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ABSTRACT
A critical goal for science education is to design and implement learning activities that 
develop a deep conceptual understanding, are engaging for students, and are scalable for 
large classes or those with few resources. Approaches based on peer learning and online 
technologies show promise for scalability but often lack a grounding in cognitive learn-
ing principles relating to conceptual understanding. Here, we present a novel design for 
combining these elements in a principled way. The design centers on having students au-
thor multiple-choice questions for their peers using the online platform PeerWise, where 
beneficial forms of cognitive engagement are encouraged via a series of supporting ac-
tivities. We evaluated an implementation of this design within a cohort of 632 students in 
an undergraduate biochemistry course. Our results show a robust relationship between 
the quality of question authoring and relevant learning outcomes, even after controlling 
for the confounding influence of prior grades. We conclude by discussing practical and 
theoretical implications.

INTRODUCTION
The path to developing scientific expertise is not simply an accumulation of knowl-
edge, but a change in how knowledge is structured and applied. This change is 
reflected in a shift from a focus on the superficial aspects of problems and phenomena 
to the deeper structure or principles that foster making connections across disparate 
exemplars and contexts (Chi et al., 1981; Goldwater and Schalk, 2016). For example, 
organic chemistry experts recognize when reactions share common mechanisms 
despite diverse constituent molecules. Novices, on the other hand, focus on the spe-
cific features of the molecules themselves and often fail to notice these deeper relation-
ships (Galloway et al., 2018).

This aspect of the development of expertise may be most familiar to educators and 
learning designers through Bloom’s enduringly popular taxonomy of educational 
objectives (Bloom et al., 1956). This taxonomy, and its subsequent revision (Anderson 
and Krathwohl, 2001), lay out a hierarchy of verbal descriptors for the sorts of behav-
ior that reflect these cognitive changes as expertise develops. The base level describes 
the ability to remember facts and procedures—to simply accumulate potentially “undi-
gested” knowledge. Remembering is important, of course, but it does not demonstrate 
understanding. To reach the higher Bloom levels—to understand, to apply, to analyze, 
to evaluate, and to create—one must increasingly integrate different sorts of knowl-
edge, building coherent connections between facts, procedures, concepts, and experi-
ences: enacting deeper changes to how knowledge is structured and applied.

How can we help students to develop such expert-like knowledge and thinking, 
and to do so at scale? In this paper, we report a collaboration between cognitive scien-
tists (authors C.B.H. and M.B.G.) and life science educators (authors D.H., M.C., A.H., 
G.D.) aimed at developing methods to achieve this. Applying principles derived from 
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the cognitive science of learning, along with educational tech-
nologies, we design and evaluate a novel learning activity based 
upon scaffolded and collaborative authoring of multiple-choice 
questions (MCQs), applied to scalably foster deep conceptual 
knowledge in the domain of tertiary-level biochemistry. We end 
by enumerating the benefits of such a collaborative approach, 
both for advancing practical educational outcomes and for 
ensuring more generalizable and practically relevant theories in 
the sciences of learning.

Evidence-based Principles for Effective Learning
Application of cognitive science to education has developed 
several evidence-based principles for how to design effective 
learning experiences. One synthesis of these principles is the 
ICAP framework (Chi and Wylie, 2014), whose acronym 
describes a hierarchy of modes of cognitive engagement in 
terms of their benefit to learning—interactive > constructive 
> active > passive. Complementary to Bloom’s taxonomy, 
which describes the goals or ends of learning, the ICAP frame-
work describes the processes or means of learning and knowl-
edge change; it claims that higher learning outcomes (e.g., 
higher levels of Bloom’s taxonomy) are best supported by 
drawing more frequently upon higher levels of cognitive 
engagement.

Here, we make the case that a series of activities centered 
around authoring and answering MCQs, embedded within sup-
porting social and technical systems, can effectively draw upon 
all levels of cognitive engagement described in the ICAP frame-
work and can do so in a coherent and scalable learning design. 
We start by reviewing these evidence-based principles in the 
context of answering and authoring MCQs.

Answering MCQs as an Active Form of Learning
One of the simplest and most effective learning principles is the 
“testing effect”: after initial study, actively testing yourself on the 
same material leads to better long-term memory than passively 
rereading those materials (Karpicke and Roediger, 2008; Kornell 
et al., 2009; Richland et al., 2009; Huelser and Metcalfe, 2012; 
Bjork et al., 2013; Rowland, 2014). As classically described by 
William James (1890, p. 646):

A curious peculiarity of our memory is that things are 
impressed better by active than by passive repetition … it pays 
better to wait and recollect by an effort within, than to look at 
the book again. If we recover the words the former way, we 
shall probably know them the next time; if in the latter way, 
we shall likely need the book once more.

The crucial insight is that the process of retrieving informa-
tion from memory is itself a distinct learning event that modi-
fies existing memories. Human memory is quite unlike com-
puter memory in this respect: we can check whether a file is 
saved to a computer as many times as we want, but this will not 
change its contents or the ease of its retrieval. This is counterin-
tuitive for many learners and educators, who often have meta-
cognitive misconceptions about what study practices are effec-
tive for learning. Students often endorse the opposite of what is 
effective, preferring activities that give the illusion of fluency 
(e.g., rereading notes or primary sources) over those that actu-
ally challenge and improve their understanding (e.g., self-test-

ing; Bjork et al., 2013)—a challenge for which Robert Bjork has 
coined the term “desirable difficulties.”

In addition to boosting memory consolidation, testing also 
serves to identify knowledge gaps. Educators can use this to 
provide targeted explanation and feedback for their students 
(Metcalfe, 2017). But perhaps more importantly, learners can 
use this information themselves to self-regulate their own 
studying. The extent and sophistication of self-regulation is one 
of the most reliable predictors of student success generally 
(recent meta-analysis: Dent and Koenka, 2016). An important 
element of self-regulated learning is performance monitoring 
(e.g., identifying knowledge gaps), for which regular testing 
can be an invaluable tool (Butler and Winne, 1995; Tanner, 
2012; Panadero, 2017).

