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CROSS-DISCIPLINARY RESEARCH IN BIOLOGY EDUCATION ESSAY

ABSTRACT
Cognitive neuroscience research is typically conducted in controlled laboratory environ-
ments that hold very little resemblance to science, technology, engineering, and math-
ematics classrooms. Fortunately, recent advances in portable electroencephalography 
technology now allow researchers to collect brain data from groups of students in re-
al-world classrooms. Even though this line of research is still new, there is growing evi-
dence that students’ engagement, memory retention, and social dynamics are reflected 
in the brain-to-brain synchrony between students and teachers (i.e., the similarity in their 
brain responses). In this Essay, I will provide an overview of this emerging line of research, 
discuss how this approach can facilitate new collaborations between neuroscientists and 
discipline-based education researchers, and propose directions for future research.

INTRODUCTION
With the transition from lecture-based to active-learning formats, science, technology, 
engineering, and mathematics (STEM) undergraduate classrooms are becoming more 
social (Linton et al., 2014; Eddy et al., 2015). Yet social interactions and their impact 
on student learning, especially at the undergraduate level, are vastly underexplored. 
Discipline-based education researchers typically collect data from large groups of stu-
dents, but the emphasis is on how pedagogy affects individual students (Grunspan 
et al., 2014). There is relatively a small (but growing) number of discipline-based 
education research (DBER) studies that focus on social interactions. These studies 
suggest that social interactions can help explain shifts in students’ self-efficacy (Dou 
et al., 2016), persistence in introductory courses (Zwolak et al., 2017), and academic 
performance (Theobald et al., 2017; Vargas et al., 2018).

Similarly, there is very limited neuroscience research on social interactions. In fact, 
the study of real-world social exchanges has been dubbed the “dark matter of social 
neuroscience” (Schilbach et al., 2013). The lack of studies investigating these phenom-
ena is most likely due to the high cost and fragility of traditional cognitive neurosci-
ence methods, limiting the vast majority of research on the human brain to studies in 
which one participant at a time performs a task in a highly constrained environment 
(e.g., inside a brain scanner). In the past few years, researchers have begun to approach 
the neural basis of social interactions by comparing the brain responses of multiple 
individuals during a variety of tasks (Hasson et al., 2012; Babiloni and Astolfi, 2014; 
Wheatley et al., 2019). In pioneering research, Hasson and colleagues (2004) used 
functional magnetic resonance imaging (fMRI) to demonstrate that the brains of dif-
ferent people who watch the same movie show increasingly similar activity patterns 
over time (a phenomenon called “brain-to-brain synchrony”). Other research has 
found that successful communication is associated with similar brain activity between 
a speaker and a listener: the more similar the listener’s brain activity with that of the 
storyteller, the better the listener remembers a story (Stephens et al., 2010). However, 
participants in these studies were not tested simultaneously (i.e., there was no social 
interaction). The few truly interactive studies that exist demonstrate a relationship 
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between social factors and brain-to-brain synchrony. For exam-
ple, face-to-face dialogues have been shown to induce more 
brain synchrony compared with back-to-back dialogues or 
monologues (Jiang et al., 2012). It has also been demonstrated 
that conversational leaders show more synchronous brain activ-
ity with “followers” than followers do among one another 
(Jiang et al., 2015).

In this Essay, I will discuss how social interactions in STEM 
classrooms can be studied from a neuroscience perspective. 
Though this line of research is still at an early stage, I will argue 
that it holds great potential for cross-disciplinary research in 
biology education. I will first describe how portable technolo-
gies can be used to measure the brain activity of groups of stu-
dents in classrooms and review several recent studies that used 
this approach. These studies suggest that students exhibit syn-
chronized brain activity patterns, and the extent of brain syn-
chrony reflects students’ engagement, social closeness, and 
learning outcomes. I will then discuss what might drive brain 
synchrony between students in classrooms and conclude with 
suggestions for future research.

PORTABLE BRAIN TECHNOLOGIES IN STEM 
EDUCATION RESEARCH
This Essay focuses on electroencephalography (EEG), because it 
is currently the only brain-measuring technology that allows 
the recording of students’ and teachers’ brain activity in class-
rooms at just a fraction of the cost of laboratory-based neurosci-
ence equipment. Other neuroimaging techniques, such as fMRI, 
positron emission tomography, and magnetoencephalography, 
require stationary brain scanners that cost millions of dollars. 
Another neuroimaging method that is gaining popularity is 
functional near-infrared spectroscopy (fNIRS), which uses 
near-infrared light to measure brain activation. Although wire-
less fNIRS devices are now becoming available, almost all fNIRS 
research to date has been conducted in laboratory settings (Cui 
et al., 2011).

