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ABSTRACT

Epistemological beliefs about science (EBAS) or beliefs about the nature of science knowl-
edge, and how that knowledge is generated during inquiry, are an essential yet difficult to
assess component of science literacy. Leveraging learning analytics to capture and analyze
student practices in simulated or game-based authentic science activities is a potential
avenue for assessing EBAS. Our previous work characterized inquiry practices of experts
and novices engaged in simulated authentic science inquiry and suggested that practices
may reflect EBAS. Here, we extend our prior qualitative work to quantitatively examine
differences in practices and EBAS between non-science majors, biology majors, and bi-
ology graduates. We observed that inquiry practices of non—science majors and biology
graduates were similar to the novice and expert practices, respectively, in our prior work.
However, biology majors sometimes appeared to act like their undergraduate peers (e.g.,
performing fewer planning actions) but other times were more similar to biology grad-
uates (e.g., performing complex investigations). We noted that cognitive constructs like
metacognition were also important for understanding which practices were most likely
to be reflective of EBAS. This work advances how to assess EBAS using learning analytics
and raises questions regarding the development of cognitive processes like EBAS among
aspiring biologists.
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related construct, NOS understanding, are criticized for their
lack of reliability and validity, with some researchers calling for
a cessation of their use (Sandoval, 2005; Sandoval and Red-
man, 2015).

A solution to this problem is to allow individuals to external-
ize these constructs. Prior work in science education suggested
viewing EBAS in the context of an authentic task, such as argu-
mentation (Mason and Scirica, 2006; Deng et al., 2011) or
inquiry (Sandoval, 2005; Peffer and Ramezani, 2019). Others
have posited that new technological and methodological
advances, such as those provided by learning analytics, can be
harnessed to assess these important but difficult to measure
constructs in a faster, more reliable manner (Ifenthaler, 2012;
Knight et al., 2014). Big data tools and methods are revolution-
izing research in a wide range of disciplines, including both
biology with next-generation sequencing and education via
learning analytics. The field of learning analytics is relatively
new, with the 10th anniversary of the first learning analytics
conference being held in 2020. Learning analytics are defined
in a variety of manners. Lockyer et al. (2013) define learning
analytics as data about learners and/or learning environments
that are studied and leveraged to improve learning and/or
learning environments. Jisc, or the Joint Information Systems
Committee, a nonprofit in the United Kingdom, defines learn-
ing analytics as the use of data about students and their activi-
ties to understand and improve educational processes and pro-
vide better support to learners (Jisc, 2015).

Here we used learning analytics to assess EBAS situated in
authentic science inquiry. We examined the differences in prac-
tices and epistemological beliefs in a computer-based biological
inquiry activity between non-science majors, biology majors,
and individuals possessing at least one (if not more) biology
degrees. We found that non-science majors tended to perform
activities consistent with the novices in our prior qualitative
work, whereas biology graduate practices were consistent with
the experts (Peffer and Ramezani, 2019). However, biology
majors sometimes appeared like the novices and at other times
more like experts. This may suggest that there is a progression
of EBAS that occurs during the development of an aspiring biol-
ogist that does not seem to be the result of enhanced biology
content knowledge. The differences in practices observed do
not seem to be the result of factors such as motivation to com-
plete a science task or the ability to regulate one’s learning
activities in a science setting but could be the result of other
cognitive constructs related to epistemology, such as metacog-
nition. The work presented here is interdisciplinary in that it
includes the perspective of researchers with firsthand under-
standing of the enculturation process of becoming a biologist
along with methodologies and theories from both the learning
analytics and learning sciences communities.

Theoretical Framework

Defining Science Knowledge and Scientific Inquiry. Within
the literature, there are two theoretical frameworks for defining
what constitutes science knowledge and how generation of that
knowledge is unique from other domains of inquiry, such as
religion or philosophy. Generally speaking, within the science
education literature, it is called nature of science, or NOS,
understanding, and in the psychology literature, EBAS. Leder-
man and colleagues describe NOS as the principles and beliefs
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that undergird the practice of science and how science can be
used as a way of knowing (Lederman et al., 2002). The authors
also stated that there are several key aspects for differentiating
science from other domains of inquiry, like philosophy or reli-
gion, that require particular pedagogical attention. These
include the tentative NOS knowledge and the empirical NOS.
EBAS are operationalized in a variety of manners, including
“scientific epistemic beliefs,” “personal epistemology,” and
“epistemic cognition” (Hofer and Pintrich, 1997; Elby et al.,
2016). At a fundamental level, all of these different ways of
operationalizing EBAS are founded on the beliefs an individual
has about what science knowledge is and how we “know we
know” scientific knowledge. Personal epistemology and scien-
tific epistemic beliefs deal more with what beliefs an individual
possesses, whereas epistemic cognition focuses on an individu-
al’s reasoning and consideration of knowing how we know.

Some have suggested that NOS and personal epistemology
may be interchangeable, particularly within the context of
inquiry (Deng et al., 2011; Elby et al., 2016). Our prior work
describes the relationship between the two as bidirectional,
with what you know about science (your NOS understanding)
influencing what you believe about science (your epistemologi-
cal beliefs) and vice versa (Peffer and Ramezani, 2019). Some
aspects of NOS and EBAS overlap. For example, justification, an
aspect of epistemic beliefs about science identified by Hofer and
Pintrich (1997), or using evidence to support scientific claims,
is very similar to the NOS principle of the empirical NOS knowl-
edge. Another scientific epistemic belief, certainty, or how sci-
ence knowledge changes over time, is similar to the NOS prin-
ciple of the tentativeness of science knowledge. Because these
two ways of describing NOS knowledge are both overlapping
and distinct, we will refer to this cognitive construct as NOS/
EBAS through the article.

In addition to the wide range of ways of operationalizing
NOS/EBAS, there is a lack of consensus regarding what pre-
cisely to teach to students. For example, do we teach a universal
NOS understanding (Abd-El-Khalick, 2012; Schizas et al.,
2016)? Or does it need to vary depending on the discipline
(Lederman et al., 2002; McComas, 2015)? Or is it best to focus
on what aspects of NOS align with standards documents, such
as the Next Generation Science Standards (McComas, 2015)?
Furthermore, practicing scientists are not consistent in how
they operationalize NOS (Schwartz and Lederman, 2008; San-
doval and Redman, 2015) and may possess naive EBAS (Wong
and Hodson, 2009, 2010). What makes an epistemological
belief “sophisticated” is a matter of debate as well.

Given the difficulties with defining NOS/EBAS, it is not sur-
prising that there are multiple reliability, validity, and practical
concerns with existing pen-and-paper metrics. In fact, some
have said these metrics should no longer be used (Sandoval
et al., 2016). Convergent metrics such as the Scientific Epis-
temic Beliefs survey (Conley et al., 2014) or the Views of Sci-
ence and Technology Survey (VOSTS; Aikenhead and Ryan,
1992) are easy to administer, but raise questions about forcing
student responses into a “box” that does not represent the array
of possible answers and whether the students are interpreting
the questions as the metric authors intended (Sandoval, 2005;
Sandoval and Redman, 2015). Open-ended metrics such as the
Views of the Nature of Science (VNOS; Lederman et al., 2002)
or Views About Science Inquiry (VASI; Lederman et al., 2014)
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allow for a wider variety of answers, but are lengthy for study
participants to complete, making survey fatigue a concern.
Later uses of the VOSTS include a mixture of convergent and
open-ended responses to balance feasibility of use with allow-
ing for a wider variety of responses (Dogan and Abd-El-Khalick,
2008).

Assessment of NOS/EBAS in Authentic Contexts. An emerg-
ing solution to these assessment challenges is to examine stu-
dent science practices in real time and authentic disciplinary
contexts, such as inquiry or argumentation. In the context of
argumentation, one study with middle school students found
that quality of student arguments correlated with the sophisti-
cation of their epistemological beliefs (Mason and Scirica,
2006). Deng and colleagues (2011) found that NOS under-
standing can be assessed based on how well students argue sci-
entific claims. For scientific inquiry, Sandoval (2005) argues
that understanding the relationship between epistemological
beliefs and inquiry practices is essential for understanding how
students make sense of science.

Our prior work has examined the relationship between epis-
temological beliefs and inquiry practices within the simulated
authentic science inquiry tool, Science Classroom Inquiry (SCI).
SCI is a Web application that gives students a scaffolded authen-
tic science inquiry experience within the confines of a typical
classroom setting (Peffer et al., 2015). The authenticity of the
SCI experience is derived from its ability to model the thought
processes necessary for performing an authentic science inves-
tigation (Peffer and Ramezani, 2019). Students are given com-
plete autonomy to complete the simulation however they wish,
including generation of various testing strategies and the option
to revise their hypotheses (Peffer et al., 2015). Using educa-
tional technologies like simulations not only can be leveraged
to give students an authentic science inquiry experience free
from many of the resource constraints in typical classrooms
(Peffer et al., 2015), but also provides a valuable source of click-
stream and language data. These data can be used for assess-
ment of difficult to measure or latent constructs, such as meta-
cognition and EBAS (Ifenthaler, 2012; Knight et al., 2014).
So-called stealth assessments are an evidence-based method of
incorporating assessment directly into a learning environment
such as a game or simulation (Shute and Kim, 2014).

