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CROSS-DISCIPLINARY RESEARCH IN BIOLOGY EDUCATION ARTICLE

ABSTRACT
Research in science, technology, engineering, and mathematics education supports a 
shift from traditional lecturing to evidence-based instruction in college courses, yet it is 
unknown whether particular evidence-based pedagogies are more effective than others 
for learning outcomes like problem solving. Research supports three distinct pedagogies: 
worked examples plus practice, productive failure, and guided inquiry. These approach-
es vary in the nature and timing of guidance, all while engaging the learner in problem 
solving. Educational psychologists debate their relative effectiveness, but the approaches 
have not been directly compared. In this study, we investigated the impact of worked ex-
amples plus practice, productive failure, and two forms of guided inquiry (unscaffolded 
and scaffolded guidance) on student learning of a foundational concept in biochemistry. 
We compared all four pedagogies for basic knowledge performance and near-transfer 
problem solving, and productive failure and scaffolded guidance for far-transfer problem 
solving. We showed that 1) the four pedagogies did not differentially impact basic knowl-
edge performance; 2) worked examples plus practice, productive failure, and scaffolded 
guidance led to greater near-transfer performance compared with unscaffolded guidance; 
and 3) productive failure and scaffolded guidance did not differentially impact far-transfer 
performance. These findings offer insights for researchers and college instructors.

INTRODUCTION
Trailblazing work over the last 20 years supports a shift from traditional lecturing to 
evidence-based pedagogies in college science, technology, engineering, and mathe-
matics (STEM) courses (Knight and Wood, 2005; Haak et al., 2011; Freeman et al., 
2014; Deslauriers et al., 2019). For example, discipline-based education research 
(DBER) has shown that active learning improves performance and reduces the 
achievement gap for STEM students compared with lecture (Freeman et al., 2011, 
2014; Haak et al., 2011). Since prominent studies like these, DBER has focused 
increasingly on second-generation instructional research, using findings from educa-
tional psychology to inform instructional design and testing these designs for certain 
topics and student populations (Eddy and Hogan, 2014; Freeman et al., 2014). As 
more STEM instructors join the movement toward evidence-based pedagogy, one 
enduring question remains: What type of instruction is optimal for student learning?

Instruction should be aligned to desired learning outcomes to optimize student 
learning in biology. Biology lessons almost always teach basic knowledge, including 
key terminology, the use of terms in context, and interpretation of common visual 
representations. Many instructors also aim for students to build procedural and con-
ceptual knowledge, which enables them to explain how facts and terms connect and 
facilitates principle-based reasoning (Rittle-Johnson and Schneider, 2015; Loibl et al., 
2017). This type of learning can be assessed using problems that resemble those used 
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during instruction, referred to as “near-transfer problems” 
(McDaniel et al., 2018). Finally, some ambitious instructors aim 
for students to adapt learned concepts to new situations or dif-
ferent types of problems (Loibl et al., 2017). This type of learn-
ing can be assessed using problems that appear foreign or dif-
ferent from all previous practice, referred to as “far-transfer 
problems” (Loibl et al., 2017). Indeed, since Vision and Change, 
the ability to solve both near- and far-transfer problems has 
been viewed as a key learning outcome for biology education 
and, thus, the focus of instructional design (American Associa-
tion for the Advancement of Science, 2011).

While biology educators agree that instruction should focus 
on transfer, determining the most effective type of instruction 
for enhancing transfer is a topic of ongoing debate, particularly 
in educational psychology (Kirschner et al., 2006; Hmelo-Silver 
et al., 2007; Sweller et al., 2007; Kapur, 2016). At the heart of 
this debate is the nature and timing of the guidance provided 
during instruction (Schwartz and Bransford, 1998; Mayer, 
2004; Lazonder and Harmsen, 2016). We define guidance 
broadly as any form of assistance offered during the learning 
process that aims to either provoke or provide information con-
cerning the process or content involved (adapted from Lazonder 
and Harmsen, 2016). Regarding the nature of guidance, 
researchers debate whether guidance should be highly explicit, 
such as providing explanations, or less explicit, such as provid-
ing prompts (Lazonder and Harmsen, 2016). The timing of 
guidance is also debated. Some argue that novice learners 
should be explicitly told concepts and procedures before solving 
problems independently (Sweller et al., 1998; Sweller, 2016; 
Paas et al., 2003; Renkl, 2014; Glogger-Frey et al., 2015; Hsu 
et al., 2015). Others argue that learners should explore prob-
lems on their own before being given explicit instructions 
(Schwartz and Martin, 2004; Schwartz et al., 2011; Kapur, 
2008, 2011; Kapur and Bielaczyc, 2012; Kapur and Rummel, 
2012; Weaver et al., 2018). Furthermore, some argue that guid-
ance that fades away as knowledge and skills are built should 
be provided throughout the learning event (Hmelo-Silver et al., 
2007). From this debate, three evidence-based pedagogies 
emerge: worked examples plus practice, productive failure, and 
guided inquiry. All three pedagogies engage learners in problem 
solving and share the ultimate goal of enhancing student learn-

ing. Notably, none of these pedagogies involve unguided prob-
lem-solving practice (Mayer, 2004). Yet the nature and timing 
of guidance recommended by each approach varies based on 
the theories in which they are situated (Figure 1). Likewise, 
each pedagogy is hypothesized to target different levels of 
transfer (Kapur, 2016).

