (0.59) 4.26 (2.44) 8.98 (4.09) 0.18 (0.25) 0.16 (0.08) 0.50 (0.23)
Biology graduates 5 (8.76) 5.71 (11.20) 1.36 (0.63) 6.14 (2.74) 14.21 (12.28) 0.24 (0.26) 0.13 (0.09) 0.51 (0.21)
aBold type indicates statistically significant differences between groups. “Num” refers to the total number of times the action was performed, whereas “Rate” describes 
the relative rate at which that action type was performed across the participant's entire investigation. I, information-seeking actions; H, hypotheses generated; and 
T, tests performance.
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Due to the high number of predictors for this logistic regres-
sion model, we ran a second model using a variable selection 
method (conditional backward selection). Half of the original 
predictors were selected for a smaller logistic model with a sim-
ilar fit to the previous logistic model (Akaike information crite-
rion = 134). LASSO confirmed this variable selection. This step 
was taken to provide more power to the smaller model in order 
to identify smaller differences. The important predictors 
selected through the variable selection procedure were control 
beliefs, self-efficacy, rehearsal, elaboration, metacognition, time 
and study environment, effort regulation, help seeking, science 
identity, NOS principle 1 (lack of a universal scientific method), 
and hypothesis revision.

Fitting the smaller logistic regression model to the same 
response as the previous model resulted in a significant model 
(χ2 = 59.14, p < 0.0001) with a good fit (χ2 = 3.45, p = 0.903). 
Table 7 shows the results of this model. The variables that sig-
nificantly contributed to the prediction of whether students opt 
for simple or complex investigation were control beliefs, self-ef-
ficacy, rehearsal, metacognition, time and study environment, 
effort regulation, help seeking, science identity, and hypothesis 
revision. Although NOS principle 1, the lack of a universal sci-
entific method, is not significant, we did note that category 1 
(sophisticated) of NOS principle 1 compared with its category 3 
(naïve) is significant in predicting complexity. The number of 
significant variables has increased compared with the bigger 
model containing 22 predictors, due to the higher statistical 
power of the model with only 11 predictors. The higher power 
of this model helped reveal more information about the signifi-
cant variables in predicting the binary complexity variable.

Supplemental Table 5 shows the parameter estimates for 
this logistic regression model. According to this table, the higher 
the control beliefs, metacognition, effort regulation, and sci-
ence identity are, the more likely students are to perform a com-
plex investigation rather than a simple investigation. On the 
other hand, an increase in self-efficacy, rehearsal, time and 
study environment, and help seeking increases the likelihood of 
performing simple investigations rather than complex investi-
gations (Figure 5). Similarly, for hypothesis revision, partici-
pants who did not revise their hypotheses, compared with those 

FIGURE 4. Distribution of investigation type (simple or complex, 
see Methods) by educational background.

TABLE 5. Poisson regression analysis of effects for number of 
actions before generation of first hypothesisa

LR statistics for type 3 analysis

Source df Chi-square p-value > ChiSq

Population 2 6.28 0.0432
Intrinsic goal orientation 1 1.74 0.1868
Extrinsic goal orientation 1 34.04 0 < 0.0001
Task value 1 0.03 0.8522
Control beliefs 1 2.51 0.1129
Self-efficacy 1 0.29 0.5929
Test anxiety 1 1.64 0.1999
Rehearsal 1 0.51 0.4757
Elaboration 1 7.67 0.0056
Organization 1 0.15 0.6988
Critical thinking 1 3.38 0.0658
Metacognition 1 0.01 0.9209
Time study environment 1 7.34 0.0067
Effort regulation 1 1.93 0.1644
Peer learning 1 13.07 0.0003
Help seeking 1 1.86 0.1729
Science identity 1 22.50 0 < 0.0001
NOS principle 1 2 8.35 0.0154
NOS principle 2 2 18.05 0.0001
Race 2 37.35 0 < 0.0001
Gender 1 30.68 0 < 0.0001
Hypothesis revision 1 1.34 0.2476
aBold font indicates statistically significant values.