In our prior work, we noted that middle and high school
students have a wide variety of strategies for completing SCI
simulations, which we hypothesized could be reflective of dif-
ferences in underlying EBAS (Peffer and Renken, 2015). To
identify epistemologically relevant episodes in SCI, we con-
ducted a mixed-methods analysis with experts and novices,
wherein experts and novices were defined by prior experience
with authentic science practices (Peffer and Ramezani, 2019).
In this case, experts were all individuals who had published a
first-author peer-reviewed journal publication in the natural sci-
ences. Novices were undergraduate non—science major students
with little to no experience with authentic science practices. We
observed that novices and experts had distinct inquiry practices
and that performance on existing metrics of NOS/EBAS was
predictive of their inquiry practices. In particular, we observed
that looking for information as part of their investigation, per-
forming an investigation aimed at revealing an underlying
cause and effect relationship for the phenomenon at hand, and
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using hedging or tentative language like “may” and “support”
when making conclusions were key expert practices (Peffer and
Kyle, 2017; Peffer and Ramezani, 2019).

Current Study

In Peffer and Ramezani (2019), we noted a wide range of prac-
tices within our novice population. In particular, we noted that
novices existed on a spectrum from more to less expert-like,
which suggests that diversity of inquiry practices could be
reflective of differences in NOS/EBAS and could serve as poten-
tial avenues to personalize instruction. However, our prior anal-
ysis was largely qualitative due to our sample size and did not
control for affective components that could influence EBAS,
such as self-efficacy beliefs (Tsai et al., 2011) or science identity
(Peffer et al., 2018). Because the experts in our prior study also
had more experience within biology than the novices, none of
whom were majoring in biology, it was also possible that the
differences observed in the earlier study could be the result of
experience with biology. Given concerns with reliability of
NOS/EBAS assessment, we also wished to test whether we
could replicate our prior results in a different part of the
country.

In this study, we expanded our original analysis to include
an optimal sample size, therefore facilitating learning analytics
modalities, including generation of predictive models and
machine learning. This application of learning analytics meth-
odologies to detect practices is particularly important for creat-
ing a scalable, high-throughput assessment of practices. Using
this quantitative approach, we proposed the following research
questions:

Research question 1. What other aspects (affective factors,
experience with biology) influence practices and/or our
understanding of NOS/EBAS as seen through inquiry?

Research question 2. What new insights into practices are
revealed using machine learning techniques?

Research question 3: How do our populations differ in terms
of their NOS/EBAS as seen through practices, and what does
this tell us about the process of becoming a biologist?

METHODS

Participants

131 individuals participated in this study, including 71 non-sci-
ence majors, 46 biology majors, and 15 biology graduates. All
participating students were enrolled at the same midsized pub-
lic research institution located in a small city in the Rocky
Mountain region of the United States. Non-students, namely
the postdoctoral associates included in our biology graduates
sample, were recruited from several different research-intensive
institutions. The non-science majors were predominantly
female (80.3%), and the two predominant ethnic groups
were white/European American (57.7%) and Hispanic/Latin
American (19.7%) and the remainder was a mix of Black/
African American, Asian/Asian American, and multiracial;
4.2% of students declined to identify. Non-science majors were
53.5% freshmen, 26.8% sophomores, 5.6% juniors, and 14.1%
seniors. Biology majors were 58.7% female, and the two pre-
dominant ethnic groups were white/European American
(65.2%) and Hispanic/Latin American (41.3%), with the rest a
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mix of Black/African American, Asian/Asian American, Native
American, and multiracial students. The majority of majors
were in their senior or junior year (71.7% and 17.4%, respec-
tively), with 8.7% sophomores and 2.2% freshmen. All study
procedures were performed in accordance with Institutional
Review Board protocol 1106538.

Among the biology graduates, there were five master’s stu-
dents, five doctoral students, and five postdoctoral associates.
We detected no statistically significant difference between any
of our biology graduate populations on any of the pretest
assessments or inquiry practices analyzed, and therefore
grouped them together into one category of biology graduates
for analysis. The biology graduates were predominantly female
(80%), and the two predominant ethnic groups were white/
European American (46.7%) and Asian/Asian American (20%),
with the remainder of participants being Hispanic/Latin Ameri-
can, Middle Eastern, or multiethnic.

The majority of non-science majors were recruited through
M.P’s non-science majors biology course, which included
instruction on NOS, and received extra credit for their participa-
tion in this study. The remaining non-science majors were
recruited via word of mouth and were entered in a raffle to
receive a gift card. Non—science majors were defined as students
from programs such as music, education, business, criminal jus-
tice, and psychology who also needed to take a certain number
of science credit hours. Biology majors and some of the biology
graduates were recruited from upper-division biology courses
and completed study requirements as part of course activities.
Biology majors were defined as students who had officially
declared biology as their major, whereas biology graduates
already had a degree in biology and were students in a biology
graduate program. Postdoctoral associates participating in the
study had a doctoral degree at the time of the study. Other biol-
ogy graduates were recruited via word of mouth and were com-
pensated for their time with a $20 gift card.

Data Collection

All data were collected during a single meeting that lasted
approximately 1-2 hours. Although the majority of participants
completed activities in either a classroom or laboratory setting
on campus under the supervision of a member of the research
team, a few of the biology graduates participated virtually via
Web conferencing software. Some of the biology majors com-
pleted the pretest before attending class, and the simulation
was performed under the supervision of a member of the
research team. First, participants completed a pretest that
included both the motivation and learning strategies items from
the Motivated Strategies and Learning Questionnaire (MSLQ;
Pintrich, 1991), and also an assessment of science identity, or
how much they identified as a “science person” (Hazari et al.,
2010; Cribbs et al., 2015; Godwin et al., 2016). Both of these
surveys were Likert-scale based. MSLQ items were slightly
rewritten to be specific to science classes, rather than course
work in general. The MSLQ included 81 items divided into 15
subscales about students’ motivation and use of learning strate-
gies. Motivation items included both intrinsic and extrinsic
motivation (known respectively as intrinsic and extrinsic goal
orientation), student’s evaluation of interest in and/or utility of
a task (task value), students’ beliefs that their efforts will result
in a positive outcome (control of learning beliefs), self-assess-
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ment of competency toward performing a science task (self-ef-
ficacy), and concern over performance (test anxiety). Learning
strategies items included skills such as practicing to learn infor-
mation (rehearsal), building connections between new and
prior knowledge (elaboration), logically structuring knowledge
(organization), applying prior knowledge in new situations
(critical thinking), as well as participants’ awareness of their
own thinking (metacognition), how to create an environment
conducive for studying (time and study environment), ability to
control their efforts toward attaining a goal (effort regulation),
ability to seek help from peers (peer learning) or others, such as
instructors (help seeking). The science identity metric included
12 items divided into three subscales representing contributors
to science identity: recognition from others of being a “science
person,” feelings of competence when learning science, and
interest in science. Taken together, these factors inform one’s
self-assessment of seeing oneself as a science person (Carlone
and Johnson, 2007).

Participants also completed two assessments of NOS/EBAS,
the multiple-choice VOSTS (Aikenhead and Ryan, 1992) and an
open-ended NOS assessment with modifications suggested by
Dogan and Abd-El-Khalick (2008) to include the option for
open-ended responses. The NOS assessment included items
originally published on either the Views of the Nature of Sci-
ence (VNOS; Lederman et al., 2002) or VASI (Lederman et al.,
2014; Supplemental Table 1). We decided not to include the full
versions of either the VNOS or VASI, because not all aspects
were relevant to our study and survey fatigue was a concern.
Items were chosen based on our prior work with this instru-
ment and the SCI simulations (Peffer and Ramezani, 2019) and
assessed on two NOS principles: principle 1, the lack of a uni-
versal scientific method; and principle 2, the tentative NOS
knowledge. These aspects were chosen because they are reflec-
tive of both EBAS and NOS theory. Sophisticated scores were in
line with current scholarship on EBAS and NOS. For example,
acknowledging that scientific knowledge is subject to change in
light of new evidence. Naive scores were opposite of what is
accepted in the literature; for example, stating that science
knowledge never changes. Mixed responses reflected an under-
standing that was both in line with the literature and the oppo-
site of accepted theory. Pretest items were counterbalanced,
and the MSLQ included items that were reverse coded.

We opted not to include any of the VOSTS results in our
analyses due to concerns about reliability and validity. In this
study, individual VOSTS items’ reliability measures as well as
the overall Cronbach’s alpha of the VOSTS instrument, which
was 0.45, were poor. Our exploratory factor analysis, used to
establish a preliminary construct validity, demonstrated the
majority of items either cross-loaded (indicating nonspecificity
of VOSTS items to assess what we wanted) or had low factor
loading (indicating that the factors were not strongly reflective
of the underlying construct we wanted to assess).

After completing the pretest, students were instructed to
activate Windows’ Steps Recorder and launch the SCI simula-
tion. SCI captured all actions and open-ended responses to
embedded questions within the simulation, and the Windows’
Steps Recorder captured all information-seeking activities from
outside the simulation. These two data streams were merged
after data collection was completed to generate a single com-
plete log file for each user. All participants completed “The
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Invasion of the Grackles” SCI simulation. In this simulation, stu-
dents were tasked with determining a cause for the range
expansion of a nuisance bird species, the great-tailed grackle.
Originally from South America, great-tailed grackles are mov-
ing northward. Much like other SCI simulations, the authentic-
ity of the experience is derived from the lack of a single answer
to explain this phenomenon and the complete autonomy given
to the students to generate their own hypotheses, revise their
hypotheses, pursue a testing strategy, and decide when to con-
clude. The version of SCI completed by the simulation was an
upgraded version of the Web app used in Peffer and Ramezani
(2019). Although the overall design and flow of the simulation
was the same, the user interface was streamlined. Demographic
information was collected after students had completed the
simulation to avoid any potential stereotype threat.