Distinct Pedagogies and Their Theoretical Underpinnings
Worked Examples plus Practice. In worked examples plus 
practice (Figure 1), students receive explicit step-by-step expla-
nations on how to solve a problem, usually through an expert 
solution, and then practice implementing these solution proce-
dures through independent problem solving. According to cog-
nitive load theory, worked examples reduce the amount of cog-
nitive load or mental effort invested in working memory during 
learning (Sweller et al., 1998; Paas et al., 2003). Cognitive load 
theory suggests that, when students study worked examples, 
they can focus their limited working memory on constructing 
the knowledge needed to solve the problem rather than using 
cognitive resources to search the problem space for a solution 
(Kirschner et al., 2006; Sweller, 2016). Studies in support of 
cognitive load theory demonstrate that students who learn 
using worked examples plus practice perform better on subse-
quent problem-solving tests than students who only solve prac-
tice problems on their own without guidance (Sweller and Coo-
per, 1985; Renkl, 2014). Some cognitive load theorists use 
these findings to argue that less-guided pedagogies, such as 
guided inquiry, are not ideal for learners, particularly learners 
with limited prior knowledge, because of their high demands 
on working memory (Kirschner et al., 2006). Yet others have 
argued that research on worked examples plus practice relies on 
weak controls (i.e., minimal guidance) and results in narrow 
learning outcomes (e.g., near transfer; Kapur, 2016), and that 
high levels of cognitive load directed toward exploring prob-
lems can benefit the development of deeper levels of conceptual 
understanding and transfer (Schwartz et al., 2011; Kapur, 
2016).

Productive Failure. In productive failure (Figure 1), students 
explore problems and generate possible solutions on their 
own before receiving explicit guidance (e.g., explanations; 

FIGURE 1. Worked examples plus practice, productive failure, and guided inquiry are three evidence-based pedagogies that vary in the 
nature of guidance, the timing of guidance, and the targeted learning outcome.
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Kapur, 2008). The productive failure approach stems from 
research on desirable difficulties. Learning tasks that contain 
desirable difficulties require more effort and make learning 
more challenging in the short term but more durable in the long 
term (Schmidt and Bjork, 1992; Bjork, 1994). The demands on 
cognitive load are useful, because presenting students with 
challenging problems first, before guidance, prepares them for 
future learning (Schwartz and Martin, 2004; Schwartz et al., 
2011). Studies show that students who learn from productive 
failure outperform students who receive instruction in the form 
of lecture followed by problem-solving practice (Kapur, 2011; 
Kapur and Bielaczyc, 2012; Weaver et al., 2018; Steenhof et al., 
2019). The benefits of productive failure include gains in con-
ceptual knowledge and far transfer (Schwartz et al., 2011; 
Kapur, 2016; Loibl et al., 2017). Proponents of productive fail-
ure hypothesize that it is advantageous, especially for far trans-
fer, because it helps learners activate their prior knowledge, 
recognize their own knowledge gaps, and focus on the underly-
ing structure of problems before explicit instruction (Kapur, 
2016; Loibl et al., 2017). In contrast, the worked examples plus 
practice approach risks that students will merely learn to apply 
provided procedures to practice problems without the deep 
conceptual understanding needed for transfer (Schwartz et al., 
2011). However, some have argued that research on productive 
failure also suffers from inappropriate control conditions 
(Glogger-Frey et al., 2015) and has primarily been tested across 
a limited range of topics in mathematics (Loibl et al., 2017).

Guided Inquiry. While worked examples plus practice and pro-
ductive failure are well-defined approaches, guided inquiry is 
more ill-defined and suffers from imprecision in terminology. 
For example, depending on their specific implementation, one 
could categorize inquiry-based learning (Prince and Felder, 
2006), problem-based learning (Dochy et al., 2003; Hmelo-Sil-
ver, 2004), case-based learning (Herreid, 2007), peer-led 
guided inquiry (Lewis and Lewis, 2005, 2008), and process-ori-
ented guided-inquiry learning (POGIL; https://pogil.org; 
Farrell et al., 1999; Bailey et al., 2012) as types of guided-in-
quiry instruction. We acknowledge this variance in implemen-
tation and the fact that there are other structures used by 
instructors, such as hybrids of these techniques, that may be 
effective (Eberlein et al., 2008). However, for the purpose of 
this paper, we define guided inquiry as an approach in which 
students actively engage in solving problems to learn critical 
concepts and practices and are guided throughout the process 
(Hmelo-Silver, 2004). Guidance through this process ranges in 
level of explicitness based on the learner’s prior knowledge, but 
broadly consists of hints, prompts, questions, or even direct 
explanation from an instructor or learning assistant (Hmelo-Sil-
ver et al., 2007; Lazonder and Harmsen, 2016). Additionally, 
we consider guided-inquiry instruction to have the following 
characteristics: 1) students working together in small groups, 
2) the instructor and learning assistants acting as facilitators of 
learning rather than as proprietors of knowledge, and 3) scaf-
folds or instructional supports that fade away as knowledge is 
built (van Merriënboer and Kirschner, 2007).