While testing is typically thought of as a means of consoli-
dating previously learned material, it can also potentiate future 
learning of new material—the “pre-testing effect” (Kornell 
et al., 2009; Richland et al., 2009; Grimaldi and Karpicke, 2012; 
Little and Bjork, 2016). That is, instead of giving a lecture and 
then testing students on the lectured content to boost their 
memory (although this may still be a good idea), sometimes it 
may be more effective to test students on this content before the 
lecture. This actively engages students in thinking about what 
they do know about a new topic and particularly what they do 
not. The gaps identified can then be more deliberately amended 
in the following lecture.

While the most frequently cited benefit of testing is on mem-
ory (the bottom level of Bloom’s taxonomy), testing can also 
improve spontaneous knowledge transfer and application (the 
higher Bloom levels)—helping learners develop deeper under-
standing by changing how existing knowledge is structured and 
applied. The importance of deeper understanding of life sci-
ences concepts, going beyond rote memorization, is under-
scored by the 2009 Vision and Change report on undergraduate 
biology education, stating (p. viii-ix):

Biology in the 21st century requires that undergraduates learn 
how to integrate concepts across levels of organization and 
complexity and to synthesize and analyze information that 
connects conceptual domains.

This deeper understanding can be supported when testing 
involves elements of “transfer”: where understanding of the 
learning material is extended in some manner (Johnson and 
Mayer, 2009; Jacoby et  al., 2010; McDaniel et  al., 2013; 
Goldwater and Schalk, 2016; Pan and Rickard, 2018). These 
benefits are less likely to occur when testing involves only 
superficial recall of previously encountered facts (although, see 
Rohrer et al., 2010).

In other words, the benefits of testing hinge upon whatever 
mental processes are tested. If, for example, an MCQ asks, 
“Which of the following is the correct definition of a competi-
tive inhibitor?,” and presents a set of definitions that includes 
the previously studied textbook definition, then the ability to 
recall this definition and distinguish it from others is improved. 
But if instead the question asks, “What might account for low 
phosphatase activity in samples prepared with phosphate-buff-
ered saline?,” then the ability to transfer this knowledge about 
competitive inhibitors to new situations (e.g., those involving 
phosphate-buffered saline) is improved.
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This latter type of question can be further broken down into 
tests of either near or far transfer. When one extends under-
standing to new examples within the same domain or in con-
texts similar to the one in which something was learned—this is 
near transfer. Testing near transfer can improve the ability to 
apply understanding within these familiar contexts. And 
indeed, much of how professional knowledge is used amounts 
to instances of near transfer—applying old knowledge in new 
but predictable ways. A key part of developing domain exper-
tise involves building a robust network of context-dependent 
experiences for how such knowledge can be used (National 
Research Council, 1999; Markauskaite and Goodyear, 2016).

Far transfer occurs when one further extends knowledge to 
contexts or domains that are superficially unrelated but connect 
at a deeper, more abstract level. Although more difficult, and 
not a routine part of professional work, far transfer can support 
many aspects of the higher Bloom levels that require knowl-
edge to be applied in flexible and novel ways. Practice with far 
transfer (e.g., through testing) can also have the more general 
effect of reorganizing conceptual knowledge in terms of more 
coherent mental networks of facts, concepts, and experiences 
(Goldwater and Schalk, 2016).

In summary, testing is an effective evidence-based method 
for reinforcing memories, prompting meta-cognitive reflection, 
and for restructuring knowledge—it is a method for active 
learning par excellence. Testing can take many forms, but reg-
ular low-stakes quizzes using MCQs represent a simple and 
familiar option whose beneficial effects reliably translate from 
lab-based studies to real-world teaching (McDaniel et al., 2011; 
Agarwal et  al., 2012) and can be extended to test deeper 
aspects of conceptual understanding in many of the ways we 
described.

Authoring MCQs as a Constructive Form of Learning
Closely related to the testing effect is the “generation effect,” 
which describes the benefit of having learners actively gener-
ate information as compared with studying the same informa-
tion by other means (Slamecka and Graf, 1978; Foos et al., 
1994). For example, you are more likely to remember a word 
pair when there are missing elements requiring completion 
(e.g., “cat | d__”) than when reading a complete version (e.g., 
“cat | dog”).

The mechanisms underlying these benefits are still debated, 
but one important aspect appears to be how generation draws 
attention to relations between elements (McCurdy et al., 2020). 
Actively generating the word “dog” when given the prompt “cat 
| d__” draws attention to and requires thinking about how cats 
relate to other things: activating a broad range of prior knowl-
edge about cats to infer that the relationship with dogs is the 
most likely, ruling out other alternatives like “dot” or “dam.”

Simple forms of generation like this (i.e., inferring an 
occluded word) dominate the experimental psychology litera-
ture on the generation effect and its specific effects on recall 
memory (reviewed in Bertsch et  al., 2007; McCurdy et  al., 
2020). But generation can also take more elaborate forms that 
are relevant to real classroom learning and conceptual under-
standing. For example, students can generate an outline of a 
text instead of just reading it; or, as in the present study, stu-
dents can author MCQs rather than just being tested on them 
(Kelley et al., 2019).