Data Analysis

Pretest Metrics. The MSLQ was coded as described in the scoring
guide (Pintrich, 1991), and an average score for each construct
was calculated. For the science identity metric, participant
scores for each of the three subscales (competence, interest, and
recognition) were averaged, and then the mean of those scores
was calculated as a “proxy variable” to overall science identity
(Wang and Hazari, 2018). The proxy variable was significantly
and positively correlated (r = 0.91, n = 117, p < 0.001) to the
self-recognition item of the metric (“I see myself as a science
person”), suggesting that this proxy variable is valid to use as a
measure of science identity, and therefore we only used the
proxy variable in our analyses.

For the open-ended NOS items, as in our prior work, two
members of the research team (M.P. and E.R.) coded all open-
ended responses based on two NOS principles, the lack of a uni-
versal scientific method (principle 1) and the tenuous NOS
knowledge (principle 2). Coding was blinded, and overall agree-
ment was 64% for principle 1 and 61% for principle 2. Kappa
values were 0.31 and 0.38, respectively, indicating fair agree-
ment (McHugh, 2012). Disagreements were settled through
mutual discussion.

SCI Practices

Prior work has suggested that clickstream or trace data, that is,
the activity records of the participants as they engage with SCI,
can be mapped to theoretically relevant activities (Quigley
et al., 2017) or cognitive constructs (Ifenthaler, 2012) in a real-
world activity, including SCI (Peffer and Ramezani, 2019; Pef-
fer et al., 2019). As in our prior work, actions within SCI were
categorized as either investigative, information seeking, or
planning. Investigative actions included generation of a hypoth-
esis (H), performing a test (T), or concluding (C). Informa-
tion-seeking actions (I) included any time a participant looked
for information as part of the investigation, such as through the
internal simulation library or external to the simulation, such as
through Internet search engines. Planning actions were defined
as any information seeking that occurred before the generation
of the first hypothesis. We were particularly interested in plan-
ning actions, as both our prior qualitative work with SCI (Peffer
and Ramezani, 2019) and expert/novice studies in engineering
(Atman et al., 2007) indicate that planning is an expert-like
practice within an authentic activity. These actions were also
chosen not only because they are important parts of science
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inquiry, but because certain aspects, such as the decision to
search for more information, could be reflective of underlying
epistemological beliefs about the source of science knowledge
(see Peffer and Ramezani, 2019).

Using the log data for each participant, we counted the num-
ber of each action type, including the number of each individual
action type and total number of actions. Because the total num-
ber of actions could vary among participants, we also calcu-
lated the relative rate of each action (i.e., count of that action
type from that participant divided by the total number of actions
from that participant). In addition, we calculated bigrams of
actions (e.g., IT would represent an individual looking for infor-
mation, I, immediately before performing a test, T) and maxi-
mum repeated I or T actions in a row. This was important,
because, as identified in our prior qualitative work on SCI,
experts often switched between testing and looking for infor-
mation and/or had long information-seeking or planning
phases (Peffer and Ramezani, 2019).

As in our prior work (Peffer and Ramezani, 2019), we also
assessed investigative strategy. Each log file was assessed by
two independent coders as simple or complex in nature. Simple
investigations were neither systematic or mechanistic and were
reminiscent of simple inquiry as described by Chinn and Malho-
tra (2002). Simple inquiry is straightforward and generally
does not include iteration or offers an explanation for the
observed phenomenon that includes any information regarding
an underlying mechanism. For example, one simple investiga-
tion began with the hypothesis “The reason for the great-tailed
grackle’s range expansion is the changing climate in their origi-
nal homes.” The user then performed two tests (examining
temperature and moisture data in original vs. expanded range)
before concluding that “precipitation is the main cause of the
great-tailed grackle’s range expansion,” because “where they
are migrating from has extreme precipitation as compared with
where they are migrating to. They are migrating to drier places.”

In contrast, complex investigations were often geared toward
finding an underlying mechanism, logical, and evidence based.
Complex investigations moved beyond a simple linear relation-
ship between a few data sources and the question at hand, seek-
ing to connect information together in a way that tells an inter-
connected story. This can involve generating a mechanistic
conclusion that presents multiple pieces of interconnected infor-
mation or systematically exploring all aspects of a hypothesis.
For example, one complex investigation opened with “due to
human alteration of the environment, factors such as climate
change have caused the great-tailed grackle to expand its range.”
The user then proceeded to complete two tests (same as the
simple investigation described earlier, except that the user exam-
ined nesting behavior and differences in temperature between
original and expanded ranges). This user concluded that “cli-
mate change has had a significant influence on the grackles’
range expansion,” because “climate change is influenced by
human alteration of the environment, including urbanization.
Because the grackles tend to nest near human habitations,
human expansion will also lead to grackle expansion.” The user
in question performed the same number of tasks as in our simple
example, but instead connected the information at hand in a
logical manner to generate a stronger conclusion. For additional
examples, our prior work included detailed case studies of
simple/complex investigations (Peffer and Ramezani, 2019).
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Coding disagreements were settled by mutual discussion, and
Cronbach’s alpha was 0.71, indicating acceptable agreement.

Cluster Analysis

We used k-means clustering, an unsupervised machine learning
algorithm, to determine whether inquiry practices (i.e., H, T, L,
C, described earlier) would cluster together. The goal of
k-means clustering is to group samples with similar features for
the purpose of revealing an underlying pattern. Therefore, anal-
ysis of the various investigative features could reveal distinct
groups that are potentially representative of underlying EBAS/
NOS. We extended our prior work with this data set (Peffer
et al., 2019) to include an expanded sample of undergraduate
students as well as biology graduates. We also expanded our
features used for classification beyond relative rate of action
type to include two unit groups of actions, or bigrams. For the
k-means clustering analysis, we broke the individual log files
into relevant features (Table 8, discussed later in the article).
Weka, a machine learning tool (Hall et al., 2009), was then
used to generate emergent clusters. Features used did not
include demographics, major, or pretest performance. This
allowed us to use these emergent activity-based clusters as a
new basis in our models for exploring both connections to the
demographic features and differences in outcome measures.
The elbow method (Ketchen and Shook, 1996) was used for
determining the optimal number of clusters that would best
represent the data while also minimizing error. The elbow
method compares how well the clusters have captured the total
amount of variance within the data across different potential
numbers of clusters. We observed a strong “elbow” at three
clusters, and therefore based our analysis on three clusters.

Statistical Analysis

Statistical analyses were performed in SPSS v. 26, SAS v. 9.4
(SAS Institute Inc, 2014), and R (R Core Team, 2017). Figures
were generated in R. The significance level of o= 0.05 was used
throughout this study. To determine differences in MSLQ and
science identity between our three populations (non-science
majors, biology majors, and biology graduates), we performed
a one-way analysis of variance (ANOVA) to evaluate statistical
differences, with a Tukey’s post hoc test to detect the pairwise
differences between populations. Tukey’s test was developed to
account for multiple comparisons and maintains the appropri-
ate alpha level to prevent the inflation of type I error (Lee and
Lee, 2018). Due to small counts for certain variables, NOS per-
formance was compared using Fisher’s exact test. One-way
ANOVA tests were performed to compare differences in prac-
tices among our three populations as well, and chi-squared or
Fisher’s exact tests were performed, as appropriate, to compare
practices to educational background. A Bonferroni correction
was applied to adjust for multiple testing and avoid type I error.
This adjustment is recommended (Noble, 2009) when multiple
tests are performed in a study.

Predictive Analysis

We used generalized linear models, an extension of linear
regression modeling used when response variables are not con-
tinuous and/or normally distributed, to build predictions of key
outcomes based on learner activity within the system. Logistic
regression and Poisson regression models are specific cases of
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generalized linear models and were used here as predictive
models. Random forests and group least absolute shrinkage and
selection operator (LASSO; Kukreja et al., 2006) were per-
formed in SAS v. 9.4 to select only important variables within
some of the predictive models that required a higher statistical
power. Random forests and LASSO models are dimension-re-
duction statistical approaches appropriate to use when working
with many predictor variables. We used them here, as they can
also be used as variable selection methods before fitting predic-
tive models. Next, the important variables were entered into
logistic regression models in SAS v. 9.4 to build the predictive
models and identify the variables that were significant contrib-
utors in the modeling of the binary and multinomial/categori-
cal response variables. Because predicting simple or complex
investigations is a dichotomous task, we used a binary logistic
regression model. Similarly, for predicting cluster assignment
(which was a categorical variable with three populations), we
used a multinomial logistic regression model. When modeling
the count response, we had sufficient power to keep all the pre-
dictors in the model. We fit a Poisson (count) regression model,
in SAS v. 9.4, to predict both the total number of actions and
planning actions performed.