As defined, guided inquiry stems from social constructivism 
theory, which recognizes knowledge is built by the learner and 
is impacted by cooperative social interactions (Bodner et al., 
2001; Eberlein et al., 2008). While proponents of worked exam-

ples plus practice criticize guided inquiry for ignoring the lim-
itations of human working memory (Kirschner et al., 2006), 
guided-inquiry proponents argue that scaffolded guidance 
effectively manages students’ cognitive load (Schmidt et al., 
2007). Because guided inquiry suffers from imprecision in ter-
minology, it is challenging to characterize the evidence base for 
this approach. In the K–12 literature, guided inquiry has been 
shown to improve student learning outcomes compared with 
unguided inquiry (Lazonder and Harmsen, 2016). In higher 
education, students in a POGIL-style chemistry course scored as 
high as or higher on the final exams than students who had 
taken a more traditional lecture-based course from the same 
instructor (Farrell et al., 1999). Additionally, students in a peer-
led guided inquiry–style chemistry course experienced 
improved performance on the ACS Exam compared with stu-
dents in more traditional lecture-based courses (Lewis and 
Lewis, 2008). Compared with traditional lecture, case-based 
learning in an introductory biology course improved exam per-
formance, including performance on questions requiring appli-
cation and analysis (Chaplin, 2009). Problem-based learning 
has also been shown to improve retention, application, and skill 
development compared with more traditional teaching methods 
(Dochy et al., 2003; Prince, 2004). Overall, the literature sub-
stantiates that guided inquiry–related approaches can improve 
student learning. However, as is evident from the preceding 
examples, the literature is limited due to the use of comparison 
groups that provide no guidance for problem solving or lecture 
only with no time for problem-solving practice.

Controversies and a Need for Comparison Studies
Worked examples plus practice, productive failure, and guided 
inquiry all have been shown to enhance student learning, yet 
they have not been directly compared. This is an important defi-
cit in the literature. First, researchers have recently hypothe-
sized unique advantages of each pedagogy for serving different 
learning outcomes (Kalyuga and Singh, 2016; Kapur, 2016). 
For instance, worked examples plus practice may be best for 
learning specific procedures and near transfer, while productive 
failure and guided inquiry may be best for promoting far trans-
fer. Second, given that guided inquiry is a common instruc-
tional approach in biology and chemistry, it is of interest to the 
DBER community to compare guided inquiry with the other 
pedagogies. Third, research studies for all three pedagogies are 
limited due to weak comparison groups (e.g., no guidance, no 
time for problem-solving practice, weak forms of direct instruc-
tion, lecture only). Stronger comparisons among pedagogies 
involving guidance and problem-solving practice are more 
intriguing to researchers and educators. Finally, the majority of 
research studies highlighted earlier focus on domains in mathe-
matics, such as algebra and statistics. The context-specific 
boundaries of this research base should be expanded to include 
domains like biology that rely heavily on conceptual knowl-
edge. In this paper, we address these gaps in the literature with 
an investigation that directly compares worked examples plus 
practice, productive failure, and two forms of guided inquiry in 
the context of biochemistry.

Chosen Context of Biochemistry
We purposefully chose the context of biochemistry for this com-
parison. Introductory biochemistry courses play an important 



19:ar41, 4  CBE—Life Sciences Education • 19:ar41, Fall 2020

S. M. Halmo et al.

role in STEM undergraduate curricula because they 1) are 
required for many STEM majors, 2) include content that is criti-
cal for health professional entrance exams, and 3) integrate the 
disciplines of biology and chemistry. Biochemists agree on a set 
of core concepts that define the discipline (Loertscher et al., 
2014; American Society for Biochemistry and Molecular Biology, 
2020). One particularly challenging concept for students is the 
physical basis of noncovalent interactions (PBI). PBI builds on 
students’ general chemistry and introductory biology content 
knowledge to bring together the idea that noncovalent interac-
tions occur due to the electrostatic properties of biological mole-
cules (Cooper et al., 2015). Students with expertise in this con-
cept recognize that although interactions are given different 
names (i.e., ionic interactions, hydrogen bonds, van der Waals 
forces), they are all based on the same electrostatic principle of 
attraction due to opposite charge (Loertscher et al., 2014). PBI is 
so central to biochemistry that once students deeply understand 
it, their view of the discipline is transformed (Loertscher et al., 
2014). PBI is a content area ripe for instructional design because 
of known student difficulties with causal mechanisms of how 
noncovalent interactions arise (Becker et al., 2016; Halmo et al., 
2018). Although problems that deal with PBI are difficult and 
challenging for undergraduate students, incoming biochemistry 
students have prior knowledge in biology and chemistry that 
could be activated to help them solve these problem types.

Cross-Disciplinary Research Question
Researchers in both DBER and educational psychology assert 
that direct comparisons of distinct evidence-based pedagogies 
could resolve outstanding questions in each field and enable the 
optimization of student learning of persistently troublesome 
biology concepts. By drawing upon the strengths and shared 
goals of educational psychology and DBER (McDaniel et al., 
2017), we aim to test general learning mechanisms within a 
specific disciplinary context that is persistently troublesome for 
students and, thus, advance both research and practice. Specif-
ically, we address the following research question: What are the 

comparative impacts on student learning of PBI for methods of 
instruction that vary in the nature and timing of guidance, 
namely, worked examples plus practice, productive failure, and 
two forms of guided inquiry?