What does EEG measure? EEG measures the brain’s electri-
cal activity from electrodes placed on the scalp (typically 
32–256 electrodes). The EEG signal is thought to reflect the 
summation of postsynaptic potentials across thousands of neu-
rons (Biasiucci et al., 2019; Brienza and Mecarelli, 2019). The 
EEG signal is primarily generated by cortical pyramidal neu-
rons. Due to their anatomical geometry, when these neurons 
are activated in synchrony, their electrical signals summate 
and propagate to the scalp. Thus, the EEG signal varies accord-
ing to the synchronized or desynchronized activity of large 
populations of neurons. Biasiucci et al. (2019) propose the fol-
lowing analogy: EEG is similar to measuring the roar of a 
crowd from outside a stadium. It cannot identify individual 
conversations, but it can detect changes in the overall activity 
of the crowd (for a recent primer on EEG, see Biasiucci et al., 
2019).

Whereas other neuroimaging tools, such as fMRI, can detect 
brain activations within a range of a few millimeters, with EEG, 
it is mathematically very difficult to infer where in the brain the 
EEG signal originates. Another limitation of EEG is that the sig-
nal is often contaminated by other sorts of physiological electri-
cal activity (e.g., ocular and other muscular activity) and envi-
ronmental noise (e.g., computer screens). This is particularly a 
concern when using EEG in classrooms, and therefore, EEG 

data should be closely examined and artifacts should be identi-
fied and removed (see Dikker et al., 2017). On the other hand, 
EEG is very useful in determining when a certain brain response 
is happening, making EEG a rich source of data when it comes 
to disentangling different stages of information processing 
(Luck, 2014).

Most EEG research is still being conducted in laboratory set-
tings, but with recent developments in low-cost, portable, wire-
less, and dry (i.e., gel-free) EEG technology, researchers can 
now conduct neuroscience investigations outside the laboratory 
in ecologically valid environments, such as classrooms. Biology 
education researchers might be especially interested in smart-
phone-based EEG systems that combine an off-the-shelf EEG 
device with a smartphone or a tablet (Debener et al., 2012; 
Stopczynski et al., 2014; Poulsen et al., 2017) as well as EEG 
systems that offer less obtrusive electrode configurations 
(Debener et al., 2015). However, one should note that portable 
EEG devices have fewer electrodes, which might restrict data 
analysis and the types of research questions that can be 
answered. Also, data acquired with portable EEG devices are 
more susceptible to artifacts, such as head motion and eye 
movement artifacts, resulting in a higher percentage of data 
exclusion. Nonetheless, it has been demonstrated that portable 
EEG devices can yield comparable data to laboratory-grade sys-
tems (at least with tasks that are known to generate robust EEG 
effects; Badcock et al., 2013; Ries et al., 2014; Grummett et al., 
2015).

BRAIN-TO-BRAIN SYNCHRONY IN CLASSROOMS
Several recent studies have used portable EEG methods to col-
lect brain data from groups of students in simulated and real-
world classrooms. Poulsen et al. (2017) measured the brain 
activity of a group of 12 young adults in a classroom setting 
while they were presented with short video clips. The videos 
elicited synchronized brain activity patterns across participants 
compared with randomly scene-scrambled versions of the same 
videos. While this study helped validate the method of record-
ing EEG in a classroom, its educational relevance is limited due 
to the type of materials that were used (segments of popular 
movies) and the fact that the participants were not an organic 
group of students.

In another recent study, Dikker et al. (2017) recorded EEG 
activity from a group of 12 students in a biology high school 
classroom. Students’ brain activity was recorded throughout 
various classroom activities, such as lectures, instructional vid-
eos, and group discussions (Figure 1). The extent to which 
brain activity was synchronized across students was found to 
predict self-reported student engagement: Students who 
reported being more engaged exhibited higher brain synchrony 
with their peers. Further, brain-to-brain synchrony between 
pairs of students reflected how close they felt toward each 
other: pairs of students who demonstrated higher brain syn-
chrony also reported higher social closeness (Dikker et al., 
2017).