The key to these more elaborate forms of generation is that 
they motivate learners to constructively make sense of learning 
materials (Fiorella and Mayer, 2016). That is, inferring an 
occluded word may be more cognitively active (“cat | d__”) 
than mere reading, but the relations that get drawn to make this 
inference are still likely to be mostly implicit: not requiring 
much, if any, explicit reflection. By contrast, the task of author-
ing a high-quality MCQ is more complex and requires explicit 
and iterated reflection and engagement with ideas. This com-
plexity arises from the many relations between question compo-
nents (question stem, answer options, examples used, appropri-
ateness to audience, etc.) that must be harmonized while 
abiding within certain constraints. Unlike simple forms of gen-
eration, therefore, question authoring can motivate deeper 
forms of cognitive engagement than question answering.

One such form of engagement known to support the devel-
opment of conceptual understanding is “self-explanation” (Chi, 
2000): a constructive activity involving verbalizing (or exter-
nalizing by other means) explanations of learning materials 
and thought processes while completing a task. In the context 
of question authoring, it may be particularly helpful for stu-
dents to self-explain why they made various design decisions in 
their questions: Why this topic? Why this phrasing of the ques-
tion? Why this example? Why this set of distractors? This line of 
questioning helps to explicate their thought processes and 
knowledge about a topic, making it easier to identify miscon-
ceptions or tacitly justified choices that would motivate further 
study or revisions of their questions. Resolving the conflicts they 
identify not only helps to produce a better question but cru-
cially fosters their own learning and conceptual change (Chi 
et al., 1994).

Another strategy that builds on self-explanation and that 
may particularly help with authoring deep conceptual ques-
tions is analogical comparison—comparison, in the sense of 
comparing similarities and differences among two or more 
examples; analogical, in the sense that examples are superfi-
cially contrasting and only relate at a deeper level. For example, 
glycolysis (the breakdown of glucose) and the synthesis of fatty 
acids are two superficially contrasting processes (one a break-
down and one a synthesis) but in fact are united in how they are 
driven by positive feedback interactions (the well-fed state). 
When comparing such examples that lack superficial common-
alities, learners are forced to find abstract commonalities and, 
as a result, are biased to notice the shared structural principles 
often missed by novices (Gentner and Markman, 1997). By get-
ting practice in explicitly identifying these more abstract rela-
tionships in diverse contexts, learners become better able to 
notice them in new examples and contexts (Gentner et  al., 
2003). As part of a brainstorming process of authoring MCQs, 
analogical comparisons may be an effective way to develop 
understanding of the deeper causal patterns that underlie 
important concepts and processes that are not only relevant 
within specific subdomains in the life sciences, but that cut 
across science, technology, engineering, and mathematics 
domains (Goldwater and Schalk, 2016; Jacobson et al., 2020; 
Gray and Holyoak, 2021).

A particularly important component of MCQs is the set of 
distractors that a question answerer must choose between when 
answering the question. But not just any incorrect answer serves 
as a distraction. A good distractor distinguishes meaningfully 
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different levels of understanding—distinguishing full under-
standing from incomplete or superficial understanding or from 
a common misconception. For example, for the question “Which 
of the following contributes to the stability of DNA compared 
with RNA?,” the distractor “super glue” can be easily dismissed, 
even by somebody without much chemistry knowledge. Con-
trastingly, the distractor “thymine is more stable than uracil” 
separates shallow from deep understanding (i.e., DNA does dif-
fer from RNA in its use of thymine/uracil as nucleobases, and 
this is important, but it does not explain their differences in 
stability). Authoring MCQs, and in particular authoring effec-
tive distractors, has the potential to draw attention to the 
important details that make particular scientific truths true and 
distinguish them from partial truths or misconceptions. Strate-
gies such as self-explanation and analogical comparison can 
help with this.

Although the conceptual processes of comparison, self-expla-
nation, and confronting misconceptions can be leveraged while 
authoring questions, it is also quite possible for students to just 
query superficial understanding. Students are indeed known to 
have a superficial “knowledge telling” bias to learning activities 
like peer tutoring if they are not given additional support 
(knowledge telling is opposed to a more elaborative “knowledge 
building” approach: Roscoe and Chi, 2007). And although the 
basic notion of a MCQ is simple and likely familiar to students, 
the qualities that make a high-quality question are harder to con-
cretely define, and there is no simple recipe for making them. 
Having students author questions with minimal guidance is 
therefore unlikely to fully elicit the beneficial cognitive processes 
described earlier, as has been shown for other learning designs 
that overwhelm students with task complexity (Kirschner et al., 
2006). As such, the question of how to support question author-
ing for effective learning will be a key part of our study.

In summary, the process of authoring a MCQ constitutes a 
generative learning activity that not only produces a helpful 
learning resource (to test oneself on) but can serve as a rich 
learning experience in its own right. While testing is a clear 
example of active learning (as opposed to a passive one, like 
simply listening to a lecture), authoring goes one step further 
and is an example of a constructive type of cognitive engage-
ment, because it involves generating, manipulating, and com-
bining knowledge in novel ways.

Cooperating via PeerWise as an Interactive Form of 
Learning
To reach the highest level of the ICAP hierarchy, a socially inter-
active form of learning is needed, wherein learners work coop-
eratively together to co-construct knowledge. We now describe 
a simple way to support this in ways that engage both question 
answering and authoring through an online educational tech-
nology called PeerWise.

PeerWise is an online application designed to facilitate stu-
dents in creating a bank of MCQs for their peers and supporting 
cycles of question authoring, answering, and discussion (Denny 
et al., 2008). It has primarily been used in higher education 
(reviewed in Kay et al., 2020), including in the biochemical sci-
ences (Ryan, 2013; McQueen et al., 2014; Galloway and Burns, 
2015; Hancock et al., 2018).