METHODS
Study Design
We compared the impacts on student learning of four instruc-
tional approaches: worked examples plus practice, productive 
failure, and two forms of guided inquiry (unscaffolded and scaf-
folded guidance). To do this, we recruited students from the 
two prerequisite courses for Introductory Biochemistry and 
Molecular Biology (Introductory Biology and Modern Organic 
Chemistry I). in Spring 2018 and Spring 2019. Due to logistical 
constraints, our study used an unbalanced incomplete block 
design, with semester of data collection (Spring 2018 and 
Spring 2019) serving as the block effect (Figure 2). Our study is 
unbalanced, because there are unequal sample sizes for each 
treatment across blocks. Our study is incomplete, because we 
did not test all treatments in each block: productive failure was 
tested in Spring 2018 and Spring 2019, worked examples plus 
practice and unscaffolded guidance were tested in Spring 2018 
only, and scaffolded guidance was tested in Spring 2019 only. 
Students who agreed to participate and completed a basic 
knowledge pretest were randomly assigned to one of the condi-
tions tested in each block. Each condition involved a 35- to 
45-minute lesson about PBI. After instruction, participants com-
pleted an assessment of basic knowledge and transfer. We 
describe the participants, data collection, and data analysis in 
detail in the following sections.

Participants
Data collection for this study took place over the course of 
two semesters (Spring 2018 and Spring 2019) at a research-in-
tensive university in the southeastern United States. Spring 
2018 participants were enrolled in one of three sections of 
Introductory Biology taught by one professor. Spring 2019 

FIGURE 2. Study design for the comparison of impacts on student learning of four instructional approaches: worked examples plus 
practice, productive failure, unscaffolded guidance, and scaffolded guidance.
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participants were enrolled in either Introductory Biology 
taught by one professor or Modern Organic Chemistry I course 
taught by two different professors. The researchers purposely 
chose to recruit students from Introductory Biology and intro-
ductory Modern Organic Chemistry I. courses at the end of 
the Spring semester, because these courses are required pre-
requisites for introductory biochemistry, and students at the 
end of these courses reflect the incoming biochemistry student 
population.

In Spring 2018, the researchers announced the study to 416 
Introductory Biology students through in-class announcements. 
The instructor also allowed us to contact all 416 students 
through email. One hundred fifty-four of the 416 contacted stu-
dents agreed to participate and completed the basic knowledge 
test (described under Basic Knowledge Test). We excluded data 
for 31 of these students, because they did not complete the 
entire study. One hundred twenty-three (30%) of the 416 con-
tacted students completed the entire study. We randomly 
assigned these participants to one of three instructional condi-
tions: 41 participants to worked examples plus practice, 40 par-
ticipants to productive failure, and 42 participants to unscaf-
folded guidance. The 123 participants who completed the 
entire study received 10 points of extra credit toward their final 
Introductory Biology course grades (2.5% of the total possible 
points) as an incentive.

In Spring 2019, the researchers used in-class announcements 
to announce the study to 931 Introductory Biology and Modern 
Organic Chemistry I students. The instructors allowed us to fol-
low up via email with students who gave us their names and 
email addresses. Two hundred twenty-seven students provided 
their names and email addresses. Ninety-five of the 227 con-
tacted students agreed to participate and completed the basic 
knowledge test. We excluded data for 29 students from analy-
ses, because they did not complete the entire study. Sixty-six 
(29%) of the 227 contacted students completed the entire study. 
We randomly assigned these participants to one of two instruc-
tional conditions: 38 participants to productive failure, and 28 
participants to scaffolded guidance. The 66 participants who 
completed the entire study received $25 cash as an incentive.

The UGA institutional review board approved this study under 
exempt status (STUDY00000660 and PROJECT000000090). 
Demographic information of the participants can be found in 
Supplemental Table 1.

Data Collection
Development of Instructional Materials. The authors devel-
oped all instructional materials. We designed them to help stu-
dents achieve learning objectives pertaining to PBI and focused, 
in particular, on known student difficulties (e.g., Halmo et al., 
2018). The materials are intended for use in introductory bio-
chemistry courses. Three experts who are biochemistry instruc-
tors and discipline-based education researchers provided feed-
back on the worked examples plus practice, productive failure, 
and unscaffolded guidance materials. Three experts on the 
method of guided inquiry, who are also discipline-based educa-
tion researchers, provided feedback on the scaffolded guidance 
instructional materials. We pilot tested the productive failure 
and scaffolded guidance materials in two focus groups. Four 
Introductory Biology students participated in the productive 
failure focus group in Spring 2018, and six Introductory Biology 

students and five Introductory Biochemistry and Molecular 
Biology students participated in the scaffolded guidance focus 
group in Spring 2019. We revised the materials based on expert 
feedback and pilot testing. We provide the finalized lesson 
materials used in this study, including handouts, instructor 
slides, and notes in the Supplemental Material.

Instructional Conditions. To compare the impact of worked 
examples plus practice, productive failure, unscaffolded guid-
ance, and scaffolded guidance, we randomly assigned partici-
pants to one of the conditions tested in each block. Each lesson 
lasted 35–45 minutes and took place in a SCALE-UP classroom 
(Beichner and Saul, 2003). SCALE-UP classrooms have several 
round tables with nine seats per table and are designed to facil-
itate student–instructor and student–student interactions. One 
of the authors (P.P.L.) taught all three lessons in Spring 2018, 
while a different instructor (trained by S.M.H.) taught both les-
sons in Spring 2019. We randomly assigned participants in each 
session to seats in the SCALE-UP classroom. The materials used 
and type of instruction experienced by participants differed 
depending on the instructional condition:

•	 Worked examples plus practice condition: The instructor 
reviewed the learning objectives, introduced participants to 
a problem, and presented a worked example solution to the 
problem (i.e., an explicit explanation). She then gave partic-
ipants time to practice a similar problem independently for 
several minutes, and then asked them to compare their solu-
tions with the two people sitting closest to them. The instruc-
tor did not assist participants during independent problem 
solving or group sharing. In total, participants went through 
two rounds of this worked example–problem practice 
pairing.