TABLE 4. Poisson regression analysis of effects for total number of 
actionsa

LR statistics for type 3 analysis

Source df Chi-square p-value > ChiSq

Population 2 7.82 0.0200
Intrinsic goal regulation 1 0.09 0.7666
Extrinsic goal regulation 1 3.32 0.0684
Task value 1 0.13 0.7165
Control beliefs 1 1.24 0.2662
Self-efficacy 1 0.06 0.8144
Test anxiety 1 0.05 0.8295
Rehearsal 1 0.07 0.7896
Elaboration 1 0.63 0.4259
Organization 1 0.64 0.4225
Critical thinking 1 8.36 0.0038
Metacognition 1 6.29 0.0121
Time study environment 1 28.64 0 < 0.0001
Effort regulation 1 5.31 0.0212
Peer learning 1 3.34 0.0675
Help seeking 1 0.08 0.7726
Science identity 1 6.37 0.0116
NOS principle 1 2 1.93 0.3813
NOS principle 2 2 15.43 0.0004
Race 2 4.91 0.0858
Gender 1 8.93 0.0028
Hypothesis revision 1 4.65 0.0311
aBold font indicates statistically significant values.
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who revised their hypotheses, are more likely to perform simple 
investigations, as opposed to complex investigations.

Performance on NOS principle 1 was another variable that 
played a significant role in predicting complexity. However, the 
only statistically significant difference was found when compar-
ing category 1 (sophisticated) with category 3 (naïve). The 
more sophisticated a particpant's understanding of authentic 
science methods, meaning they understood that there is no uni-
versal scientific method, the more likely the participant was to 
perform a simple investigation. In contrast, if a participant has 
higher scores on NOS principle 2, meaning the more sophisti-

cated a participant’s understanding of the tentative NOS knowl-
edge, the more likely the participant is to perform a complex 
investigation (Figure 5).

Machine Learning Analysis of Investigations
Cluster analysis (Ketchen and Shook, 1996) is a machine learn-
ing method used to group sets of objects by their similarities to 
create a model. As clusters are added to a model, there is better 
coverage of the variance between objects at the cost of increased 
complexity. Therefore, we used the elbow method (Ketchen and 
Shook, 1996) to find the ideal number of clusters while mini-
mizing error. When we examined investigations among our 
population, we observed three distinct clusters (Table 8). Clus-
ter 1 can be qualitatively described as low activity, as shown by 
the low relative rate of engagement with all four action types, 
with few transitions between action types, as shown by the low 
mean on all bigrams that transition between action types. Clus-
ter 2 shows increased investigative activity, particularly in 
regard to hypothesis generation and testing. Cluster 3 builds on 
high information seeking and planning. These qualitative 
descriptions are further visualized in Figure 2B.

We compared these cluster assignments with educational 
background and additional clickstream features to see whether 
either experience with formal biology course content or authen-
tic science practices was related to cluster assignment. Using 
Fisher’s exact test, we found that educational background was 
significantly associated with cluster assignment (p < 0.001, Cra-
mer’s V = 0.27). We noted that most non–science majors fall 
into either cluster 2 or 3, biology majors fall into cluster 1 or 3, 
and biology graduates are in clusters 2 and 3 (Table 9). This is 
a particularly interesting observation, because the amount of 
information seeking and planning present in cluster 3 would 
suggest that this is a more expert-like cluster.

Because performing a complex investigation is another prac-
tice associated with expert performance in SCI (Peffer and 
Ramezani, 2019) and was not included as a feature in our clus-
ter analysis, a chi-square test of independence was performed to 
examine the relationship between complexity and cluster assign-
ment (Table 9). The relationship between the variables was sig-
nificant, χ2 (2, n = 123) = 27.56, p < 0.001, and Cramer’s V = 
0.45. We noted that the majority of the investigations classified 
as simple were found in cluster 1. Because this cluster was also a 
low-activity and low-iteration cluster (meaning, the participant 
tended to perform multiple types of actions in a row, rather than 
moving between different activities), this cluster can be consid-
ered a relatively novice cluster. Cluster 2 had the highest number 
of complex investigations. Interestingly, cluster 3 was split fairly 
evenly between complex and simple investigations. This is par-
ticularly notable, because the high relative rate of informa-
tion-seeking actions, extended planning at the outset of investi-
gations, and increased testing strategy would suggest that this is 
a more expert-like cluster, and therefore we should see more, not 
equivalent, numbers of investigations that are complex in nature.