An important element of PeerWise is that it provides a 
mechanism to scalably provide students with feedback on their 

question authoring. It does this by encouraging students to rate 
the quality of their peers’ questions on a simple five-point scale. 
Aggregated ratings of question quality (from students) correlate 
well with expert ratings (McQueen et al., 2014) and thus pro-
vide a way to crowdsource basic feedback. The reliability of stu-
dent ratings of question quality is consistent with research 
showing that, although question authoring is difficult, people 
readily appreciate a good question when they see it (Rothe 
et al., 2018). In addition to providing feedback on overall ques-
tion quality, PeerWise also tracks how students answer each 
question, allowing the effectiveness of distractors to be empiri-
cally rather than subjectively assessed, providing further means 
to curate study or assessment resources (Huang et al., 2021).

When supported over a teaching semester, these dynamics 
of question authoring, answering, and feedback can eventuate 
in an online learning community whose shared goal and moti-
vation is to curate relevant and useful study resources for the 
collective good. Such cooperative “contributor” (de Boer and 
Collis, 2002; Collis and Moonen, 2006) or “knowledge-build-
ing” (Scardamalia and Bereiter, 1994) approaches to learning 
can be more intrinsically motivating for students, as the outputs 
of their efforts have both tangible social and practical conse-
quences. This is very different from completing more traditional 
study assignments, which often at best are only briefly engaged 
with by an instructor. Indeed, studies of PeerWise usage show 
increased student engagement (Casey et  al., 2014; Biggins 
et  al., 2015; Hancock et  al., 2018) with associated gains in 
learning (McQueen et al., 2014; Kay et al., 2020).

However, the peer question-rating scheme is a sparse form 
of feedback that may be suboptimal for improving question 
quality. This may be especially true in large early-year under-
graduate cohorts with variable abilities. Some groups have 
addressed this by extending the question-rating system to use 
more sophisticated schemes (Bates et al., 2014; Galloway and 
Burns, 2015). But improving question quality is not just about 
the resulting questions but the learning that happens while 
authoring them (Chin and Osborne, 2008). Specifically of inter-
est here: How might interactive forms of cognitive engagement, 
which could benefit learning, be supported in the context of 
providing peer feedback on MCQ authoring?

Potentially serving this function, PeerWise does allow an 
additional form of peer feedback via a discussion forum–style 
comment field under each question, where students can, in 
principle, provide feedback on question quality, express confu-
sion if they do not understand some aspect of the question, or 
discuss other aspects of the question or topic more generally. 
But just as students rarely author high-quality questions with-
out additional support (as discussed in the previous section), it 
is also unlikely that students will engage in deep and meaning-
ful interactive discussions simply because a comment field is 
available to them. And despite a growing body of applied edu-
cational research on PeerWise usage, there is a lack of research 
on how to optimize such interactions and their potential learn-
ing benefits.

Addressing this gap may be particularly impactful, because 
prior research on the ICAP framework has found that teachers 
struggle with implementing interactive learning experiences in 
particular (Chi et al., 2018). We believe that educational tech-
nologies like PeerWise have the potential to make it easier for 
educators to design and implement learning experiences that 
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engage active, constructive, and interactive forms of cognitive 
engagement. Online communication technologies facilitate 
interactive learning in particular by making it easier to share 
knowledge and to collaborate asynchronously (for recent 
meta-analysis on computer-supported collaborative learning, 
see Chen et al., 2018). This paper explores a novel design for 
how PeerWise can be used to optimize learning in this way.

METHODS
The following learning design takes the online educational soft-
ware PeerWise (Denny et al., 2008), with a few small modifica-
tions, and embeds it in a series of learning activities designed to 
encourage beneficial modes of cognitive engagement in the 
context of answering and authoring MCQs.

Participants
A total of 712 students took part in an introductory biochemis-
try class at the University of Sydney. Of the 712 students, 634 
students both authored questions in PeerWise for course credit 
and completed the final exam. Data from these 634 students are 
analyzed in the following analysis (mean age = 19.2; 405 
female, 229 male). This study was approved by a Human 
Research Ethics Committee at the University of Sydney (refer-
ence number: 2017/131).

Scaffolding the Use of PeerWise Student Question Online 
Platform
Our team of biochemistry educators and cognitive science 
researchers developed iterative exercises to scaffold the ques-
tion-authoring process. These exercises leverage analogical 
comparison, self-explanation, and confronting misconceptions. 
Further, embedded within peer collaboration and instructor 
feedback facilitated through PeerWise (Denny et al., 2008), the
students are guided through the beneficial knowledge-building 
processes that result in the previously described learning gains 
and are most likely to improve their ability to craft questions 
that query deeper levels of knowledge.

Over the course of the semester, there were five steps to this 
process; each step was 2 weeks apart. The students were all 
assigned a learning outcome as a target for their questions. There 
was a list of learning outcomes assigned to 712 students (634 
students are in the analysis; see Participants section). These were 
assigned randomly by an instructor to ensure approximately 
equal distribution of outcomes across the cohort. This resulted in 
a study bank for students that covered the content of the exam.

Step 1 was for each student to write two true-false state-
ments (a false example: “Chemicals such as AZT are able to 
terminate growing viral DNA chains because DNA polymerases 
have an inherent proofreading function.”1) and post to Peer-
Wise on the first few lectures of the class. This was to practice 
writing clear concise statements covering one concept. The stu-
dents did not get individualized feedback on their true-false 
statements. Feedback with good and bad examples was given to 
the entire cohort (in the step 3 tutorial) to illustrate how to 
write clear options for a MCQ.

Step 2 was to go onto the Web and find a MCQ (on a partic-
ular allocated topic within molecular biology) and post on Peer-
Wise. Students were then told to answer at least 40 from the 
bank of more than 600 questions and were given bonus points 
for answering more than 40 over the course of the semester. 
Crucially, students then had to evaluate their chosen MCQs and 
make some suggestions for improvements. We used the number 
of questions answered here as a predictor variable in our analy-
ses. This allowed us to directly contrast the role of using a bank 
of questions as a study aid from contributing an original ques-
tion to the bank.