•	 Productive failure condition: The instructor reviewed the 
learning objectives and introduced participants to the same 
four problems that the worked examples plus practice par-
ticipants practiced. However, the instructor provided no 
solution. Instead, she asked students to explore the prob-
lems with the participants at their table by comparing and 
contrasting the problems and generating as many possible 
solutions as they could (i.e., prompts). During this explora-
tion, the instructor and two peer learning assistants in 2018 
(one in 2019) walked around the room and noticed student 
work. They did not comment on the correctness of students’ 
ideas or direct them to a solution. Instead, they repeatedly 
asked students to explain what they were doing and pushed 
them to expand their thinking to all four problems. The 
instructor and peer learning assistants quickly conferred on 
the common ideas students were expressing. Then, after 
problem exploration, the instructor commented and built 
upon students’ ideas (Loibl et al., 2017). For example, the 
instructor and peer learning assistants noticed that students 
frequently compared the differences among having C, H, N, 
or O atoms in an amino acid R group. The instructor pointed 
this out to students and said, “That’s a good problem-solving 
step. The way to think about differences among atoms for 
this problem is to consider their differences in electronega-
tivity and what this means in terms of full/partial and per-
manent/temporary charges.” After building on students’ 
solutions, the instructor presented two back-to-back worked 
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examples (the same ones from the worked examples plus 
practice condition).

•	 Unscaffolded guidance condition: In this condition, the 
instructor and two peer learning assistants provided guid-
ance, but the instructional materials were not scaffolded 
(i.e., did not have supports that faded away as knowledge 
was built). We chose this approach to implement a guid-
ed-inquiry condition that was comparable to worked exam-
ples plus practice and productive failure in the number of 
problems covered and in overall session length. Thus, after 
the instructor reviewed the learning objectives, she gave par-
ticipants the same four problems that the worked examples 
plus practice and productive failure participants received. 
However, she did not provide any solutions in the form of 
worked examples, and participants had the entire class 
period to work on the four problems with people at their 
tables. During this work time, the instructor and two peer 
learning assistants circulated and addressed participants’ 
questions. The instructor/peer learning assistants aimed to 
provide support based on a students’ prior knowledge. When 
interacting with students, they first diagnosed the students’ 
prior knowledge (e.g., by looking at participants’ work or 
asking them to explain their thinking). If possible, the 
instructors/peer learning assistants provided simple prompts 
(e.g., “Look at this aspect of the problem.”), but if partici-
pants’ prior knowledge was more limited, they provided 
explicit guidance (e.g., explanations of a concept). For 
example, if a student was stuck on hydrogen bonds, the 
instructor would ask probing questions like, “What is a 
hydrogen bond?” Next, the instructor might ask leading 
questions such as, “Do hydrogen bonds involve charges? If 
so, where do they come from?” At that point, if it was clear 
that participants had the knowledge they needed to pro-
ceed, the instructor would leave them to work. However, if 
it was clear that participants were unfamiliar with key ideas, 
the instructor would provide an explicit explanation. Any-
time an explicit explanation was provided, participants were 
encouraged to use that explanation to help their work on 
subsequent problems.

•	 Scaffolded guidance condition: In this condition, the 
instructor and four peer learning assistants provided guid-
ance, and the instructional materials were scaffolded (i.e., 
had supports that faded away as knowledge was built). We 
chose this approach to implement a guided-inquiry condi-
tion that was comparable to worked examples plus practice 
and productive failure in session length, yet presented stu-
dents with problems that progressed from simple to com-
plex. The instructional materials included a total of 24 
problems. These 24 problems encompassed the same four 
problems that participants in other conditions saw, but the 
problems were strategically broken down into component 
parts that built on one another. By the end of the problem 
set, students were solving a problem without any support. To 
start the session, the instructor reviewed the learning objec-
tives. Then she gave participants the entire instruction time 
to work on the problem set with the participants at their 
tables. During this work time, the instructor and four peer 
learning assistants circulated the room and addressed partic-
ipants’ questions. They followed the same principles of inter-
action as the unscaffolded guidance condition.

Assessments of Student Learning. We used three assessments 
of student learning, which are described in the following sec-
tions. We administered all assessments through the Qualtrics 
(SAP, Walldorf, Baden-Württemberg, Germany) online survey 
platform. We provide all assessment items used in this study in 
the Supplemental Material.

Basic Knowledge Test. The basic knowledge test was developed 
as part of a separate longitudinal study on student learning 
(same institution, N = 913). The test consists of 19 multi-
ple-choice and multiple true-false items and addresses key ter-
minology, the use of terms in context, and interpretation of 
common visual representations associated with PBI. We present 
five of the 19 items in Figure 3A and the full 19-item test in the 
Supplemental Material. A key for this test is available from P.P.L. 
upon request. We scrutinized the psychometric properties of the 
test, including dimensionality and reliability (unpublished 
data). In so doing, we used an item response theory (IRT) 
model. IRT is a probabilistic approach wherein a correct 
response to an item is defined as a function of person (i.e., abil-
ity) and item parameters based on unidimensionality and local 
independence assumptions (Embretson and Reise, 2000). We 
used a two-parameter logistic model. In the two-parameter 
logistic (2-PL) model, the correct response to an item is defined 
as a function of the student’s ability and the item’s difficulty 
level and discrimination power. The BILOG software was used 
to estimate person and item parameters (Zimowski et al., 
1996). Results showed that the empirical reliability was accept-
able at a value of 0.67 (Kline, 2000; Du Toit, 2003). We used 
the obtained item parameters from this 2-PL model to estimate 
students’ ability in the current study. For the current study, par-
ticipants completed the basic knowledge test before and after 
instruction (Figure 2). Participants took the pretest on their 
own time. Participants took the posttest immediately after 
instruction in the same classroom where they received instruc-
tion. The pretest and posttest were identical, except they 
referred to proteins that differ in appearance (i.e., Protein Z for 
the pretest and Protein X for the posttest).