A multinomial logistic regression was fit to predict how likely 
individuals are to be in one of the three clusters (Table 10). 
Supplemental Table 6 shows more details of this logistic model. 
We excluded NOS principle 1 and NOS principle 2 from this 
model, because their correlation to the response was negatively 
affecting the fit of the model. This removal did not affect the fit 
of the model negatively, nor were those two variables important 

TABLE 6. Logistic regression analysis of effects predicting simple 
or complex investigation using all predictorsa

Type 3 analysis of effects

Effect df Wald chi-square p-value > ChiSq

Population 2 0.3141 0.8547
Intrinsic goal regulation 1 0.1843 0.6677
Extrinsic goal regulation 1 0.4870 0.4853
Task value 1 0.0761 0.7826
Control beliefs 1 5.1093 0.0238
Self-efficacy 1 5.5698 0.0183
Test anxiety 1 0.0089 0.9248
Rehearsal 1 2.1996 0.1380
Elaboration 1 1.4810 0.2236
Organization 1 0.1953 0.6585
Critical thinking 1 1.9224 0.1656
Metacognition 1 4.1078 0.0427
Time study environment 1 3.7104 0.0541
Effort regulation 1 5.8355 0.0157
Peer learning 1 1.8824 0.1701
Help seeking 1 5.6166 0.0178
Science identity 1 7.3850 0.0066
NOS principle 1 2 3.1927 0.2026
NOS principle 2 2 2.3259 0.3126
Race 2 0.8296 0.6605
Gender 1 1.2346 0.2665
Hypothesis revision 1 1.4401 0.2301
aBold font indicates statistically significant values.

TABLE 7. Logistic regression analysis of effects predicting simple 
or complex investigation using 11 predictorsa

Type 3 analysis of effects

Effect df Wald chi-square p-value > ChiSq

Control beliefs 1 6.3117 0.0120
Self-efficacy 1 6.1388 0.0132
Rehearsal 1 5.0656 0.0244
Elaboration 1 2.7771 0.0956
Metacognition 1 4.4321 0.0353
Time study environment 1 5.2673 0.0217
Effort regulation 1 6.0998 0.0135
Help seeking 1 3.9834 0.0460
Science identity 1 13.9068 0.0002
NOS principle 1 2 5.4286 0.0663
Hypothesis revision 1 4.2310 0.0397
aBold font indicates statistically significant values. I, information seeking actions 
and T, tests.
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in fitting this model due to our variable selection results from 
random forests (Breiman, 2001). Therefore, supported by the-
ory and statistical models, these two variables were removed 
from the list of the predictors, and the final model was fit.

This logistic model was significant (χ2 = 89.82, p < 0.0001) 
with extrinsic goal regulation, race, and gender strongly con-
tributing to predicting the likelihood of a participant falling into 
any of the three categories of the cluster variable. Extrinsic goal 
regulation meaningfully contributed to predicting cluster 1 ver-
sus cluster 3. Although intrinsic goal regulation, task value, 
metacognition, time and study environment, effort regulation, 
and help seeking were not overall significant in predicting all 
three categories of clusters, all significantly contributed in pre-
dicting cluster 1 versus cluster 3. Finally, a significant difference 
can be observed between the category of non–science majors 
and biology graduates while predicting the likelihood of falling 
into cluster 1 versus cluster 3, meaning biology graduates were 
more likely to fall into cluster 1 than non–science majors were 
(Supplemental Table 6).

DISCUSSION
Technological and methodological advances in the field of edu-
cation research such as those afforded by learning analytics 
have the potential to change how we conceptualize assessment. 
In particular, technological advances could facilitate the assess-
ment of cognitive constructs like NOS/EBAS that cannot be 

directly measured. Following best practices within the learning 
analytics community, namely, couching quantitative data analy-
ses within prior qualitative work (Shaffer, 2017), this study 
extended our prior qualitative work and takes another import-
ant step toward the development of a rigorous, high-through-
put measure of EBAS as seen through inquiry practices. Here, 
we expanded our model of practices as proxy for epistemologi-
cal beliefs through an examination of which other cognitive fac-
tors are important for identification of the practices most likely 
to reflect underlying epistemological beliefs and not differences 
in motivation to complete the task or self-regulated learning. 
We also noted differences in inquiry practices among our three 
populations of interest, which may suggest that EBAS evolve as 
students complete science course work.

Development of fast quantitative assessments of NOS/EBAS 
will be useful in pedagogical practice to identify students with 
more or less sophisticated EBAS. This information could be 
used to both personalize learning in the classroom and evaluate 
new pedagogical interventions designed to improve NOS/
EBAS. For example, subgroups of students who have less sophis-
ticated EBAS about science could be targeted for additional 
direct instruction designed to foster the development of sophis-
ticated epistemological beliefs. Another possible solution would 
be to pair students with more sophisticated EBAS with those 
with less sophisticated beliefs to facilitate near-peer teaching to 
foster development of sophisticated EBAS.