Step 3 required the students to individually author a MCQ 
on an allocated learning outcome within the domain of mole-
cular biology. In addition to their practice with authoring a true-
false statement (step 1), and with evaluating other MCQs on 
the Internet (step 2), they had a tutorial session (led by authors 
D.H. and C.B.H.) on how to effectively author questions that 
involved a lecture on Bloom’s taxonomy and an explanation of 
how engaging in reflection during questioning can both help 
one write better questions and boost one’s own learning.

The specific instructions for authoring questions were to:

1.	 Look up a learning outcome on the syllabus and find the 
relevant lecture and online material.

2.	 Write down at least five statements about this topic.
3.	 Start by writing an MCQ from these statements and share 

this with a peer. Examples were presented using true-false 
statements from step 2.

4.	 Then think about how to present the question with experi-
mental data, information about a mutation, inhibitor, pre-
dictor, etc.

Instructions indicated that this was only to get them started. 
To then write a conceptually deep and effective question, they 
were to follow further (generative) steps that all involve consid-
ering how to apply an understanding of biochemical mecha-
nisms to research or problem-solving contexts:

1.	 Consider how the information was first discovered.
2.	 Ask yourself: What techniques would have been used or 

would exploit this information?
3.	 Would an inhibitor or a mutation produce interesting results 

you would need this information to explain?
4.	 In what contexts would this information be particularly 

applicable?
5.	 Identify common misconceptions to use as plausible 

distractors.

The students’ MCQs produced in step 3 were evaluated 
against a modified version of Bloom’s taxonomy by an instruc-
tor (author D.H.). The details of the scoring system are given in 
the following section. These data are the primary predictor vari-
able in our main analyses.

Steps 4 and 5 also involved a question-authoring activity, 
this time for allocated topics in the domain of metabolism. 
Unlike with step 3, step 4 had students interactively work in 
groups, evaluating and refining their questions. They also got 
feedback from instructors in between steps 4 and 5. The initial 
question produced in step 4 (before instructor feedback) was 
given an authoring score as in step 3, and this was used in our 
analysis. The refined question at the end of step 5 was submit-
ted for credit in the class (and was marked by the instructors). 

1This statement is false. AZT is a modified nucleotide that can act as a substrate 
for the viral DNA polymerase. Because it lacks a 3′-OH group, it blocks elongation 
of the DNA chain, preventing viral replication. This blocks the polymerization 
function (but is not related to the proofreading function) of DNA polymerase.
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The group discussions were scaffolded by the following genera-
tive prompts. Like the prompts in step 3, these prompts were 
designed to further engage the evidence-based methods dis-
cussed in the Introduction, such as generating explanations and 
analogies with a focus on molecular causal processes (e.g., the 
prompt about inhibiting or activating steps), and to encourage 
considering possible misconceptions.

•	 What are the facts?
•	 Why are things the way they are?
•	 Does anything strike you as strange or noteworthy?
•	 What didn’t you understand about this?
•	 What don’t your peers understand about this?
•	 How would you explain it to someone else?
•	 What would happen if a step were inhibited/activated?
•	 What would happen if a component was in excess or short 

supply?
•	 Can you think of an analogy for this?
•	 Can you build a scenario or context around this?

Examples of the sorts of comments students provided one 
another as part of this interactive cooperative learning activity 
are provided in the Supplemental Material. Now we turn to the 
primary analyses of the paper: how the quality of the question 
the students authored predicts performance on the final exam.

Materials and Scoring
The final exam contained both MCQs and short-answer ques-
tions (SAQs). Each of these can be further broken down into 
questions relating to the topic of molecular biology (30 MCQs; 
two SAQs; covering 97 learning outcomes) or metabolism (34 
MCQs; two SAQs; covering 259 much more granular learning 
outcomes). The four dependent variables used in our analyses 
are the average mark for each of these combinations of question 
type (MCQ or SAQ) and topic (molecular biology or metabo-
lism). The split by topic is particularly important, because steps 
2 and 3 of our intervention were targeting molecular biology 
concepts (individual authoring), and steps 4 and 5 were target-
ing those for metabolism (collaborative authoring). This allows 
us to investigate the more interactive mode of question author-
ing in steps 4 and 5 (where students collaboratively worked on 
questions in groups) and the more individual (merely construc-
tive) mode of question authoring in step 3 separately, although 
the comparison between them is confounded by differences in 
topic, so we do not focus on this (see Discussion).

A.H. and D.H. analyzed the exam questions for their Bloom 
levels as well. For the molecular biology MCQs, the average 
Bloom level was 3.05, and for the metabolism ones, it was 3.09. 
For the SAQs, there were only two questions for each topic, with 
each containing aspects testing Bloom levels of at least 5 and 6 
(the questions had multiple parts, some of which asked about 
lower-level aspects to establish a baseline to build up to the 
high-level aspects). Thus, performance on the short-answer sec-
tion in particular will likely reflect deeper aspects of conceptual 
understanding that go beyond superficial memorization of ter-
minology and procedures.

Our key predictor variable for analyzing the step 3 data 
(corresponding to the molecular biology topics on the exam) 
was an assessment of the MCQ that each student authored. 
Every question was scored on a 0–3 continuous scale by one of 
two instructors (D.H. & M.C.). This score reflected both the 

quality of the question stem and the answer choices; the scheme 
was developed by D.H. and represents a coarsened version of 
Bloom’s taxonomy. To assess the reliability of the question scor-
ing by the instructors, 63 randomly selected questions (∼10% of 
total) were doubled marked. These pairs of scores had high con-
sistency (intraclass correlation coefficient = 0.841, p < 0.001), 
indicating that the scoring procedure was reliable.