Near-Transfer Problems. The three near-transfer problems used 
in this study are based on the Protein X problem published in 
Halmo et al. (2018) and were further revised based on inter-
views with one Introductory Biology student and two Introduc-
tory Biochemistry and Molecular Biology students in Spring 
2016. These problems require students to make a prediction 
and explain that prediction (Figure 3B and Supplemental Mate-
rial). As a reliability measure, we calculated Cronbach’s alpha 
between the three problems to be 0.75, which indicated good 
internal consistency (Kline, 2000). The near-transfer problems 
resemble the problems used during instruction, but present pro-
teins that differ in appearance and involve different amino 
acids. Participants completed the near-transfer problems imme-
diately after instruction following the basic knowledge posttest 
(Figure 2). The near-transfer problems were presented to stu-
dents in random order.

Far-Transfer Problems. The authors developed three far-transfer 
problems based on the previous work of Werth (2017). Six 
Introductory Biology students and five Introductory Biochemis-
try and Molecular Biology students in a Spring 2019 focus 



CBE—Life Sciences Education • 19:ar41, Fall 2020 19:ar41, 7

Advancing the Guidance Debate

group provided feedback on the far-transfer problems, and we 
revised the problems as needed. These problems require stu-
dents to make a prediction and explain that prediction (Figure 
3C and Supplemental Material). These far-transfer problems 
draw upon the same conceptual knowledge as the near-transfer 
problems, but the context differs from the problems provided 
during instruction and thus requires a different solution struc-
ture. As for the near-transfer problems, we used Cronbach’s 
alpha as a reliability measure. Cronbach’s alpha (0.78) indi-
cated good internal consistency (Kline, 2000). Due to the logis-
tical constraints described earlier, only Spring 2019 participants 
(not Spring 2018 participants) completed the far-transfer prob-
lems, and they did so immediately after instruction (Figure 2).

Data Analysis
We downloaded from Qualtrics (SAP, Walldorf, Baden-Württem-
berg, Germany) all participant responses to the assessment items. 
We collected data on the basic knowledge pre- and posttests and 
written responses to the near- and far-transfer problems.

Scoring of Basic Knowledge Test. As described in the previ-
ous section, we used the 2-PL IRT model to estimate item 
parameters with responses from 913 students. We estimated 
students’ ability for pre- and posttest in this study using those 
item parameters. The ability parameter in the IRT model can be 

interpreted as a z-score (M = 0; SD = 1). Hereafter, we refer to 
students’ ability estimates as “basic knowledge performance.”

Analytical Coding of Near- and Far-Transfer Written 
Responses. Three of the authors (S.M.H., P.R., and O.S.) first 
read all written responses from both rounds of data collection. 
We developed an analytical codebook, informed by knowledge 
of published descriptions of student thinking about PBI 
(Loertscher et al., 2014; Cooper et al., 2015; Becker et al., 2016; 
Halmo et al., 2018), to capture common ideas. The authors 
(S.M.H., P.R., and O.S.) who served as coders and developers of 
the codebook were blind to condition during this phase of the 
research. We independently applied codes from the codebook to 
the written responses in a deductive manner and inductively 
created new codes as needed. The researchers then deductively 
applied these new codes to all written responses. The finalized 
codebook was applied to all written responses by two coders 
(S.M.H. and P.R.). After independent coding, we calculated 
intercoder reliability for all codes used in subsequent analyses 
(described in the next paragraph) using Cohen’s kappa (Gisev 
et al., 2013). Cohen’s kappa coefficients ranged from 0.21 to 
0.96 for near-transfer coding and from 0.45 to 0.93 for far-trans-
fer coding. The overall average Cohen’s kappa values for 
near-transfer and far-transfer coding were 0.74. and 0.76, 
respectively, which both indicated substantial agreement 

FIGURE 3. Three measures of student learning of PBI. Selected items from the basic knowledge posttest (A) and examples of a near-trans-
fer problem (B) and a far-transfer problem (C) used in this study.
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(Viera and Garrett, 2005). The researchers discussed all dis-
crepancies in coding until complete agreement was reached. We 
provide the finalized analytical codebook for each problem in 
the Supplemental Material.

After the written responses were coded to consensus, three of 
the authors (S.M.H., P.R., and P.P.L.) and a team of undergradu-
ate researchers developed a rubric that enabled us to assign a 
score to each near- and far-transfer problem based on the analyt-
ical codebook. The researchers involved in this scoring process 
were blind to condition. The scoring rubric for each problem is 
available in the Supplemental Material. The rubric captured the 
quality and correctness of predictions and the supporting evi-
dence. The rubric also credited participants for attempting to 
support a prediction with evidence regardless of the quality or 
correctness of the prediction and evidence provided. More spe-
cifically, we awarded up to three points based on the quality and 
correctness of the prediction. We awarded up to three points 
based on the quality and correctness of the evidence. We 
awarded up to one point if both a prediction and evidence were 
provided, regardless of whether either was correct. We applied 
the scoring rubrics to all analytically coded written responses, 
resulting in a score from zero to seven for every written response 
item. To calculate overall near- and far-transfer performance, we 
summed the scores on the three problems for each participant 
and divided that sum by the highest possible score, generating 
an overall near- and far-transfer score.