RESULTS
Baseline Differences between Non-science Majors, Biolo-
gy Majors, and Biology Graduates
Because cognitive constructs like self-efficacy can influence
epistemological beliefs (Tsai et al., 2011), we first compared
baseline differences in motivation (including self-efficacy),
learning strategies, and science identity between our three pop-
ulations of interest. A one-way between-subjects ANOVA was
conducted to compare the pretest performance between our
three populations of interest with a Tukey’s post hoc test to iden-
tify differences within samples. We found that each cognitive
construct fell into one of four groups (Figure 1 and Table 1).
Within group 1, there was no difference between our three pop-
ulations (extrinsic goal orientation, rehearsal, time and study
environment, help seeking). We also note only marginal signifi-
cance for control beliefs and effort regulation. Group 2 rep-
resents cognitive constructs that are very similar among under-
graduates regardless of major, but differ from those of biology
graduates (Figure 1A). These include aspects that were similar
among the undergraduates, but different from those of biology
graduates, such as test anxiety, organization, effort regulation
(marginally significant), and metacognition (marginally signifi-
cant). Group 3 represents cognitive constructs that were very
similar between biology majors and biology grads, but different
from those of non-science majors (Figure 1B). These included
intrinsic goal orientation, task value, elaboration, critical think-
ing, and science identity. Group 4 was a catch-all category and
included self-efficacy, which was similar between biology majors
and biology graduates, but lower for non-science majors. We
also noted that, for peer learning, biology majors and non-sci-
ence majors differed, but there was no difference between either
undergraduate population or the biology graduates (Figure 1C).
We next looked at differences between each population and
performance on the NOS assessment. Table 2 shows the results
of the NOS assessment. Due to small counts for some observa-
tions, a chi-square test of association was no longer appropri-
ate, and instead Fisher’s exact test was used. We observed no
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TABLE 1. Baseline differences on motivation, learning strategies, and science identity®

Non-science majors

Biology majors

Biology graduate

Item mean (SD) mean (SD) students mean (SD) p value F
Motivation subscales

Intrinsic goal orientation 3.94 (1.49) 5.10 (1.3) 5.87 (0.56) 0.00 F(2, 109) = 13.67
Extrinsic goal orientation 4.93 (1.22) 5.19 (1.47) 4.58 (1.23) 0.50 F(2,109) =0.71
Task value 4.26 (1.36) 5.66 (1.44) 6.15 (0.63) 0.00 F(2, 109) = 16.80
Control beliefs 5.00 (1.19) 5.24 (1.36) 5.87 (0.75) 0.05 F(2,109) =3.13
Self-efficacy 4.34 (1.40) 4.90 (1.37) 5.86 (0.82) 0.00 F(2,109) =7.12
Test anxiety 4.43 (1.52) 4.6 (1.73) 3.15 (1.41) 0.04 F(2, 109) = 3.46
Learning strategies subscales

Rehearsal 4.67 (1.16) 4.69 (1.05) 4.37 (1.55) 0.57 F(2,109) =0.57
Elaboration 4.16 (1.31) 4.95 (1.12) 5.60 (82) 0.00 F(2, 109) = 8.58
Organization 4.4 (1.11) 4.67 (1.3) 5.71 (1.02) 0.00 F(2,109) =5.81)
Critical thinking 3.31 (1.22) 4.31 (1.19) 5.05 (1.06) 0.00 F(2,109) = 13.05
Metacognition 4.14 (0.95) 4.47 (1.06) 4.91 (0.80) 0.04 F(2,109) = 3.26
Time and study environment 5.02 (0.98) 4.84 (1.05) 5.69 (0.89) 0.10 F(2,109) =2.38
Effort regulation 4.91 (1.28) 4.25 (1.32) 5.87 (0.80) 0.05 F(2,109) = 3.20
Peer learning 3.51(1.39) 4.11 (1.14) 4.03 (1.27) 0.01 F(2,109) = 4.42
Help seeking 4.01 (1.20) 3.27 (0.64) 4.62 (1.18) 0.17 F(2,109) =1.79
Science identity

Science identity 1.82 (0.96) 3.27 (0.64) 3.57 (0.31) 0.00 F(2, 109) = 42.90

aBold type indicates statistically significant values.

statistical difference among various populations, although we
do note our observation that biology graduates scored lower on
average (indicating a more sophisticated answer) than either
population of undergraduates on both NOS principles assessed
(Table 2).

Differences in Practices between Non-science Majors,
Biology Majors, and Biology Graduates

Our prior qualitative work indicated a diversity of practices
between experts and novices (Peffer and Ramezani, 2019). In
particular, we noted that novices varied in the amount of
expert-like practices present, whereas experts were more con-
sistent. Therefore, in this study, we wished to determine
whether the diversity of practices was due to experience with
subject matter. Figure 2 demonstrates the diversity of practices
between our three populations organized in two different ways,
first by educational background (Figure 2A) and second by clus-
ter assignment, which is discussed later in this article (Figure
2B). Each row represents a single participant. Across all three
populations (non-science majors, biology majors, and biology
graduates), we see two subpopulations: those whose investiga-
tions contained planning phases before generation of their first
hypothesis and those whose investigations did not contain plan-
ning phases (Figure 2A). Given that the average number of
actions performed across all participants was nine, we also see
that the majority of biology graduates and biology majors per-
formed more than the average number of actions, whereas the
non-science majors were more variable.

We next looked specifically at several features distinctly
identified in experts in our previous work (Peffer and Ramezani,
2019) and putatively reflective of more sophisticated EBAS.
First, we looked at total actions performed, as this was found in
our prior work to be predictive of expertise (Table 3). The
results of our one-way ANOVA indicated that the mean scores
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among our three populations were significantly different,
F(2,128) = 9.40, p < 0.0001. We also used a Tukey’s post hoc
test as a follow-up of the one-way ANOVA to identify with-
in-sample pairwise differences (Figure 3). We noted that, for
total actions, the undergraduate populations were not different
from each other, only different from the biology graduates
(Figure 3A).

To determine possible explanations, and contributing fea-
tures, for why we observed this difference in total actions, we
built a predictive model that identified which factors were
associated with performing more or fewer actions. A Poisson
(count) regression model was fit to figure out which variables
were predictive of total number of actions (Table 4). Table 4
shows the analysis of effects results and the p values of each of
the predictors. Supplemental Table 2 shows the parameter
estimates, standard errors, confidence intervals, and hypothe-
sis test results of every predictor within this Poisson regression
model. We found that educational background, critical think-
ing, metacognition, time and study environment, effort regu-
lation, science identity, NOS principle 2, gender, and whether
or not the participant revised his or her hypothesis contrib-
uted significantly in predicting the total number of actions. In
particular, we noted that higher scores on metacognition,
effort regulation, and science identity were more likely to cor-
respond to an increase in total numbers of actions. In contrast,
increased critical thinking and time and study environment,
which is how a student regulates the area where they study
and how they study, were associated with predicting fewer
actions.

Significance of educational background was due to the total
number of actions performed by non-science major students
compared with biology graduates but not the biology majors
versus biology graduates (Supplemental Table 2). For NOS
principle 2, the tentative NOS knowledge, the main difference
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FIGURE 1. Scatter plots of participants’ scores on pretest items.

(A) Items for which the two undergraduate populations were
similar to one another. (B) ltems that were similar between biology
majors and biology graduates, but different from non-science
majors. (C) Constructs that were statistically different between
populations, but did not fit the patterns shown in A or B. Black
squares indicate means and error bars represent 1 SD. NS, non—sci-
ence majors; B, biology majors; and BG, biology graduates. ANOVA
tests for all items shown are statistically significant at the o.= 0.05
level, corrected for multiple comparisons.

in the total number of actions is seen between level 1 (sophisti-
cated) and level 3 (naive) individuals and not among level 2
(mixed) versus level 3 (naive) participants. Said otherwise, the
more sophisticated the response on NOS principle 2, the more
actions a student was likely to perform.

TABLE 2. Average scores by level on NOS assessment

Principle 1 mean  Principle 2 mean

(SD) (SD)
Non-science major 2.67 (0.50) 2.07 (0.79)
Biology major 2.64 (0.59) 2.12 (0.62)
Biology graduate 2.37 (0.63) 1.69 (0.63)

19:ar47, 8

A B
;. Type of Action ;. Type of Action
|; = |nformation seeking |; = |nformation seeking
211.1 ® Hypothesis £H ® Hypothesis
T ::" Test - ::" Test
'g |- = Conclusion - = Conclusion
5 3 &
SR F
(3] s .
© z (o)
m ®
= S
© — =
c O
K]
o >0
8 85
S5 oF
T o E
w
2]
]
28
23
o T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50

Number of Actions Number of Actions
FIGURE 2. Visualization of participants’ actions in SCI simulation
by (A) educational background and (B) k-means cluster assign-
ment. Each row represents a single participant. Within each
grouping, individuals are then organized based on the total
number of information-seeking actions performed.

We next looked at planning actions, or the amount of infor-
mation-seeking actions that occurred before the generation of
the first hypothesis, which is an expert-like process in both SCI
(Peffer and Ramezani, 2019) and engineering (Atman et al.,
2007). Using a one-way ANOVA followed by a Tukey’s post hoc
test to identify within-sample differences, we noted that, for
planning actions, the undergraduate populations did not differ
from each other, but did differ from the biology graduates,
F(2,128) = 3.40, p = 0.04 (Table 3 and Figure 3A).

To determine possible explanations for why we observed this
difference in planning actions, we built another predictive
model capable of identifying the significant predictors associ-
ated with performing a higher or lower number of planning
actions. A Poisson (count) regression model was fit to all predic-
tors (Table 5). Supplemental Table 3 shows additional informa-
tion, such as the parameter estimates, standard errors, confi-
dence intervals, and hypothesis test results, for this Poisson
regression model. These results showed that educational back-
ground, extrinsic motivation (extrinsic goal orientation), elabo-
ration, ability to regulate their study environment (time and
study environment), peer learning, science identity, NOS princi-
ple 1, NOS principle 2, race, and gender significantly predicted
the number of actions performed before generating the first
hypothesis. We noted that higher scores on elaboration or
increased identification as a science person, plus more sophisti-
cated understanding of the lack of a universal scientific method
(principle 1) and the tentativeness of science knowledge (prin-
ciple 2) were more likely to be associated with a higher number
of planning actions. In contrast, we noted that extrinsic goal
regulation, time and study environment, and peer learning were
most likely to be associated with decreased planning actions.