FIGURE 5. Relationship between various predictors and associated practices by theoretical grouping. Motivation scales includes intrinsic 
and extrinsic goal orientation, task value, control beliefs, self-efficacy for learning, and test anxiety. Learning strategies scales include 
rehearsal, elaboration, organization, critical thinking, metacognition, time and study environment, effort regulation, peer learning, and 
help seeking. There was one scale for science identity, and the NOS assessment included two principles: principle 1 the lack of a universal 
scientific method; and principle 2, the tentativeness of science knowledge.
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Because EBAS can be influenced by affective factors such as 
self-efficacy (Tsai et al., 2011) and inquiry practices observed 
could be influenced by other factors such as motivation or expe-
rience with simulation content, we first set out to determine 
how non–epistemologically relevant factors influenced prac-
tices in SCI. We noted that, in terms of expert features identified 
in our prior work (Peffer and Ramezani, 2019) or in novice/
expert studies in engineering (Atman et al., 2007), undergrad-
uates were similar to one another in performing fewer planning 
and total actions when compared with the biology graduates, 
who were roughly equivalent to the experts in our prior work 
(Figure 3). This suggests that experience with biology content 
does not influence the prevalence of at least these expert-like 
practices. We also noted that biology majors and biology grad-
uates both did more tests than non–science majors, including 
when controlling for the total number of actions performed. 
This is somewhat different from what we observed in our previ-
ous qualitative analysis, namely, that our experts had predomi-
nantly information-seeking actions, not testing actions. This 
observation was reflected in our clustering analyses as well 
(Table 9). This could be due to differences between the ques-

tion the students are trying to answer (e.g., Chinn and Malho-
tra, 2002) or updates to the interface (e.g., Quigley et al., 
2017). Classroom setting could also be a factor that influenced 
our results, as some participants used SCI during the course of 
their normal classroom activities, while others used the tool as 
part of a psychological lab study. Although this is a limitation of 
this work, we do note that, in general, the non–science majors’ 
performance was equivalent to the novices described in Peffer 

TABLE 8. Centroids for each cluster by feature average with SD in parenthesesa

Feature Cluster 1 Cluster 2 Cluster 3

Relative rate of hypothesis generation (H) 0.15 (0.05) 0.29 (0.08) 0.13 (0.06)
Relative rate of information gathering (I) 0.02 (0.05) 0.00 (0.04) 0.52 (0.17)
Relative rate of testing (T) 0.07 (0.06) 0.45 (0.11) 0.26 (0.12)
Relative rate of concluding (C) 0.12 (0.03) 0.25 (0.06) 0.10 (0.04)
SH bigrams 0.11 (0.05) 0.25 (0.06) 0.02 (0.05)
SI bigrams 0.01 (0.03) 0.00 (0.00) 0.09 (0.05)
HH bigrams 0.00 (0.00) 0.00 (0.02) 0.00 (0.00)
HI bigrams 0.00 (0.00) 0.00 (0.00)) 0.02 (0.05)
HT bigrams 0.15 (0.05) 0.28 (0.07) 0.10 (0.06)
HC bigrams 0.00 (0.02) 0.00 (0.04) 0.01 (0.02)
IH bigrams 0.01 (0.04) 0.00 (0.00) 0.09 (0.05)
II bigrams 0.00 (0.02) 0.00 (0.00) 0.38 (0.20)
IT bigrams 0.00 (0.00) 0.00 (0.00) 0.03 (0.06)
IC bigrams 0.00 (0.01) 0.00 (0.04) 0.01 (0.03)
TH bigrams 0.03 (0.05) 0.03 (0.08) 0.02 (0.04)
TI bigrams 0.00 (0.01) 0.00 (0.04) 0.02 (0.05)
TT bigrams 0.55 (0.10) 0.17 (0.17) 0.12 (0.12)
TC bigrams 0.11 (0.05) 0.24 (0.08) 0.09 (0.05)
CI bigrams 0.00 (0.00) 0.24 (0.08) 0.01 (0.03)
aBold type indicates key dimensions for each cluster.