FIGURE 4. Basic knowledge posttest performance by instruction type. For each box-and-
whisker plot, the black horizontal line represents the median basic knowledge posttest 
performance (unadjusted for pretest performance), the hinges represent the first and third 
quartiles, and the whiskers extend to the highest and lowest values that are within 1.5 
times the interquartile range of the hinge. Dots represent individual participants, and 
values can be interpreted as a z-score (M = 0; SD = 1). Positive and negative values do not 
indicate learning and no learning, respectively. Rather, positive values indicate that a 
student performed above the population mean of the 913 students included in IRT 
analyses, while negative numbers indicate a student performed below the population 
mean. WE, worked examples plus practice; PF, productive failure; UG, unscaffolded 
guidance; SG, scaffolded guidance.

Statistical Analyses
We separately analyzed basic knowledge posttest perfor-
mance, near-transfer performance, and far-transfer perfor-
mance. We set our alpha level at 0.05 for these three indepen-
dent statistical tests. We analyzed basic knowledge posttest 
performance using a type II sum of squares analysis of covari-
ance (ANCOVA), with semester of data collection serving as 
the block effect, basic knowledge pretest performance as a 
covariate, and instructional condition as the independent 
variable. We analyzed near-transfer performance using a type 
II sum of squares ANCOVA, with instructional condition as the 
between-subject variable, semester of data collection serving 
as the block effect, and basic knowledge pretest performance 
as the covariate. We analyzed far-transfer performance using 
type II sum of squares ANCOVA, with instructional condition 
as the between-subject variable and basic knowledge pretest 
performance as the covariate. When instruction type had a 
significant effect on the omnibus test (p < 0.05), Tukey’s least-
squares means post hoc test was used to perform multiple 
comparisons. We determined the estimates of adjusted group 
mean differences to be statistically significant if p < 0.05. To 
calculate effect sizes for significant differences, we estimated 
Cohen’s d by dividing the adjusted group mean difference by 
the square root of the MSError from the analysis of covariance. 
All statistical analyses were conducted in R (R Core Team, 
2019).

RESULTS
Prior Knowledge, Not Method of 
Instruction, Predicts Performance 
on the Basic Knowledge Test
We first evaluated whether there was a dif-
ference on pretest performance among 
instructional conditions. analysis of vari-
ance results indicated no significant differ-
ences on pretest performance among the 
four conditions, F(3, 184) = 0.19, p = 0.90. 
Previous work showed that worked exam-
ples plus practice, productive failure, and 
guided inquiry all enhance student learn-
ing. Thus, we did not expect differential 
advantages of different instructional 
methods on basic knowledge posttest per-
formance. As anticipated, no instructional 
group outperformed the others on the basic 
knowledge posttest (Figure 4). The means 
for posttest performance (adjusted for pre-
test performance) were −0.48 for partici-
pants in the worked examples plus practice 
condition, −0.61 for participants in the pro-
ductive failure condition, −0.48 for partici-
pants in the unscaffolded guidance condi-
tion, and −0.68 for participants in the 
scaffolded guidance condition (Table 1). 
The negative values do not indicate that no 
learning occurred (see Supplemental Table 
2). The negative values only indicate that 
students in the current study performed 
below the population mean of the 913 stu-
dents used for IRT analysis (see Methods). 
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More than Unscaffolded Guidance Is Needed 
for Near-Transfer Problem Solving
While we found no significant effect of instructional condition on 
basic knowledge posttest performance, we did find a significant 
effect of instructional condition on near-transfer problem solving 
(Figure 5). Specifically, worked examples plus practice, produc-
tive failure, and scaffolded guidance outperformed unscaffolded 
guidance on near-transfer problem solving. The mean near-trans-
fer score was 0.63 for worked examples plus practice, 0.58 for 
productive failure, 0.44 for unscaffolded guidance, and 0.66 for 
scaffolded guidance participants (Table 2). For near-transfer per-
formance, we first tested to see whether there were significant 
interaction effects between condition and pretest performance. 
The interaction effect was not significant, F(3, 180) = 1.62, p = 
0.19, so we removed the interaction from the model and report 
the ANCOVA results without the interaction. Using a type II 
ANCOVA with semester of data collection as a block effect and 
basic knowledge pretest performance as a covariate, we found a 
significant effect of instruction type on near-transfer prob-
lem-solving performance, F(3, 183) = 5.36, p = 0.001. Post hoc 

comparisons using the least-squares means 
Tukey adjusted test indicate that the mean 
near-transfer problem-solving performance 
for the unscaffolded guidance condition 
was significantly lower than the worked 
examples plus practice condition (d = 0.72), 
the productive failure condition (d = 0.65), 
and the scaffolded guidance condition (d = 
1.08; Table 3). Basic knowledge pretest per-
formance significantly affected near-trans-
fer problem-solving performance, F(1, 183) 
= 4.21, p = 0.04, whereas semester block 
did not significantly affect near-transfer 
problem-solving performance, F(1, 183) = 
1.43, p = 0.23. Additionally, when the 
near-transfer scores were filtered to look at 
participants in the productive failure condi-
tion only, the semester block (either Spring 
2018 or Spring 2019) did not have a signif-
icant effect on near-transfer performance, 
F(1, 76) = 0.96, p = 0.33, suggesting no 
semester block differences. This result sug-
gests that more than unscaffolded guidance 
is needed to help learners solve problems 
similar to those seen in instruction.