In another study, EEG activity was recorded not only from 
the students, but also from their teacher, which is a challenging 
task due to the sensitivity of EEG to head movement and 
speech-related artifacts. By instructing the teacher to be mind-
ful of their head motion and sufficiently preprocessing the data, 
the authors were able to measure the brain synchrony between 
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students and their teacher. Student-to-teacher brain synchrony 
was significantly correlated with students’ self-reported engage-
ment: Students who were more engaged showed higher brain 
synchrony with the teacher. Further, students who reported 
feeling closer to the teacher exhibited more student-to-teacher 
brain synchrony (Bevilacqua et al., 2019).

Taken together, these two studies suggest that the social 
dynamics among students and their teacher are, to some extent, 
reflected in their brain-to-brain synchrony. This is intriguing, 
because students in these studies were not prompted to think 
about their social relationships while EEG data were being col-
lected. This finding is consistent with recent fMRI research, 
which reported that neural responses to naturalistic movies 
were highly similar among friends, with similarity of neural 
responses decreasing as social distance increased (Parkinson 
et al., 2018).

So far, I have focused on student engagement and social 
dynamics—but how does brain-to-brain synchrony relate to 
learning outcomes? Bevilacqua et al. (2019) did not find a sig-
nificant association between brain synchrony and students’ 
memory retention, but two other studies indicate otherwise 
(Cohen et al., 2018; Davidesco et al., 2019). Cohen et al. 
(2018) demonstrated that brain-to-brain synchrony between 
students who watched science-related instructional videos pre-
dicted their performance in a memory test. In another study, 
brain activity was concurrently measured from four non–sci-
ence major students and their instructor in a simulated class-
room throughout a sequence of four mini-lectures in biology 
and chemistry. Students’ knowledge was measured a week 
before, immediately after, and a week following the EEG ses-
sion. Both student-to-student and student-to-teacher brain 
synchrony significantly predicted students’ memory retention a 
week after the lesson took place. Interestingly, moment-to-mo-
ment variations in brain synchrony throughout the lecture indi-
cated what specific information students retained: Brain syn-
chrony was higher for test questions for which students 
demonstrated learning (i.e., answered incorrectly in the pretest 
and correctly in the posttest) compared with test questions for 
which students’ answers remained unchanged (Davidesco 
et al., 2019).

FIGURE 1. Portable EEG recordings in a classroom (from Dikker et al., 2017). Inset: An 
example of a portable EEG device (EMOTIV EPOC+).

WHAT MIGHT GIVE RISE TO BRAIN-
TO-BRAIN SYNCHRONY DURING 
CLASSROOM INTERACTIONS?
While the underlying mechanisms of 
brain-to-brain synchrony are not well 
understood, Dikker et al. (2017) pro-
posed that shared attention plays a crucial 
role. At the most basic level, brain-to-
brain synchrony is driven by the fact that 
all students were exposed to the same 
stimulus (e.g., the instructor’s voice). 
When confronted with an external stimu-
lus, brain activity becomes temporally 
aligned to the rhythm of the input, a phe-
nomenon called “stimulus entrainment” 
(Lakatos et al., 2008). In a classroom, 
because all students have similar senso-
ry-motor systems designed to apprehend 
the world, their brains all become 
entrained to the instructor’s voice or to 

any other shared stimuli, thus syncing with one another.
Critically, stimulus entrainment only provides a partial 

explanation to brain synchrony in classrooms. Our brains act as 
a selective filter of the external world (Enns and Lleras, 2008; 
Berkes et al., 2011); thus, sharing the same audiovisual input 
does not guarantee that we all “see” the world the same way. 
For example, instructors may trigger completely different 
responses in each of their students’ brains depending on stu-
dents’ attention. Attention has a critical role in the learning pro-
cess, as it controls the flow of incoming information by sup-
pressing irrelevant information while enhancing sensitivity to 
task-relevant information (Kanwisher and Wojciulik, 2000).

Many studies have demonstrated that attention can modu-
late how the brain processes information (e.g., Davidesco et al., 
2013). For example, in a cocktail party–like scenario, when par-
ticipants are confronted with two speakers and asked to direct 
attention to only one of them, brain activity in high-order audi-
tory regions tracks only the attended speaker’s voice (Mesgarani 
and Chang, 2012; Golumbic et al., 2013). Similarly, as students 
pay close attention to a lecture, their brains become entrained 
to the lecturer’s voice, and thus their brain activity aligns with 
the brain activity of the instructor and other students. In con-
trast, as students lose interest, their brains become less entrained 
to the lecturer (and possibly more entrained to other stimuli), 
resulting in decreased similarity in neural responses to the 
instructor and other students (Dikker et al., 2017).