TABLE 9. Clustering assignment relative to educational 
background, complexity, planning, and repeated actionsa

Cluster 1 Cluster 2 Cluster 3

Non–science majors 10 (0.15) 27 (0.40) 30 (0.45)
Biology majors 20 (0.48) 8 (0.19) 14 (0.33)
Biology graduates 6 (0.43) 1 (0.07) 7 (0.50)
Simple investigation 32 (0.46) 9 (0.13) 28 (0.41)
Complex investigation 5 (0.09) 26 (0.48) 23 (0.43)
Planning actions 0.19 (0.52) 0.00 (0.00) 5.47 (5.58)
Repeated I 0.22 (0.54) 0.03 (0.17) 6.01 (5.33)
Repeated T 5.58 (2.02) 1.81 (0.82) 2.35 (1.43)
aCounts per category are shown with relative rate in parentheses. 
I, information seeking actions; T, tests.

TABLE 10. Multinomial logistic regression analysis of effects to 
predict how likely individuals are to be in one of three activity- 
based clusters

Type 3 analysis of effects

Effect df Wald chi-square p-value > ChiSq

Intrinsic goal regulation 2 5.9406 0.0513
Extrinsic goal regulation 2 9.5016 0.0086
Task value 2 3.9817 0.1366
Control beliefs 2 1.7275 0.4216
Self-efficacy 2 1.1428 0.5647
Test anxiety 2 2.9806 0.2253
Rehearsal 2 1.1583 0.5604
Elaboration 2 0.1653 0.9207
Organization 2 0.7886 0.6742
Critical thinking 2 4.5087 0.1049
Metacognition 2 5.2514 0.0724
Time study environment 2 5.2461 0.0726
Effort regulation 2 4.7711 0.0920
Peer learning 2 3.9139 0.1413
Help seeking 2 4.8860 0.0869
Science identity 2 3.4700 0.1764
Gender 2 13.9911 0.0009
Race 4 10.8283 0.0286
Hypothesis revision 2 2.5901 0.2739
Population 4 6.0795 0.1933
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and Ramezani (2019), and the biology graduates were similar 
to the experts in this previous work. Additional research is 
needed to tease out the influence of these extraneous factors on 
inquiry practices in SCI.

Our statistical modeling analysis revealed some surprising 
relationships among motivation, learning strategies, science 
identity, and performance on the NOS assessment (Figure 5). 
Figure 5 is a graphical summary of our modeling results. Direc-
tional arrows represent whether different cognitive constructs 
(e.g., self-efficacy, motivation) were associated with performing 
more novice-like (shown on the left side) or more expert-like 
(shown on the right side). For example, the more strongly 
someone identified as a science person, the more sophisticated 
his or her performance on NOS principle 1 (the lack of a univer-
sal scientific method), then the more planning and total actions 
were performed, shown as a directional arrow between science 
identity or NOS principle 1 and both planning and total actions 
(Figure 5). The increased number of actions could make sense 
among those who understand that there is no universal scien-
tific method, because they may be more likely to continue the 
investigation until they reach a satisfactory answer, not because 
they followed a standard procedure of hypothesizing, testing, 
and concluding.

The stronger identification as a science person associated 
with increased activity could be reflective of confidence in being 
able to complete a science-related task. As a type of discourse 
identity (Gee, 2000), identifying with a discipline in this way 
suggests that one feels one belongs in a science community and 
feels comfortable leveraging the community’s language and 
skills. Science identity is also influenced by an individual’s inter-
est, performance, competence, and recognition from others as a 
member of such a community (Hazari et al., 2010). Perhaps 
students who identified as a science person were more likely to 
behave like one within the simulation.

Increased metacognitive ability and effort regulation or 
self-regulated learning were associated with increased number 
of total actions, but not necessarily planning actions (Tables 4–
6 and Figure 5). This could suggest that increase in action num-
ber is more reflective of students’ ability to stay on task or pos-
sibly the ability to reflect on what they know and plan what 
they need to do next. In future iterations of our assessment, it 
will be important to control for both of these factors when inter-
preting action number. We noted that elaboration, or the pro-
cess of building internal cognitive connections between what 
an individual knows, was important for understanding 
increased planning actions. Because this phase likely includes 
summaries (some of which can be seen in the student’s note-
book), it makes sense that increased elaboration would be asso-
ciated with increased planning time. Interestingly, prior work 
suggests planning time is a key expert practice and we also see 
that sophisticated beliefs on the two NOS principles assessed in 
this study are both associated with an increased number of 
planning actions. Perhaps these participants hold more sophis-
ticated beliefs about the lack of a universal scientific method 
because they understand that there are different ways to test 
questions and sufficient preplanning is necessary to identify the 
best possible strategy to use. This activity could be associated 
with understanding of the tentativeness of science knowledge, 
because planning could represent getting a general idea of the 
current state of the field and controversies. Future work, such as 

including retrospective interviews to interrogate why partici-
pants chose to plan or not, is warranted.