We note that the statistically significant difference we
observed between educational backgrounds is due to the varia-
tion in the performance of non-science major students versus
biology graduates and not the biology majors versus biology
graduates (Supplemental Table 3). As seen in this table, the
comparison of non-science majors with biology graduates is
statistically significant (p = 0.01), meaning the overall
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TABLE 3. Differences in actions performed among participants®

Scientific Beliefs Reflected in Inquiry

Planning NumI mean NumH mean NumT mean Total mean Ratelmean RateH mean RateT mean

mean (SD) (SD) (SD) (SD) (SD) (SD) (SD) (SD)
Non-science majors  1.97 (3.57)  2.54(3.89) 1.16 (0.61)  2.42 (1.65) 7.49 (4.08) 0.23(0.28) 0.19 (0.10)  0.36 (0.21)
Biology majors 1.69 (3.22) 2.25(3.69) 1.30(0.59) 4.26 (2.44) 8.98(4.09) 0.18(0.25) 0.16 (0.08)  0.50 (0.23)
Biology graduates 5(8.76) 5.71(11.20) 1.36 (0.63)  6.14 (2.74) 14.21(12.28) 0.24(0.26)  0.13 (0.09)  0.51 (0.21)

aBold type indicates statistically significant differences between groups. “Num” refers to the total number of times the action was performed, whereas “Rate” describes
the relative rate at which that action type was performed across the participant's entire investigation. I, information-seeking actions; H, hypotheses generated; and

T, tests performance.

significant difference in the education background was due to
the difference in performance of non-science majors versus
biology graduates, rather than the biology majors versus biol-
ogy graduates (p = 0.11). For NOS principle 1, the lack of a
universal scientific method, the main difference in number of
planning actions is observed between level 1 (sophisticated)
and level 3 (naive) participants and not between level 2 (mixed)
and level 3 (naive) of NOS principle 1 individuals. For NOS
principle 2, the difference in number of planning actions is
observed both among level 1 versus level 3 and among level 2
versus level 3. Said otherwise, the more sophisticated the
understanding of the lack of a universal scientific method, the
more planning actions individuals were likely to perform.
Although not observed in our prior qualitative work (Peffer
and Ramezani, 2019), we also noted statistically significant dif-
ferences in both the total number and relative rate of tests,
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FIGURE 3. Scatter plots of (A) counts of participants’ actions in SCI
simulation and (B) proportion of participants’ actions in SCI
simulation. Black squares indicate means and error bars represent
1 SD. NS, non—science majors; B, biology majors; and BG, biology
graduates. Double asterisk (**) indicates statistical significance at
the 0.=0.05 level.
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F(2,128) = 23.80, p = 0.00, and F(2,128) = 6.54, p = 0.00,
respectively (Table 3). Because the relative rate and total num-
ber of tests are consistent with one another, this suggests that
the variance between populations is not due to differences in
total actions performed. When controlling for the total number
of actions, we noticed that relative rate of testing actions was
similar between biology majors and biology graduates, with
non-science majors performing fewer tests (Figure 3B). We
observed no statistically significant differences in either the rel-
ative rate or total number of hypotheses generated or informa-
tion-seeking actions.

Because our prior work suggested that experts performed
more complicated investigations with some kind of mechanistic
or systematic focus (Peffer and Ramezani, 2019), we next
examined differences in complexity of investigations. A chi-
square test of independence was performed to examine the
relationship between educational background and complexity
of investigation. The relationship between the variables was
significant, ¥ (2, n = 125) = 16.49, p < 0.0001, and Cramer’s V
= 0.363 indicated a large effect size (Figure 4). We noted that
non-science majors performed predominantly simple investiga-
tions (59%) compared with both the biology majors (23%) and
biology graduates (21%). Therefore, complexity of investiga-
tion reflected educational background.

We next performed a binary logistic regression model to
examine which factors were important for predicting whether a
participant would perform a simple or complex investigation.
The predictive model was significant, x* = 67.6315, p < 0.0001,
indicating that it was an efficient model in which predictors
significantly contributed to forecasting whether students would
perform simple or complex investigation. Additionally, this
model had a good fit according to the Hosmer-Lemeshow good-
ness-of-fit test, 2 = 5.0610, p = 0.751, meaning that the model
fit to the data was adequate. Table 6 shows the results of this
logistic regression model.

We found that participants who believed that their efforts in
a science learning environment (control beliefs) would lead to
a positive outcome or that their ability to self-regulate their
learning (effort regulation), increased metacognitive ability and
who identified as a science person were all predictive for per-
forming a complex investigation. Conversely, we observed that,
the higher the values of self-efficacy and/or help seeking are,
the more likely students are to perform simple actions over
complex actions. Therefore, more positive beliefs about ability
to complete a science task (self-efficacy) and ability to find help
in a science learning environment were predictive of perform-
ing a simple investigation. Supplemental Table 4 (results from
the same logistic model presented in Table 6) shows the para-
meter estimates for this logistic regression model.
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TABLE 4. Poisson regression analysis of effects for total number of
actions®

LR statistics for type 3 analysis

Source df Chi-square p-value > ChiSq
Population 2 7.82 0.0200
Intrinsic goal regulation 1 0.09 0.7666
Extrinsic goal regulation 1 3.32 0.0684
Task value 1 0.13 0.7165
Control beliefs 1 1.24 0.2662
Self-efficacy 1 0.06 0.8144
Test anxiety 1 0.05 0.8295
Rehearsal 1 0.07 0.7896
Elaboration 1 0.63 0.4259
Organization 1 0.64 0.4225
Critical thinking 1 8.36 0.0038
Metacognition 1 6.29 0.0121
Time study environment 1 28.64 0<0.0001
Effort regulation 1 5.31 0.0212
Peer learning 1 3.34 0.0675
Help seeking 1 0.08 0.7726
Science identity 1 6.37 0.0116
NOS principle 1 2 1.93 0.3813
NOS principle 2 2 15.43 0.0004
Race 2 4.91 0.0858
Gender 1 8.93 0.0028
Hypothesis revision 1 4.65 0.0311

2Bold font indicates statistically significant values.

Due to the high number of predictors for this logistic regres-
sion model, we ran a second model using a variable selection
method (conditional backward selection). Half of the original
predictors were selected for a smaller logistic model with a sim-
ilar fit to the previous logistic model (Akaike information crite-
rion = 134). LASSO confirmed this variable selection. This step
was taken to provide more power to the smaller model in order
to identify smaller differences. The important predictors
selected through the variable selection procedure were control
beliefs, self-efficacy, rehearsal, elaboration, metacognition, time
and study environment, effort regulation, help seeking, science
identity, NOS principle 1 (lack of a universal scientific method),
and hypothesis revision.

Fitting the smaller logistic regression model to the same
response as the previous model resulted in a significant model
(x*=59.14, p < 0.0001) with a good fit (y2 = 3.45, p = 0.903).
Table 7 shows the results of this model. The variables that sig-
nificantly contributed to the prediction of whether students opt
for simple or complex investigation were control beliefs, self-ef-
ficacy, rehearsal, metacognition, time and study environment,
effort regulation, help seeking, science identity, and hypothesis
revision. Although NOS principle 1, the lack of a universal sci-
entific method, is not significant, we did note that category 1
(sophisticated) of NOS principle 1 compared with its category 3
(naive) is significant in predicting complexity. The number of
significant variables has increased compared with the bigger
model containing 22 predictors, due to the higher statistical
power of the model with only 11 predictors. The higher power
of this model helped reveal more information about the signifi-
cant variables in predicting the binary complexity variable.
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see Methods) by educational background.

Supplemental Table 5 shows the parameter estimates for
this logistic regression model. According to this table, the higher
the control beliefs, metacognition, effort regulation, and sci-
ence identity are, the more likely students are to perform a com-
plex investigation rather than a simple investigation. On the
other hand, an increase in self-efficacy, rehearsal, time and
study environment, and help seeking increases the likelihood of
performing simple investigations rather than complex investi-
gations (Figure 5). Similarly, for hypothesis revision, partici-
pants who did not revise their hypotheses, compared with those

TABLE 5. Poisson regression analysis of effects for number of
actions before generation of first hypothesis®

LR statistics for type 3 analysis

Source df Chi-square  p-value > ChiSq
Population 2 6.28 0.0432
Intrinsic goal orientation 1 1.74 0.1868
Extrinsic goal orientation 1 34.04 0<0.0001
Task value 1 0.03 0.8522
Control beliefs 1 2.51 0.1129
Self-efficacy 1 0.29 0.5929
Test anxiety 1 1.64 0.1999
Rehearsal 1 0.51 0.4757
Elaboration 1 7.67 0.0056
Organization 1 0.15 0.6988
Critical thinking 1 3.38 0.0658
Metacognition 1 0.01 0.9209
Time study environment 1 7.34 0.0067
Effort regulation 1 1.93 0.1644
Peer learning 1 13.07 0.0003
Help seeking 1 1.86 0.1729
Science identity 1 22.50 0<0.0001
NOS principle 1 2 8.35 0.0154
NOS principle 2 2 18.05 0.0001
Race 2 37.35 0<0.0001
Gender 1 30.68 0<0.0001
Hypothesis revision 1 1.34 0.2476

2Bold font indicates statistically significant values.
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TABLE 6. Logistic regression analysis of effects predicting simple
or complex investigation using all predictors®

Type 3 analysis of effects

Effect df Wald chi-square p-value > ChiSq
Population 2 0.3141 0.8547
Intrinsic goal regulation 1 0.1843 0.6677
Extrinsic goal regulation 1 0.4870 0.4853
Task value 1 0.0761 0.7826
Control beliefs 1 5.1093 0.0238
Self-efficacy 1 5.5698 0.0183
Test anxiety 1 0.0089 0.9248
Rehearsal 1 2.1996 0.1380
Elaboration 1 1.4810 0.2236
Organization 1 0.1953 0.6585
Critical thinking 1 1.9224 0.1656
Metacognition 1 4.1078 0.0427
Time study environment 1 3.7104 0.0541
Effort regulation 1 5.8355 0.0157
Peer learning 1 1.8824 0.1701
Help seeking 1 5.6166 0.0178
Science identity 1 7.3850 0.0066
NOS principle 1 2 3.1927 0.2026
NOS principle 2 2 2.3259 0.3126
Race 2 0.8296 0.6605
Gender 1 1.2346 0.2665
Hypothesis revision 1 1.4401 0.2301

“Bold font indicates statistically significant values.

who revised their hypotheses, are more likely to perform simple
investigations, as opposed to complex investigations.
Performance on NOS principle 1 was another variable that
played a significant role in predicting complexity. However, the
only statistically significant difference was found when compar-
ing category 1 (sophisticated) with category 3 (naive). The
more sophisticated a particpant's understanding of authentic
science methods, meaning they understood that there is no uni-
versal scientific method, the more likely the participant was to
perform a simple investigation. In contrast, if a participant has
higher scores on NOS principle 2, meaning the more sophisti-

TABLE 7. Logistic regression analysis of effects predicting simple
or complex investigation using 11 predictors?