BRAIN SYNCHRONY AS A REFLECTION OF 
INTERPERSONAL COORDINATION
During social interactions, not only do people’s brains become 
synchronized, but also their behaviors become aligned (Cornejo 
et al., 2017). For example, during conversations, people tend to 
imitate each other’s choices of speech sounds, grammatical 
forms, and words, a process known as “interactive alignment” 
(Garrod and Pickering, 2004). Interpersonal coordination also 
occurs nonverbally: Interlocutors tend to synchronize their 
facial expressions, manual gestures, and noncommunicative 
postures. This typically happens spontaneously, unconsciously, 
and rapidly (within a few seconds after the onset of an interac-
tion; Louwerse et al., 2012).
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Even though teaching and learning are highly social pro-
cesses, with students and teachers interacting constantly with 
one another, there is very little research on interpersonal coor-
dination in classrooms. In one of the few studies that addressed 
this issue, Bernieri (1988) measured the movement synchrony 
and behavioral matching in video recordings of high school stu-
dents. The students were videotaped in pairs as they attempted 
to teach each other a set of imaginary words. Ratings of move-
ment synchrony and behavioral matching were higher in genu-
ine interaction video clips compared with control video clips. 
Further, the degree of movement and behavioral synchrony 
were positively correlated with rapport ratings between stu-
dents. In another more recent study, bilingual undergraduate 
and graduate students engaged in teaching-like tasks, where 
one person was required to transmit information that was 
unknown to their partner in order to achieve a shared goal. An 
independent group of native English speakers rated the degree 
of alignment between interlocutors. Interactive alignment in 
both linguistic (e.g., word stress placement in multisyllabic 
words) and nonverbal behaviors was found to be significantly 
higher at the end of the conversation compared with the begin-
ning, suggesting that interpersonal coordination increases over 
time (Trofimovich and Kennedy, 2014; Trofimovich et al., 
2014).

Interpersonal coordination relies on our ability to anticipate 
both our own linguistic and behavioral actions and those of oth-
ers (Ramnani and Miall, 2004; Sebanz et al., 2006; Konvalinka 
et al., 2010; Sänger et al., 2011; Romero et al., 2012; Pickering 
and Garrod, 2013). For example, using fMRI, Stephens et al. 
(2010) reported that neural responses in the frontal cortex of 
the listener’s brain preceded the responses in the speaker’s 
brain. These anticipatory responses suggest that listeners are 
actively generating predictions of what the speaker is about to 
say. Interestingly, the extent of brain areas where the listeners’ 
activity preceded the speaker’s activity was found to be the best 
predictor of listeners’ comprehension of the story to which they 
listened (Stephens et al., 2010). Similarly, Davidesco et al. 
(2019) demonstrated that in frontal and central EEG locations, 
student-to-teacher brain synchrony best predicted learning out-
comes when the students’ brain responses preceded the teachers’ 
brain responses. However, the role of prior knowledge in this 
process is not clear. It is possible that students who knew more 
about the topic before the lecture were better able to generate 
predictions about what the instructor was about to say, and that 
allowed them to learn more efficiently.

CONCLUSIONS AND NEXT STEPS
Social interactions in STEM classrooms as well as how they are 
reflected in students’ brain activity seem to be promising direc-
tions for interdisciplinary research in biology education. Social 
interactions are often overlooked in DBER, despite having a 
direct impact on students’ academic performance (Linton et al., 
2014; Theobald et al., 2017; Vargas et al., 2018). Similarly, 
social interactions are understudied in human neuroscience, 
where most research is conducted on individual participants in 
controlled laboratory environments.

This emerging line of research provides an opportunity for 
cross-disciplinary collaborations between discipline-based edu-
cation researchers and cognitive and social neuroscientists 
(Davidesco and Milne, 2019; Mestre et al., 2018).  The connec-

tion between neuroscience and education has been described in 
the past as “a bridge too far” (Bruer, 1997). Since then, there 
has been growing interest and debate regarding the relevance of 
cognitive neuroscience to education research and practice 
(Ansari and Coch, 2006; Goswami, 2006; Sigman et al., 2014; 
Bowers, 2016). Bridging neuroscience and education is chal-
lenging, because these disciplines have very different goals and 
research traditions. Neuroscientists typically adopt a reduction-
ist approach and study cognitive functions in isolation. Educa-
tional researchers, on the other hand, focus on the learner as a 
whole and how the learner is embedded in a context, such as a 
classroom. A common concern is that traditional cognitive neu-
roscience methods (e.g., fMRI) are conducted in artificial labo-
ratory environments and therefore cannot provide useful data 
to understand real-world learning. From a more pragmatic 
standpoint, the concern is that neuroscience methods are just 
too expensive to apply to educational research (Varma et al., 
2008).