<1.5	 was given if the question stem was confusing, options 
were ambiguous, or there was more than one right 
answer.

1.5–1.8 was assigned to a straightforward but clear question 
stem and four to five answer options that were unam-
biguous with one correct option: level 1 or 2 of Bloom’s 
taxonomy.

1.8–2.0 was given if the question included some context or 
more thoughtful answer options: levels 2 to 3 of 
Bloom’s taxonomy.

2.0–2.5 was given if there were greater experimental context; 
more creative answer options, including plausible dis-
tractors; and common misconceptions: levels 3 to 4 of 
Bloom’s taxonomy.

2.5–3.0 was assigned for well-described relevant experimental 
context in the question, clear options with very plausi-
ble distractors, and concepts relevant to key learning 
outcomes in the class being covered: levels 4 to 5 
Bloom’s taxonomy.

Our key predictor variable for the step 4 (i.e., before receiv-
ing instructor feedback) analysis was a combined cooperative 
question-authoring score, taking into account both the quality 
of the question produced on a metabolism topic, as well as the 
number of meaningful comments each student provided for 
peers’ questions. This score is intended to reflect the degree of 
cognitive engagement arising from both question authoring 
and providing constructive peer feedback. We chose to analyze 
these aspects in combined form, rather than separately, because 
we believe that these components of step 4 function as a holistic 
activity, wherein it would be difficult (if not impossible) to dis-
entangle their causal influences.

Hypotheses
Our primary hypothesis is that students who engage more 
deeply in the question-authoring process will do better on the 
final exam. In the step 3 analysis, this is operationalized as the 
question-authoring score and its relation to the molecular biol-
ogy sections of the final exam; and in step 4, the cooperative 
question-authoring score and its relation to the metabolism sec-
tions of the final exam.

One problem, however, in attributing this putative relation-
ship to the effect of question authoring is that it is confounded by 
the prior abilities of the students. Higher-performing students 
may be both more likely to author higher-quality questions, 
engage in more constructive feedback with peers, and ultimately 
to do better on the final exam, regardless of any additional learn-
ing benefits accrued through our design. Performance in the 
molecular biology section of the exam is also confounded by the 
number of PeerWise MCQs (which were all on molecular biology 
topics) that students tested themselves on in step 2. Thus, we 
also hypothesized that this relationship would hold after statisti-
cally controlling for these other factors in ways we now describe.
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Statistical Analysis
We accounted for the confounding relationships described in 
the previous section using inverse-probability weighting (Austin 
and Stuart, 2015), using stabilized weights to account for con-
tinuous (rather than categorical) treatment exposure (Naimi 
et al., 2014). This statistical procedure is common in epidemio-
logical research in which causal patterns are to be identified 
from observational data in which there are confounding rela-
tionships like the ones described here. In short, this procedure 
estimates a scalar weight value for each observation (each stu-
dent, in our case), such that the confounding relationships are 
removed (i.e., after applying weights, removing any correlation 
between prior grades and question-authoring quality).

Students’ prior grades were defined as the average mark for 
each student over the eight first-year units (the unit described 
in this study is a second-year unit).

The number of tested questions was taken from each stu-
dent’s usage of PeerWise during step 2 of the activities described 
in the previous section. The median number of answered ques-
tions was 51, and the majority clustered around this number, 
but there was also a long tail of the distribution, with one stu-
dent answering as many as 489 questions, and some students at 
the other extreme who answered only a handful of questions. It 
seems implausible that there would be a linear relationship 
across this whole range (of 0–489 tested questions), thus, we 

applied a winsorization approach to attenuate the influence of 
outliers. This worked by replacing values outside the 5th and 
95th quantiles with the values at these quantiles (see Supple-
mental Figure 1).

Before the inverse-probability weighting procedure was 
applied, the data were highly unbalanced, especially with 
respect to the students’ prior grades (i.e., prior grades were 
indeed correlated with authored-question quality and engage-
ment). After this procedure was applied, acceptable covariate 
balance was achieved (i.e., statistically removing this relation-
ship; see Supplemental Figure 1). Before using this weighted 
data set for analyses, we trimmed extreme weights beyond the 
99th percentile. Extreme (outlier) weight values can cause arti-
ficially inflated standard errors and indicate violations to the 
positivity assumption. Using this final weighted data set allows 
us to estimate the effect of authored-question quality on exam 
performance and to interpret this as not just being a reflection 
of these other confounding factors.

We then regressed the question quality ratings on exam per-
formance. As a result of the applied weights, these models can 
be interpreted as marginal structural models (Robins et  al., 
2010)—marginal, because the parameter estimates are no lon-
ger conditional on confounders (it marginalizes over them); 
structural, because instead of modeling observed outcomes (the 
original data), it models potential outcomes (the weighted 

data). We additionally included the num-
ber of questions answered as an effect 
modifier in the model. This serves to 
determine 1) whether there is also a test-
ing effect, and if there is, 2) whether this 
effect is distinct from the authoring effect.