Type 3 analysis of effects

Effect df Wald chi-square p-value > ChiSq
Control beliefs 1 6.3117 0.0120
Self-efficacy 1 6.1388 0.0132
Rehearsal 1 5.0656 0.0244
Elaboration 1 2.7771 0.0956
Metacognition 1 4.4321 0.0353
Time study environment 1 5.2673 0.0217
Effort regulation 1 6.0998 0.0135
Help seeking 1 3.9834 0.0460
Science identity 1 13.9068 0.0002
NOS principle 1 2 5.4286 0.0663
Hypothesis revision 1 4.2310 0.0397

aBold font indicates statistically significant values. I, information seeking actions
and T, tests.
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cated a participant’s understanding of the tentative NOS knowl-
edge, the more likely the participant is to perform a complex
investigation (Figure 5).

Machine Learning Analysis of Investigations

Cluster analysis (Ketchen and Shook, 1996) is a machine learn-
ing method used to group sets of objects by their similarities to
create a model. As clusters are added to a model, there is better
coverage of the variance between objects at the cost of increased
complexity. Therefore, we used the elbow method (Ketchen and
Shook, 1996) to find the ideal number of clusters while mini-
mizing error. When we examined investigations among our
population, we observed three distinct clusters (Table 8). Clus-
ter 1 can be qualitatively described as low activity, as shown by
the low relative rate of engagement with all four action types,
with few transitions between action types, as shown by the low
mean on all bigrams that transition between action types. Clus-
ter 2 shows increased investigative activity, particularly in
regard to hypothesis generation and testing. Cluster 3 builds on
high information seeking and planning. These qualitative
descriptions are further visualized in Figure 2B.

We compared these cluster assignments with educational
background and additional clickstream features to see whether
either experience with formal biology course content or authen-
tic science practices was related to cluster assignment. Using
Fisher’s exact test, we found that educational background was
significantly associated with cluster assignment (p < 0.001, Cra-
mer’s V = 0.27). We noted that most non-science majors fall
into either cluster 2 or 3, biology majors fall into cluster 1 or 3,
and biology graduates are in clusters 2 and 3 (Table 9). This is
a particularly interesting observation, because the amount of
information seeking and planning present in cluster 3 would
suggest that this is a more expert-like cluster.

Because performing a complex investigation is another prac-
tice associated with expert performance in SCI (Peffer and
Ramezani, 2019) and was not included as a feature in our clus-
ter analysis, a chi-square test of independence was performed to
examine the relationship between complexity and cluster assign-
ment (Table 9). The relationship between the variables was sig-
nificant, 2 (2, n = 123) = 27.56, p < 0.001, and Cramer’s V =
0.45. We noted that the majority of the investigations classified
as simple were found in cluster 1. Because this cluster was also a
low-activity and low-iteration cluster (meaning, the participant
tended to perform multiple types of actions in a row, rather than
moving between different activities), this cluster can be consid-
ered a relatively novice cluster. Cluster 2 had the highest number
of complex investigations. Interestingly, cluster 3 was split fairly
evenly between complex and simple investigations. This is par-
ticularly notable, because the high relative rate of informa-
tion-seeking actions, extended planning at the outset of investi-
gations, and increased testing strategy would suggest that this is
a more expert-like cluster, and therefore we should see more, not
equivalent, numbers of investigations that are complex in nature.

A multinomial logistic regression was fit to predict how likely
individuals are to be in one of the three clusters (Table 10).
Supplemental Table 6 shows more details of this logistic model.
We excluded NOS principle 1 and NOS principle 2 from this
model, because their correlation to the response was negatively
affecting the fit of the model. This removal did not affect the fit
of the model negatively, nor were those two variables important
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Novice-like
Activities

}

Fewer Actions

Little Planning

Simple
Investigation

Low activity/
Cluster 1

}

Predict less sophisticated
epistemological beliefs
about science

Expert-like
Activities

}

More Actions

Planning

Complex
Investigation

High activity/
Cluster 3

}

Predict more sophisticated
epistemological beliefs
about science

FIGURE 5. Relationship between various predictors and associated practices by theoretical grouping. Motivation scales includes intrinsic
and extrinsic goal orientation, task value, control beliefs, self-efficacy for learning, and test anxiety. Learning strategies scales include
rehearsal, elaboration, organization, critical thinking, metacognition, time and study environment, effort regulation, peer learning, and
help seeking. There was one scale for science identity, and the NOS assessment included two principles: principle 1 the lack of a universal
scientific method; and principle 2, the tentativeness of science knowledge.

in fitting this model due to our variable selection results from
random forests (Breiman, 2001). Therefore, supported by the-
ory and statistical models, these two variables were removed
from the list of the predictors, and the final model was fit.

This logistic model was significant (}? = 89.82, p < 0.0001)
with extrinsic goal regulation, race, and gender strongly con-
tributing to predicting the likelihood of a participant falling into
any of the three categories of the cluster variable. Extrinsic goal
regulation meaningfully contributed to predicting cluster 1 ver-
sus cluster 3. Although intrinsic goal regulation, task value,
metacognition, time and study environment, effort regulation,
and help seeking were not overall significant in predicting all
three categories of clusters, all significantly contributed in pre-
dicting cluster 1 versus cluster 3. Finally, a significant difference
can be observed between the category of non-science majors
and biology graduates while predicting the likelihood of falling
into cluster 1 versus cluster 3, meaning biology graduates were
more likely to fall into cluster 1 than non-science majors were
(Supplemental Table 6).

DISCUSSION

Technological and methodological advances in the field of edu-
cation research such as those afforded by learning analytics
have the potential to change how we conceptualize assessment.
In particular, technological advances could facilitate the assess-
ment of cognitive constructs like NOS/EBAS that cannot be

19:ar47, 12

directly measured. Following best practices within the learning
analytics community, namely, couching quantitative data analy-
ses within prior qualitative work (Shaffer, 2017), this study
extended our prior qualitative work and takes another import-
ant step toward the development of a rigorous, high-through-
put measure of EBAS as seen through inquiry practices. Here,
we expanded our model of practices as proxy for epistemologi-
cal beliefs through an examination of which other cognitive fac-
tors are important for identification of the practices most likely
to reflect underlying epistemological beliefs and not differences
in motivation to complete the task or self-regulated learning.
We also noted differences in inquiry practices among our three
populations of interest, which may suggest that EBAS evolve as
students complete science course work.

Development of fast quantitative assessments of NOS/EBAS
will be useful in pedagogical practice to identify students with
more or less sophisticated EBAS. This information could be
used to both personalize learning in the classroom and evaluate
new pedagogical interventions designed to improve NOS/
EBAS. For example, subgroups of students who have less sophis-
ticated EBAS about science could be targeted for additional
direct instruction designed to foster the development of sophis-
ticated epistemological beliefs. Another possible solution would
be to pair students with more sophisticated EBAS with those
with less sophisticated beliefs to facilitate near-peer teaching to
foster development of sophisticated EBAS.
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TABLE 8. Centroids for each cluster by feature average with SD in parentheses®

Feature Cluster 1 Cluster 2 Cluster 3

Relative rate of hypothesis generation (H) 0.15 (0.05) 0.29 (0.08) 0.13 (0.06)
Relative rate of information gathering (I) 0.02 (0.05) 0.00 (0.04) 0.52 (0.17)
Relative rate of testing (T) 0.07 (0.06) 0.45 (0.11) 0.26 (0.12)
Relative rate of concluding (C) 0.12 (0.03) 0.25 (0.06) 0.10 (0.04)
SH bigrams 0.11 (0.05) 0.25 (0.06) 0.02 (0.05)
SI bigrams 0.01 (0.03) 0.00 (0.00) 0.09 (0.05)
HH bigrams 0.00 (0.00) 0.00 (0.02) 0.00 (0.00)
HI bigrams 0.00 (0.00) 0.00 (0.00)) 0.02 (0.05)
HT bigrams 0.15 (0.05) 0.28 (0.07) 0.10 (0.06)
HC bigrams 0.00 (0.02) 0.00 (0.04) 0.01 (0.02)
IH bigrams 0.01 (0.04) 0.00 (0.00) 0.09 (0.05)
11 bigrams 0.00 (0.02) 0.00 (0.00) 0.38 (0.20)
IT bigrams 0.00 (0.00) 0.00 (0.00) 0.03 (0.06)
IC bigrams 0.00 (0.01) 0.00 (0.04) 0.01 (0.03)
TH bigrams 0.03 (0.05) 0.03 (0.08) 0.02 (0.04)
TI bigrams 0.00 (0.01) 0.00 (0.04) 0.02 (0.05)
TT bigrams 0.55 (0.10) 0.17 (0.17) 0.12 (0.12)
TC bigrams 0.11 (0.05) 0.24 (0.08) 0.09 (0.05)
CI bigrams 0.00 (0.00) 0.24 (0.08) 0.01 (0.03)

aBold type indicates key dimensions for each cluster.