For complexity of investigations, we noted that biology grad-
uates and biology majors performed predominantly more scien-
tifically authentic, or complex, investigations, whereas the non–
science majors performed predominantly simple investigations 
(Figure 4). Because the non–science majors are roughly equiva-
lent to our novices in Peffer and Ramezani (2019) and the biol-
ogy graduates are roughly equivalent to the experts in the same 
study, this result is consistent with our earlier work. We noted 
that increased belief in a positive outcome for a science learning 
experience, self-regulated learning, metacognition, and identi-
fication as a science person were associated with performing a 
complex investigation. Metacognition and self-regulated learn-
ing are both associated with increased performance in learning 
tasks (Zohar and Barzilai, 2013), and it also makes sense that 
individuals who believe that their performance at a task will 
result in a positive outcome are more likely to be engaged with 
the task. These non–epistemologically relevant factors will need 
to be controlled for during future development of our model of 
EBAS as seen through practices.

It is somewhat surprising to observe the converse relation-
ship between science identity and self-efficacy. One would pre-
dict that an individual who identifies as a science person also 
believes in his or her ability to do well at science tasks and that 
both of these would predict performing a complex investiga-
tion. A sense of competence performing science tasks is a factor 
influencing science identity. Though identity is a complex con-
struct, people may experience high science identity rooted in 
another factor (e.g., high science interest), despite not having 
feelings of competence when it comes to completing a science 
task (Carlone and Johnson, 2007). Indeed, previous work has 
indicated that science identity is a stronger predictor than 
self-efficacy of persistence into science careers (Estrada et al., 
2011). Our observations could indicate that students are over-
confident in their ability to engage in academic science tasks, 
explaining the high self-efficacy score associated with perform-
ing less expert-like, simple investigations in an authentic sci-
ence setting. As the self-efficacy metric used had items about 
students’ confidence to perform academic science tasks, such as 
exams, it could be that academic self-efficacy is not conflated 
with self-efficacy to do authentic science tasks. While previous 
work has demonstrated the positive relationship between 
research self-efficacy and research skills (Adedokun et al., 
2013), this model does not include science identity. Future 
work examining context-specific self-efficacy, such as research 
self-efficacy, in relation to science identity and science practices 
may shed light on these relationships.

Higher scores on assessment of metacognitive skills in sci-
ence class was associated with increased likelihood for expert-
like activities, including total actions, planning actions, per-
forming a complex investigation, and presence in cluster 3 
(Table 10 and Figure 5). Metacognition and epistemic cognition 
(epistemological beliefs in action), alongside baseline cognitive 
processes like reading, are considered part of a three-part model 
for describing human cognition (Kitchener, 1983). In this 
model, the three levels of cognition build on one another, with 
activities such as reading at the bottom, “thinking about think-
ing” or metacognition in the middle, and finally “knowing about 
knowing” or epistemic cognition at the top (Kitchener, 1983; 
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Hofer, 2004). It may be possible that the increases in metacog-
nitive ability are co-occurring with increases in epistemic cogni-
tion as well, supporting the observation that these expert-like 
practices are reflective of more sophisticated epistemological 
beliefs as seen through practices. We did not observe a large 
difference in metacognitive skills between any of our three pop-
ulations of participants (Figure 1), which suggests that these 
metacognitive skills are not developing over the course of expe-
rience either with biology content or experience with authentic 
science practices but are instead reflective of an individual’s 
underlying cognitive structures.

In regard to predicting cluster assignment, we looked at the 
likelihood ratios estimated within the multinomial logistic 
regression model, which was fit to predict students who are 
more likely to fall into one of the three clusters based on their 
predictor variables. The results from the Supplemental Table 6 
showed students with higher intrinsic and extrinsic goal regula-
tion, which are related to motivation, and metacognition were 
more likely to be in cluster 3 rather than cluster 1. Because 
cluster 3 was our information-seeking cluster and cluster 1 was 
our low-activity cluster, this suggests that students in cluster 3 
generally performed more sophisticated investigations because 
they were both more motivated to do so and they were more 
reflective during the course of their investigations. In contrast, 
increased task value, or how interesting the student found sci-
ence, was associated with assignment to cluster 1 (Table 10). 
This seems somewhat contradictory, because if someone is 
interested in science, we would predict that person would be 
more likely to deeply engage with the task. However, it could 
also mean that interests are not necessarily correlated with sim-
ulation performance, which is important to note when ascer-
taining how practices could reflect epistemological beliefs. 
Effort regulation or self-regulated learning and help seeking 
were also associated with assignment to cluster 1. Because 
increased effort regulation was also likely to be associated with 
increased total number of actions, it seems that the students 
were able to stay on task, but that their efforts did not necessar-
ily translate into a more sophisticated investigation. This sug-
gests that simulation practices are not necessarily due to one’s 
ability to stay on task indicated that expert-like practice is more 
likely a result of differences in epistemological beliefs.