RESULTS
The results show significant effects of 
question authoring on exam performance, 
in line with our hypotheses. Starting with 
the step 3 (molecular biology) results, for 
the multiple-choice section of the exam 
(Table 1 and Figure 1), a person who 
scores a zero on the authored question 
(i.e., did not complete it) and does not 
answer any PeerWise questions has a pre-
dicted average mark of 36.4% (for refer-
ence, the average mark across the whole 
cohort for this section of the exam is 
51.0%). Holding the number of questions 
answered constant, for each unit increase 
in the question quality score (up to a max-
imum score of 3), there is a predicted 6.5% 
improvement in the mark (i.e., a predicted 
19.6% boost in exam performance if the 

TABLE 1.  Marginal structural model predicting exam mark (molecular biology, MCQ section) from question-authoring score, with effect 
modification from number of questions self-tested

Estimate SE t value p value

Intercept 36.434 3.741 9.739 <0.001***
Question-authoring score 6.545 1.658 3.948 <0.001***
Number of questions self-tested 0.036 0.026 1.356 0.176

***p < 0.001.

FIGURE 1.  Results in the molecular biology section of the exam (corresponding to the 
solo question-authoring activity in step 3) for the multiple-choice (left) and short-answer 
(right) sections. The y-axis on both plots is the percent grade for this section of the exam, 
the x-axis is the question-authoring score. Each point represents a student, and the 
transparency of the point represents the estimated weight used in the inverse-probability 
weighting analysis used to control for confounding (i.e., the more transparent, the less 
that student’s score influences the result). The dotted lines represent linear regressions of 
the marginal effect of the question-authoring score on exam performance (i.e., con-
trolling for the influence of prior grades), with shaded regions representing the standard 
error of the mean.



21:ar4, 8	  CBE—Life Sciences Education  •  21:ar4, Spring 2022

C. B. Hilton et al.

question scores a 3). There was no statistically significant effect 
of question answering on exam performance in the multi-
ple-choice section.

For the short-answer section (Table 2 and Figure 1), the pre-
dicted mark for those who did not author or answer a question 
was 17.8% (the average mark in the cohort for this section was 
38.1%). Holding answering constant, each unit increase in 
authored-question quality brought a predicted 8.5% increase in 
exam performance (i.e., accruing up to a maximum boost of 
25.5%) and, accordingly, a 0.06% increase for each question 
used for self-testing (with a predicted 3.4% boost overall if the 
median 51 questions were answered).

For step 4 (metabolism topics), there was a similar trend 
(Tables 3 and 4 and Figure 2). For deeper levels of engagement 
in the cooperative question-authoring task, there was a pre-
dicted 7.8% increase for each rise in level of engagement for the 
multiple-choice exam mark, and a 9.7% increase in the mark on 
the short-answer section of the exam.

DISCUSSION
A large class of students participated in a cooperative online 
community of MCQ authoring and answering as part of a ter-
tiary biochemistry class. Their participation was supported 
through the software PeerWise (Denny et  al., 2008) and by 
learning activities that we designed in light of the cognitive 
principles discussed in the Introduction. Our results show that, 
within this context, both answering and authoring questions 
had beneficial and independent effects on student performance, 
with authoring having the largest effect, consistent with the 
predictions of the ICAP framework (Chi and Wylie, 2014). 
These effects not only extended to doing better on the multi-

ple-choice section of the final exam, but also to doing better in 
the short-answer section, which tested a deeper conceptual 
understanding of the learning materials and required actively 
generating explanations of phenomena (as opposed to just 
selecting the correct multiple-choice option).

The large effect of question authoring is critical. While the 
testing effect is a well-known and frequently cited finding in 
cognitive and educational research, in its most typical uses, the 
focus is on more superficial kinds of knowledge tested just with 
memory recall. Our results emphasize that question authoring 
is a learning activity that pairs naturally with the benefits of 
testing but additionally leverages deep and elaborative cogni-
tive processes that, with the aid of tools like PeerWise, can be 
readily implemented at scale in large tertiary science classes to 
support conceptual understanding.

In characterizing this authoring effect, the deeper and more 
meaningful the engagement with question authoring (step 3: 
higher on Bloom’s taxonomy; better distractors; relevant exam-
ples; step 4: all this plus cooperative interaction in the form of 
feedback on one another’s questions), the better the student 
performed on the final exam. This held true even while statisti-
cally controlling for prior grades and question-answering activ-
ity. This effect was replicated for both the molecular biology and 
metabolism sections of the exam, each of which corresponded 
with a separate question-authoring activity (steps 3 and 4, 
respectively, in our design). These results are consistent with 
our account, described in the Introduction, that question author-
ing is an engaging task that taps into several cognitive processes 
widely known to increase learning, such as the generation effect 
and self-explanation (Chi et al., 1994; Rosner et al., 2013).

It is worth further noting that the students were assigned 
one of 97 learning outcomes in molecular biology to author a 
question in step 3, and one of 259 learning outcomes to author 
a question in steps 4 and 5. So each student only authored two 
questions (although they gave feedback on other people’s ques-
tions on different topics in step 4) but saw benefits on exam 
performance across the board. This speaks to how these elabo-
rative processes use broad conceptual knowledge even when 
the task is quite focused. Prior work by this research group 
examining a previous year’s cohort (Hancock et al., 2018) spe-
cifically analyzed questions by their learning outcomes and 
showed that students saw just as big a benefit for learning out-
comes they were not assigned as the learning outcomes they 
were assigned. To get this kind of broad conceptual benefit from 
question answering (or other forms of testing), we suggest that 
a deep form of conceptual engagement is required.

It is important to emphasize that unscaffolded question 
authoring is potentially not enough to elicit these broad and 
deep conceptual benefits. That is, the goal of our educational 
design was not just to show the positives of PeerWise for 

TABLE 2.  Marginal structural model predicting exam mark (molecular biology, SAQ section) from question-authoring score, with effect 
modification from number of questions self-tested

Estimate SE t value p value

Intercept 17.828 4.121 4.326 <0.001***
Question-authoring score 8.542 1.869 4.570 <0.001***
Number of questions self-tested 0.064 0.032 2.001 0.046*

*p < 0.05.
***p < 0.001.