Because EBAS can be influenced by affective factors such as
self-efficacy (Tsai et al., 2011) and inquiry practices observed
could be influenced by other factors such as motivation or expe-
rience with simulation content, we first set out to determine
how non-epistemologically relevant factors influenced prac-
tices in SCI. We noted that, in terms of expert features identified
in our prior work (Peffer and Ramezani, 2019) or in novice/
expert studies in engineering (Atman et al., 2007), undergrad-
uates were similar to one another in performing fewer planning
and total actions when compared with the biology graduates,
who were roughly equivalent to the experts in our prior work
(Figure 3). This suggests that experience with biology content
does not influence the prevalence of at least these expert-like
practices. We also noted that biology majors and biology grad-
uates both did more tests than non-science majors, including
when controlling for the total number of actions performed.
This is somewhat different from what we observed in our previ-
ous qualitative analysis, namely, that our experts had predomi-
nantly information-seeking actions, not testing actions. This
observation was reflected in our clustering analyses as well
(Table 9). This could be due to differences between the ques-

TABLE 9. Clustering assignment relative to educational
background, complexity, planning, and repeated actions®

Cluster 1 Cluster 2 Cluster 3
Non-science majors 10 (0.15) 27 (0.40) 30 (0.45)
Biology majors 20 (0.48) 8 (0.19) 14 (0.33)
Biology graduates 6 (0.43) 1 (0.07) 7 (0.50)
Simple investigation 32 (0.46) 9 (0.13) 28 (0.41)
Complex investigation 5 (0.09) 26 (0.48) 23 (0.43)
Planning actions 0.19 (0.52) 0.00 (0.00) 5.47 (5.58)
Repeated I 0.22 (0.54) 0.03 (0.17)  6.01 (5.33)
Repeated T 5.58 (2.02) 1.81 (0.82) 2.35(1.43)

Counts per category are shown with relative rate in parentheses.
I, information seeking actions; T, tests.
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tion the students are trying to answer (e.g., Chinn and Malho-
tra, 2002) or updates to the interface (e.g., Quigley et al.,
2017). Classroom setting could also be a factor that influenced
our results, as some participants used SCI during the course of
their normal classroom activities, while others used the tool as
part of a psychological lab study. Although this is a limitation of
this work, we do note that, in general, the non-science majors’
performance was equivalent to the novices described in Peffer

TABLE 10. Multinomial logistic regression analysis of effects to
predict how likely individuals are to be in one of three activity-
based clusters

Type 3 analysis of effects

Effect df Wald chi-square p-value > ChiSq
Intrinsic goal regulation 2 5.9406 0.0513
Extrinsic goal regulation 2 9.5016 0.0086
Task value 2 3.9817 0.1366
Control beliefs 2 1.7275 0.4216
Self-efficacy 2 1.1428 0.5647
Test anxiety 2 2.9806 0.2253
Rehearsal 2 1.1583 0.5604
Elaboration 2 0.1653 0.9207
Organization 2 0.7886 0.6742
Critical thinking 2 4.5087 0.1049
Metacognition 2 5.2514 0.0724
Time study environment 2 5.2461 0.0726
Effort regulation 2 4.7711 0.0920
Peer learning 2 3.9139 0.1413
Help seeking 2 4.8860 0.0869
Science identity 2 3.4700 0.1764
Gender 2 13.9911 0.0009
Race 4 10.8283 0.0286
Hypothesis revision 2 2.5901 0.2739
Population 4 6.0795 0.1933
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and Ramezani (2019), and the biology graduates were similar
to the experts in this previous work. Additional research is
needed to tease out the influence of these extraneous factors on
inquiry practices in SCI.

Our statistical modeling analysis revealed some surprising
relationships among motivation, learning strategies, science
identity, and performance on the NOS assessment (Figure 5).
Figure 5 is a graphical summary of our modeling results. Direc-
tional arrows represent whether different cognitive constructs
(e.g., self-efficacy, motivation) were associated with performing
more novice-like (shown on the left side) or more expert-like
(shown on the right side). For example, the more strongly
someone identified as a science person, the more sophisticated
his or her performance on NOS principle 1 (the lack of a univer-
sal scientific method), then the more planning and total actions
were performed, shown as a directional arrow between science
identity or NOS principle 1 and both planning and total actions
(Figure 5). The increased number of actions could make sense
among those who understand that there is no universal scien-
tific method, because they may be more likely to continue the
investigation until they reach a satisfactory answer, not because
they followed a standard procedure of hypothesizing, testing,
and concluding.

The stronger identification as a science person associated
with increased activity could be reflective of confidence in being
able to complete a science-related task. As a type of discourse
identity (Gee, 2000), identifying with a discipline in this way
suggests that one feels one belongs in a science community and
feels comfortable leveraging the community’s language and
skills. Science identity is also influenced by an individual’s inter-
est, performance, competence, and recognition from others as a
member of such a community (Hazari et al., 2010). Perhaps
students who identified as a science person were more likely to
behave like one within the simulation.

Increased metacognitive ability and effort regulation or
self-regulated learning were associated with increased number
of total actions, but not necessarily planning actions (Tables 4—
6 and Figure 5). This could suggest that increase in action num-
ber is more reflective of students’ ability to stay on task or pos-
sibly the ability to reflect on what they know and plan what
they need to do next. In future iterations of our assessment, it
will be important to control for both of these factors when inter-
preting action number. We noted that elaboration, or the pro-
cess of building internal cognitive connections between what
an individual knows, was important for understanding
increased planning actions. Because this phase likely includes
summaries (some of which can be seen in the student’s note-
book), it makes sense that increased elaboration would be asso-
ciated with increased planning time. Interestingly, prior work
suggests planning time is a key expert practice and we also see
that sophisticated beliefs on the two NOS principles assessed in
this study are both associated with an increased number of
planning actions. Perhaps these participants hold more sophis-
ticated beliefs about the lack of a universal scientific method
because they understand that there are different ways to test
questions and sufficient preplanning is necessary to identify the
best possible strategy to use. This activity could be associated
with understanding of the tentativeness of science knowledge,
because planning could represent getting a general idea of the
current state of the field and controversies. Future work, such as
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including retrospective interviews to interrogate why partici-
pants chose to plan or not, is warranted.

For complexity of investigations, we noted that biology grad-
uates and biology majors performed predominantly more scien-
tifically authentic, or complex, investigations, whereas the non—
science majors performed predominantly simple investigations
(Figure 4). Because the non-science majors are roughly equiva-
lent to our novices in Peffer and Ramezani (2019) and the biol-
ogy graduates are roughly equivalent to the experts in the same
study, this result is consistent with our earlier work. We noted
that increased belief in a positive outcome for a science learning
experience, self-regulated learning, metacognition, and identi-
fication as a science person were associated with performing a
complex investigation. Metacognition and self-regulated learn-
ing are both associated with increased performance in learning
tasks (Zohar and Barzilai, 2013), and it also makes sense that
individuals who believe that their performance at a task will
result in a positive outcome are more likely to be engaged with
the task. These non-epistemologically relevant factors will need
to be controlled for during future development of our model of
EBAS as seen through practices.

It is somewhat surprising to observe the converse relation-
ship between science identity and self-efficacy. One would pre-
dict that an individual who identifies as a science person also
believes in his or her ability to do well at science tasks and that
both of these would predict performing a complex investiga-
tion. A sense of competence performing science tasks is a factor
influencing science identity. Though identity is a complex con-
struct, people may experience high science identity rooted in
another factor (e.g., high science interest), despite not having
feelings of competence when it comes to completing a science
task (Carlone and Johnson, 2007). Indeed, previous work has
indicated that science identity is a stronger predictor than
self-efficacy of persistence into science careers (Estrada et al.,
2011). Our observations could indicate that students are over-
confident in their ability to engage in academic science tasks,
explaining the high self-efficacy score associated with perform-
ing less expert-like, simple investigations in an authentic sci-
ence setting. As the self-efficacy metric used had items about
students’ confidence to perform academic science tasks, such as
exams, it could be that academic self-efficacy is not conflated
with self-efficacy to do authentic science tasks. While previous
work has demonstrated the positive relationship between
research self-efficacy and research skills (Adedokun et al.,
2013), this model does not include science identity. Future
work examining context-specific self-efficacy, such as research
self-efficacy, in relation to science identity and science practices
may shed light on these relationships.

Higher scores on assessment of metacognitive skills in sci-
ence class was associated with increased likelihood for expert-
like activities, including total actions, planning actions, per-
forming a complex investigation, and presence in cluster 3
(Table 10 and Figure 5). Metacognition and epistemic cognition
(epistemological beliefs in action), alongside baseline cognitive
processes like reading, are considered part of a three-part model
for describing human cognition (Kitchener, 1983). In this
model, the three levels of cognition build on one another, with
activities such as reading at the bottom, “thinking about think-
ing” or metacognition in the middle, and finally “knowing about
knowing” or epistemic cognition at the top (Kitchener, 1983;
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Hofer, 2004). It may be possible that the increases in metacog-
nitive ability are co-occurring with increases in epistemic cogni-
tion as well, supporting the observation that these expert-like
practices are reflective of more sophisticated epistemological
beliefs as seen through practices. We did not observe a large
difference in metacognitive skills between any of our three pop-
ulations of participants (Figure 1), which suggests that these
metacognitive skills are not developing over the course of expe-
rience either with biology content or experience with authentic
science practices but are instead reflective of an individual’s
underlying cognitive structures.