Across all of the practices that we modeled, we noted that 
the greatest differences were between the non–science majors 
and biology graduates. Although this may not be surprising, 
given our prior work comparing individuals with demonstrable 
experience with science practices (as defined by their publica-
tion in peer-reviewed literature) to individuals with no experi-
ence with authentic science practices, what is particularly nota-
ble is that the biology major practices clearly exist in between 
the other two populations. Sometimes the biology major prac-
tices look similar to those of their undergraduate peers, such as 
in total number of actions and planning actions, but at other 
times, their practices look more like those of the biology gradu-
ates, such as in complexity of investigations and relative rate of 
tests performed. This could be reflective of a progression of 
EBAS that occurs during the enculturation process of becoming 
a biologist.

Prior work comparing misconceptions about science 
between biology majors and non–science majors indicated that 
incoming non–science majors had more misconceptions about 

how science works than biology majors (Cotner et al., 2017). 
Non–science majors and biology majors also differ in terms of 
science identity, both at the beginning of (Cotner et al., 2017) 
and over the course of their university careers (Figure 1). There-
fore, it may not be surprising that biology major practices are 
more expert-like and potentially suggestive of more sophisti-
cated underlying EBAS than the non–science majors. However, 
it is notable that the biology majors exist in the middle space 
between the biology graduates and non–science majors. This 
raises the question of what experiences biology majors (and 
later biology graduates) have, that non–science majors do not, 
that could potentially influence development of sophisticated 
EBAS. Identification of these pedagogical aspects is important 
for fostering development of sophisticated EBAS for all biology 
majors as well as for non–science majors. Because not all biol-
ogy majors will pursue graduate education and non–science 
majors are unlikely to pursue additional science courses upon 
degree completion, identification of these important moments 
and/or pedagogies is important for fostering sophisticated 
EBAS and overall science literacy.

Another possible explanation for biology majors as an inter-
mediary group could be the result of experience with biology 
content. One subpopulation of biology majors were enrolled in 
an upper-division ornithology course, the subject area of the 
simulation. We noted no major differences in planning actions 
between students in the ornithology course (mean = 1.72, SD = 
2.99) and other biology majors (mean = 1.66, SD = 3.42), com-
plexity of investigation (78% complex for ornithology students, 
76% for others), and a slight increase in hypothesis revision 
(35% for ornithology students, 21% for other biology majors). 
Therefore, the differences in practices observed do not seem to 
be the result of familiarity with the content of the simulation. 
Instead, the differences we observe are likely the result of differ-
ences in underlying EBAS.

We were somewhat surprised to not observe a statistically 
significant difference between our populations and perfor-
mance on the NOS assessment. One potential confound is that 
the majority of non–science majors were students in the lead 
author’s nonmajors biology course, and she strongly empha-
sized NOS principles in class. This is particularly relevant, 
because direct instruction is a known pedagogical best practice 
for improving student NOS understanding (Khishfe and Abd-El-
Khalick, 2002). We also noted when scoring the open-ended 
response items that one student commented “As stated in Dr. 
Peffer’s lecture, scientific investigations can follow more than 
one method as science isn’t just followed by a linear pathway.” 
Therefore, it is possible that the non–science majors were scor-
ing higher than would be expected.