TABLE 3.  Marginal structural model predicting exam mark 
(metabolism, MCQ section) from cooperative question-authoring 
score

Estimate SE t value p value

Intercept 34.365 2.564 13.405 <0.001***

Question-authoring score 7.825 1.187 6.593 <0.001***

***p < 0.001.

TABLE 4.  Marginal structural model predicting exam mark 
(metabolism, SAQ section) from cooperative question-authoring 
score

Estimate SE t value p value

Intercept 20.472 3.249 6.300 <0.001***

Question-authoring score 9.684 1.499 6.459 <0.001***

***p < 0.001.
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question authoring generally, but to outline and test a multistep 
scaffolding process to increase the quality of engagement in the 
question-authoring process. Our results show greater learning 
benefits for those who authored deeper questions and engaged 
more in peer feedback on question authoring, but it remains for 
future research to more systematically test and compare differ-
ent approaches for encouraging deeper forms of engagement.

The comparison between steps 3 (solo authoring of mole-
cular biology questions) and 4 (cooperative authoring of metab-
olism questions) of our design comes close to providing such a 
test. However, due to the naturalistic nature of our experiment, 
we were not able to randomize the ordering of the interactive 
(steps 4 and 5) and noninteractive (step 3) authoring activities 
or the assignment of topic domain (molecular biology or metab-
olism), among other potential issues. So while there was a 
numerically larger improvement in exam performance as a 
function of authoring engagement in step 4 compared with step 
3 (and indeed, more students clustered up in the higher end of 
the distribution of authoring engagement scores), we choose to 
only interpret this as a promising hint, motivating further 
research to assess this question more rigorously.

Another limitation of our study is that, although we showed 
that authoring deeper questions brought more learning gains, 
we were not able to assess the efficacy of our question-answer-
ing and question-authoring design overall in comparison to a 
reference standard teaching method (such as standard lectures 
followed by practice exercises). Given the extensive literature 
concerning the testing effect (Rowland, 2014) and the benefits 
of generative/constructive forms of engagement (Chi and 
Wylie, 2014; Fiorella and Mayer, 2016), as discussed in the 
Introduction, we suspect that the specific design used here 
would be at least as effective as more standard approaches, and 
quite likely more effective (see especially Chi et al., 2018; Kelley 
et al., 2019). But once again, more research is needed for firmer 
conclusions to be made.

FIGURE 2.  Results in the metabolism section of the exam (corresponding to the interac-
tive question-authoring activity in step 4) for the multiple-choice (left) and short-answer 
(right) sections. The y-axis on both plots is the percent grade for this section of the exam, 
the x-axis is the cooperative question-authoring score. Each point represents a student, 
and the transparency of the point represents the estimated weight used in the in-
verse-probability weighting analysis used to control for confounding. The dotted lines 
represent linear regressions of the marginal effect of the cooperative question-authoring 
score on exam performance (i.e., controlling for the influence of prior grades), with 
shaded regions representing the standard error of the mean.

Many of these limitations arise from 
the challenges of doing scientific research 
outside the lab. Most of the studies we 
reviewed in our Introduction analytically 
decomposed learning activities into sim-
pler parts such that causality could be 
more clearly established between compo-
nents and eventual learning outcomes, 
typically within well controlled lab envi-
ronments rather than messy real-world 
classrooms. However, while this helps 
achieve certain scientific goals, it does not 
always support the best practical outcomes 
for education, where often the best designs 
will be of a more holistic nature.

More importantly, while it is easier to 
establish causal connections in the lab, the 
types of learning that are possible under 
these restricted conditions may not gener-
alize straightforwardly to real-world con-
texts. This is increasingly recognized as a 
serious concern for traditional psychologi-
cal experiments, which typically study 
only narrow and unrepresentative groups 
of people (Henrich et  al., 2010), in nar-

rowly constrained contexts (Baribault et al., 2018)—leading to 
a putative “generalizability crisis” (Hilton and Mehr, 2021; Yar-
koni, 2021). These concerns have motivated the need to sys-
tematically embed educational experiments within real-world 
learning contexts (Motz et al., 2018; Fyfe et al., 2021) and for 
research teams to collaborate deeply with educators in both 
research and implementation (Penuel et al., 2011)—as we have 
done here. So while there are challenges in conducting research 
in real-world teaching contexts, there are potentially equally as 
many opportunities.

Finally, we emphasize the promise this approach has for scal-
ability. By centering learning activities on having students con-
tribute to a cooperative and intrinsically motivating enterprise 
(producing study questions that they may themselves benefit 
from in exam preparation), the effort of each individual student 
not only benefits personal learning but potentially amplifies 
that of others. Online applications like PeerWise are specifically 
designed to take advantage of such self-reinforcing dynamics 
and to enhance them through design mechanics such as gamifi-
cation (Indriasari et al., 2020). This approach to educational 
design, and to understanding contextually situated learning, 
fits well with recent attempts to conceptualize learning as a 
complex system (Jacobson et al., 2016, 2019). Achieving large-
scale and deep conceptual learning from this perspective need 
not always require proportional effort, but rather, in our case at 
least, is about tapping the latent potential of the crowd through 
well-designed socio-technical systems aligned to the peculiari-
ties of human cognition.

CONCLUSION
It is relatively easy to instruct basic factual knowledge at scale, 
but scaling up the teaching of deeper conceptual understanding 
is more challenging. Our paper was aimed at addressing this 
challenge from both practical and theoretical perspectives. 
First, from a cognitive science perspective, we reviewed how 
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and why answering and authoring MCQs benefits learning and 
specifically when these activities might support deeper forms of 
knowledge change through tapping deeper forms of cognitive 
engagement. Applying these principles, we designed a novel 
series of question-answering and question-authoring activities 
that were embedded within the free online cooperative tool 
PeerWise (Denny et al., 2008). We then evaluated the extent to 
which this system of activities, cooperating students, and tech-
nologies scalably supports conceptual understanding. Our ini-
tial results were promising, motivating future research to verify 
and extend our findings and address the limitations. Ultimately, 
we hope that this work provides a useful design template for 
educators and motivates more collaborations between cognitive 
scientists and domain-expert educators.
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