In regard to predicting cluster assignment, we looked at the
likelihood ratios estimated within the multinomial logistic
regression model, which was fit to predict students who are
more likely to fall into one of the three clusters based on their
predictor variables. The results from the Supplemental Table 6
showed students with higher intrinsic and extrinsic goal regula-
tion, which are related to motivation, and metacognition were
more likely to be in cluster 3 rather than cluster 1. Because
cluster 3 was our information-seeking cluster and cluster 1 was
our low-activity cluster, this suggests that students in cluster 3
generally performed more sophisticated investigations because
they were both more motivated to do so and they were more
reflective during the course of their investigations. In contrast,
increased task value, or how interesting the student found sci-
ence, was associated with assignment to cluster 1 (Table 10).
This seems somewhat contradictory, because if someone is
interested in science, we would predict that person would be
more likely to deeply engage with the task. However, it could
also mean that interests are not necessarily correlated with sim-
ulation performance, which is important to note when ascer-
taining how practices could reflect epistemological beliefs.
Effort regulation or self-regulated learning and help seeking
were also associated with assignment to cluster 1. Because
increased effort regulation was also likely to be associated with
increased total number of actions, it seems that the students
were able to stay on task, but that their efforts did not necessar-
ily translate into a more sophisticated investigation. This sug-
gests that simulation practices are not necessarily due to one’s
ability to stay on task indicated that expert-like practice is more
likely a result of differences in epistemological beliefs.

Across all of the practices that we modeled, we noted that
the greatest differences were between the non-science majors
and biology graduates. Although this may not be surprising,
given our prior work comparing individuals with demonstrable
experience with science practices (as defined by their publica-
tion in peer-reviewed literature) to individuals with no experi-
ence with authentic science practices, what is particularly nota-
ble is that the biology major practices clearly exist in between
the other two populations. Sometimes the biology major prac-
tices look similar to those of their undergraduate peers, such as
in total number of actions and planning actions, but at other
times, their practices look more like those of the biology gradu-
ates, such as in complexity of investigations and relative rate of
tests performed. This could be reflective of a progression of
EBAS that occurs during the enculturation process of becoming
a biologist.

Prior work comparing misconceptions about science
between biology majors and non-science majors indicated that
incoming non-science majors had more misconceptions about
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how science works than biology majors (Cotner et al., 2017).
Non-science majors and biology majors also differ in terms of
science identity, both at the beginning of (Cotner et al., 2017)
and over the course of their university careers (Figure 1). There-
fore, it may not be surprising that biology major practices are
more expert-like and potentially suggestive of more sophisti-
cated underlying EBAS than the non-science majors. However,
it is notable that the biology majors exist in the middle space
between the biology graduates and non-science majors. This
raises the question of what experiences biology majors (and
later biology graduates) have, that non—-science majors do not,
that could potentially influence development of sophisticated
EBAS. Identification of these pedagogical aspects is important
for fostering development of sophisticated EBAS for all biology
majors as well as for non—science majors. Because not all biol-
ogy majors will pursue graduate education and non-science
majors are unlikely to pursue additional science courses upon
degree completion, identification of these important moments
and/or pedagogies is important for fostering sophisticated
EBAS and overall science literacy.

Another possible explanation for biology majors as an inter-
mediary group could be the result of experience with biology
content. One subpopulation of biology majors were enrolled in
an upper-division ornithology course, the subject area of the
simulation. We noted no major differences in planning actions
between students in the ornithology course (mean =1.72, SD =
2.99) and other biology majors (mean = 1.66, SD = 3.42), com-
plexity of investigation (78% complex for ornithology students,
76% for others), and a slight increase in hypothesis revision
(35% for ornithology students, 21% for other biology majors).
Therefore, the differences in practices observed do not seem to
be the result of familiarity with the content of the simulation.
Instead, the differences we observe are likely the result of differ-
ences in underlying EBAS.

We were somewhat surprised to not observe a statistically
significant difference between our populations and perfor-
mance on the NOS assessment. One potential confound is that
the majority of non-science majors were students in the lead
author’s nonmajors biology course, and she strongly empha-
sized NOS principles in class. This is particularly relevant,
because direct instruction is a known pedagogical best practice
for improving student NOS understanding (Khishfe and Abd-El-
Khalick, 2002). We also noted when scoring the open-ended
response items that one student commented “As stated in Dr.
Peffer’s lecture, scientific investigations can follow more than
one method as science isn’t just followed by a linear pathway.”
Therefore, it is possible that the non—science majors were scor-
ing higher than would be expected.

Although this is a potential confound and limitation of this
study, it is interesting to note that the distinction between a
sophisticated (1) and naive (3) score on this assessment was
important for predicting practices such as complexity of investi-
gation and planning actions, as well as the number of non-sci-
ence majors present in the more expert-like cluster, cluster 3
(Table 9). It may be that the students who received the direct
instruction did better on both the NOS assessment and had cor-
respondingly more expert-like investigations. When looking
more generally across all practices, non—science major practices
were roughly equivalent to those of the novices in Peffer and
Ramezani (2019). This novice population was also exclusively
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non-science majors enrolled at a different institution, none of
whom were taking a biology course taught by the lead author.
This suggests that, although presence in the lead author’s class
could have influenced non-science majors’ performance on the
NOS metric (and potentially investigative approach), overall
practices among this group appear to be generalizable across
two institutions. Furthermore, the novices in Peffer and
Ramezani (2019) were almost exclusively in their fourth and
final year of their university studies, whereas the population
studied here was more diverse in terms of degree progress. This
suggests that years of schooling does not influence practices or
EBAS/NOS understanding among non-science majors.

To extend our previous qualitative analysis of differences in
inquiry practices, we used the log files generated by individual
participants as they engaged in SCI to perform k-means clus-
tering. We observed three emergent clusters (Figure 2B). When
comparing the clusters with educational background and com-
plexity of investigation (another marker of expert-like practices
and potential hallmark of a more sophisticated epistemology),
we noted that cluster 3 appeared to be more expert-like. Clus-
ter 3 was characterized as having high information-seeking
and planning activity. Because we see the highest number of
non-science majors and biology graduates in this cluster, and
the second highest number of biology majors, it suggests that
experience with biology course work or progress to degree
completion is unrelated to a more expert-like investigative style
in SCI. Regarding complexity of investigation, we noted that
the majority of simple investigations were found in the low-ac-
tivity cluster, cluster 1, which appeared reminiscent of the nov-
ice practices in Peffer and Ramezani (2019). Interestingly, we
noted that cluster 2 and not cluster 3 had the highest number
of complex investigations (Table 9). We also noted that cluster
3 contained approximately half simple and complex investiga-
tions. Given the other expert-like practices in this cluster, this is
a surprising observation. Future work will examine how partic-
ipants in cluster 2 The high amount of testing by participants in
cluster 2 used the information they collected, either from test-
ing or looking for information they collected, either from test-
ing or looking outside the simulation, are warranted to better
understanding how practices relate to sophistication of investi-
gation and overall NOS/EBAS. We also noted that both popu-
lations of undergraduates were more likely to fall into either
cluster 1 or cluster 2, rather than cluster 3, which may also
suggest that students with investigations similar to those in
cluster 3 may also have more sophisticated EBAS.

Although we observed no statistically significant differences
between cluster assignments among our biology graduate pop-
ulation, we did note qualitatively that of the seven biology
graduates assigned to cluster 3, four were postdoctoral associ-
ates, two were doctoral candidates, and one was a master’s
student. Within cluster 1, half of the graduates’ group were
master’s students, two were doctoral students, and one was a
postdoctoral associate. We also noted that postdoctoral associ-
ates performed relatively less testing when accounting for the
length of their investigations than the other two populations
and more information-seeking actions, particularly in the plan-
ning phase before beginning their investigations. Because the
postdoctoral associates were most similar to the expert popula-
tion used in Peffer and Ramezani (2019), this lends support to
cluster 3 as our expert-like cluster.
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CONCLUSIONS

Developing an assessment of EBAS/NOS is a challenging yet
important task for improving student outcomes in all science
classes. A better assessment of EBAS/NOS will enhance under-
standing of how EBAS develop in the classroom and will be
useful for developing evidence-based pedagogical strategies
that can be leveraged to ultimately lead to improved pedagogy
and science literacy for both non-science and science majors.
This work contributes to a growing literature that supports the
use of technology and learning analytics to assess latent con-
structs such as EBAS. Examination of practices in an authentic
science activity like inquiry provides new insights into how
students conceptualize NOS knowledge, which is valuable
information for both instructors and researchers. Using tech-
nology allows for high-throughput and fast access to this infor-
mation and ease in gathering data in real time during a course.
This facilitates just-in-time teaching and improved not only
course outcomes, but overall science literacy.

We note that, in the context of biology learning and teach-
ing, this study suggests that biology content knowledge may
need to be considered separately from epistemological beliefs
as seen through inquiry. We also see biology major practices
and potentially EBAS existing in an intermediary zone between
biology graduates and non-science majors. This is an important
consideration when determining benchmarks for what knowl-
edge and skills are necessary for students enrolled in biology
programs, and how beliefs about the NOS knowledge develop
over the course of completing a university degree.
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