Although this is a potential confound and limitation of this 
study, it is interesting to note that the distinction between a 
sophisticated (1) and naïve (3) score on this assessment was 
important for predicting practices such as complexity of investi-
gation and planning actions, as well as the number of non–sci-
ence majors present in the more expert-like cluster, cluster 3 
(Table 9). It may be that the students who received the direct 
instruction did better on both the NOS assessment and had cor-
respondingly more expert-like investigations. When looking 
more generally across all practices, non–science major practices 
were roughly equivalent to those of the novices in Peffer and 
Ramezani (2019). This novice population was also exclusively 
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non–science majors enrolled at a different institution, none of 
whom were taking a biology course taught by the lead author. 
This suggests that, although presence in the lead author’s class 
could have influenced non–science majors’ performance on the 
NOS metric (and potentially investigative approach), overall 
practices among this group appear to be generalizable across 
two institutions. Furthermore, the novices in Peffer and 
Ramezani (2019) were almost exclusively in their fourth and 
final year of their university studies, whereas the population 
studied here was more diverse in terms of degree progress. This 
suggests that years of schooling does not influence practices or 
EBAS/NOS understanding among non–science majors.

To extend our previous qualitative analysis of differences in 
inquiry practices, we used the log files generated by individual 
participants as they engaged in SCI to perform k-means clus-
tering. We observed three emergent clusters (Figure 2B). When 
comparing the clusters with educational background and com-
plexity of investigation (another marker of expert-like practices 
and potential hallmark of a more sophisticated epistemology), 
we noted that cluster 3 appeared to be more expert-like. Clus-
ter 3 was characterized as having high information-seeking 
and planning activity. Because we see the highest number of 
non–science majors and biology graduates in this cluster, and 
the second highest number of biology majors, it suggests that 
experience with biology course work or progress to degree 
completion is unrelated to a more expert-like investigative style 
in SCI. Regarding complexity of investigation, we noted that 
the majority of simple investigations were found in the low-ac-
tivity cluster, cluster 1, which appeared reminiscent of the nov-
ice practices in Peffer and Ramezani (2019). Interestingly, we 
noted that cluster 2 and not cluster 3 had the highest number 
of complex investigations (Table 9). We also noted that cluster 
3 contained approximately half simple and complex investiga-
tions. Given the other expert-like practices in this cluster, this is 
a surprising observation. Future work will examine how partic-
ipants in cluster 2 The high amount of testing by participants in 
cluster 2 used the information they collected, either from test-
ing or looking for information they collected, either from test-
ing or looking outside the simulation, are warranted to better 
understanding how practices relate to sophistication of investi-
gation and overall NOS/EBAS. We also noted that both popu-
lations of undergraduates were more likely to fall into either 
cluster 1 or cluster 2, rather than cluster 3, which may also 
suggest that students with investigations similar to those in 
cluster 3 may also have more sophisticated EBAS.

Although we observed no statistically significant differences 
between cluster assignments among our biology graduate pop-
ulation, we did note qualitatively that of the seven biology 
graduates assigned to cluster 3, four were postdoctoral associ-
ates, two were doctoral candidates, and one was a master’s 
student. Within cluster 1, half of the graduates’ group were 
master’s students, two were doctoral students, and one was a 
postdoctoral associate. We also noted that postdoctoral associ-
ates performed relatively less testing when accounting for the 
length of their investigations than the other two populations 
and more information-seeking actions, particularly in the plan-
ning phase before beginning their investigations. Because the 
postdoctoral associates were most similar to the expert popula-
tion used in Peffer and Ramezani (2019), this lends support to 
cluster 3 as our expert-like cluster.

CONCLUSIONS
Developing an assessment of EBAS/NOS is a challenging yet 
important task for improving student outcomes in all science 
classes. A better assessment of EBAS/NOS will enhance under-
standing of how EBAS develop in the classroom and will be 
useful for developing evidence-based pedagogical strategies 
that can be leveraged to ultimately lead to improved pedagogy 
and science literacy for both non–science and science majors. 
This work contributes to a growing literature that supports the 
use of technology and learning analytics to assess latent con-
structs such as EBAS. Examination of practices in an authentic 
science activity like inquiry provides new insights into how 
students conceptualize NOS knowledge, which is valuable 
information for both instructors and researchers. Using tech-
nology allows for high-throughput and fast access to this infor-
mation and ease in gathering data in real time during a course. 
This facilitates just-in-time teaching and improved not only 
course outcomes, but overall science literacy.

We note that, in the context of biology learning and teach-
ing, this study suggests that biology content knowledge may 
need to be considered separately from epistemological beliefs 
as seen through inquiry. We also see biology major practices 
and potentially EBAS existing in an intermediary zone between 
biology graduates and non–science majors. This is an important 
consideration when determining benchmarks for what knowl-
edge and skills are necessary for students enrolled in biology 
programs, and how beliefs about the NOS knowledge develop 
over the course of completing a university degree.
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