This Essay highlighted recent developments in portable and 
wearable brain technologies, such as portable EEG, which now 
allow researchers to use neuroscience methods in class-
room-based research at just a fraction of the cost (Dikker et al., 
2017; Bevilacqua et al., 2019). These methods can complement 
other measures used in DBER, such as achievement tests, 
self-reports, and think-aloud interviews, and can deepen our 
understanding of the learning process in several important 
ways. First, neuroscience methods provide continuous data 
without interfering with naturally occurring learning activities. 
Using these methods, we can better explore the cognitive pro-
cessing that is taking place during learning, rather than just 
before and after learning (Mayer, 2017). Further, these methods 
can potentially measure implicit processes that learners are 
unaware of or unable to report accurately, such as lapses of 
attention (Dahlstrom-Hakki et al., 2019). Finally, neuroscien-
tific data can be used to explore individual differences that 
mediate learning and predict how students would benefit from 
different pedagogies (Gabrieli, 2016; Mayer, 2017).

Brain-to-brain synchrony is an example of what can be mea-
sured in neuroscience research in STEM classrooms, but this 
phenomenon is not unique to STEM. In fact, it is not unique to 
classrooms at all, but likely occurs in any type of social interac-
tion (Hasson et al., 2012). But in the case of classroom learning, 
brain-to-brain synchrony can be an informative measure of stu-
dent engagement, social dynamics, and learning outcomes 
(Dikker et al., 2017; Cohen et al., 2018; Bevilacqua et al., 2019; 
Davidesco et al., 2019).

However, there are several inherent limitations associated 
with classroom-based EEG research. First, EEG is a correlative 
method, where neural activity is associated with behavioral 
measures (e.g., test scores). Thus, EEG cannot assess causal 
relationships. Second, the low spatial resolution of EEG limits 
the information available to researchers. Questions about what 
specific brain regions are involved in classroom learning cannot 
currently be addressed with EEG. Third, EEG recordings are sen-
sitive to muscle-related artifacts caused by head motion, eye 
movements, and speech. For this reason, classroom-based EEG 
research to date has focused primarily on passive forms of 
learning, such as listening to lectures and watching instruc-
tional videos, where student movement and speech are limited 
(Dikker et al., 2017; Bevilacqua et al., 2019). However, now 
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that this method has been successfully deployed in classrooms, 
future research can start exploring more interactive forms of 
learning, such as small-group work.

Recent calls to enhance active learning in STEM education 
have emphasized group work based on the understanding that 
collaborative groups can enhance learning, improve students’ 
attitudes toward science, and reinforce their social identity as 
scientists (Springer et al., 1999; Tanner et al., 2003; National 
Research Council, 2012; President’s Council of Advisors on Sci-
ence and Technology, 2012). However, groups can be dysfunc-
tional, and we do not know enough about how to best use 
group learning in STEM education, especially at the college 
level (Theobald et al., 2017). Future cross-disciplinary research 
teams can collect both EEG and audio-video data from small 
groups of students during collaborative learning tasks. Whereas 
previous work has typically measured brain-to-brain synchrony 
throughout the entire duration of an activity, the high temporal 
resolution of EEG allows researchers to examine how brain syn-
chrony (as well as other EEG measures) unfolds over time. For 
example, researchers can identify moments of high and low 
synchrony in the EEG data and examine the corresponding 
audio and video recordings to identify any recurring patterns. 
This research might generate new insights into what makes 
group learning effective.

In summary, I believe that neuroscience research in class-
rooms provides an exciting opportunity for both discipline-based 
education researchers and cognitive and social neuroscientists. 
From a DBER perspective, this research will hopefully yield a 
deeper, more mechanistic understanding of STEM learning by 
illuminating what is happening in students’ brains during the 
learning process and what factors mediate learning. From a 
neuroscience perspective, this research provides a unique 
opportunity to study the brain mechanisms that support learn-
ing in real-world classroom environments.
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