Different Types of Failure Do Not 
Differentially Impact Far-Transfer 
Problem Solving
Given that more than unscaffolded guid-
ance is needed for near-transfer problem 

For basic knowledge posttest performance, we first tested to see 
whether there were significant interaction effects between condi-
tion and pretest performance. The interaction effect was not sig-
nificant, F(3, 180) = 2.49, p = 0.06, so we removed the interac-
tion from the model and report the ANCOVA results without the 
interaction. Specifically, using a type II ANCOVA, we found no 
significant effect of instruction type on basic knowledge posttest 
performance, F(3, 183) = 0.48, p = 0.69. We also found no signif-
icant effect of semester of data collection on basic knowledge 
posttest performance, F(1, 183) = 1.12, p = 0.29. Additionally, 
when the data were filtered to look at participants in the produc-
tive failure condition only, the semester block (either Spring 
2018 or Spring 2019) did not have a significant effect on posttest 
performance, F(1, 76) = 0.52, p = 0.48, suggesting no semester 
block differences. However, there was a significant effect of basic 
knowledge pretest performance on basic knowledge posttest 
performance, F(1, 183) = 16.68, p < 0.001. In sum, worked 
examples plus practice, productive failure, unscaffolded guid-
ance, and scaffolded guidance did not differentially impact basic 
knowledge posttest performance (Figure 4).

TABLE 1. Basic knowledge posttest performance means and 
standard deviations adjusted for pretest performance

Instruction Mean SD

Worked examples plus practice (n = 41) −0.48 0.74

Productive failure (n = 78) −0.61 0.60
Unscaffolded guidance (n = 42) −0.48 0.74

Scaffolded guidance (n = 28) −0.68 0.70

TABLE 2. Near-transfer performance unadjusted means and 
standard deviations

Instruction Mean SD

Worked examples plus practice (n = 41) 0.63 0.28

Productive failure (n = 78) 0.58 0.28
Unscaffolded guidance (n = 42) 0.44 0.24

Scaffolded guidance (n = 28) 0.66 0.20

FIGURE 5. Near-transfer problem-solving performance by instruction type. For each 
box-and-whisker plot, the black horizontal line represents the median near-transfer 
performance (unadjusted for pretest performance), the hinges represent the first and third 
quartiles, and the whiskers extend to the highest and lowest values that are within 1.5 
times the interquartile range of the hinge. Dots represent individual participants.WE, 
worked examples plus practice; PF, productive failure; UG, unscaffolded guidance; SG, 
scaffolded guidance.
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solving, we investigated how the other forms of instruction 
impacted far-transfer problem solving. Only participants in 
Spring 2019 were asked to solve far-transfer problems, and we 
did not recruit enough participants in Spring 2019 to test three 
conditions. Therefore, we elected to test productive failure and 
scaffolded guidance, but not worked examples plus practice, 
because it was unknown whether productive failure and guided 
inquiry differentially impact far-transfer problem solving 
(Kapur, 2016). In our experiment, scaffolded guidance and pro-
ductive failure did not differentially impact far-transfer perfor-
mance. The mean far-transfer score was 0.51 for participants in 
the productive failure condition and 0.58 in the scaffolded guid-
ance condition (Table 4). For far-transfer performance, we first 
tested to see whether there were significant interaction effects 
between condition and pretest performance. The interaction 
effect was not significant, F(1, 62) = 0.83, p = 0.37, so we 
removed the interaction from the model and report the ANCOVA 
results without the interaction. Using a type II ANCOVA with 
basic knowledge pretest performance as a covariate, we found 
no significant effect of instruction type, F(1, 63) = 0.96, p = 
0.33, or basic knowledge pretest performance, F(1, 63) = 0.06, 
p = 0.81, on far-transfer performance. Our data suggest that 
explicit guidance after problem solving (i.e., productive failure) 
and guidance distributed throughout problem solving in the 
form of scaffolded materials and instructor support (i.e., scaf-
folded guidance) do not differentially impact far-transfer prob-
lem solving.

LIMITATIONS
Readers should consider the following limitations when evalu-
ating our findings. First, the nature of the participant recruit-
ment and data collection in this study led to an incomplete 
block design. While every instruction type was not represented 
in each block, there was overlap from Spring 2018 to Spring 
2019 of the productive failure instructional condition. We 
accounted for block in our statistical analyses and found no 
significant differences. A second limitation related to the first is 
that low recruitment in Spring 2019 necessitated a reduction in 
the number of treatments for that block. The research team pri-
oritized the testing of productive failure and scaffolded guid-
ance, which prevented us from investigating worked examples 

plus practice in our analysis of far-transfer performance. 
Researchers hypothesize that worked examples plus practice 
may lead to lower performance on far transfer compared with 
productive failure or scaffolded guidance (Kapur, 2016). Future 
research should test this hypothesis. Third, we were limited by 
sample size. One hundred eighty-nine (14%) of the 1347 stu-
dents recruited to participate in the study actually participated, 
suggesting the students who did participate may have differed 
from a typical student population. For example, our sample was 
disproportionately female (see Supplemental Material). In 
addition, the average posttest scores were below the mean for 
the instrument (see Table 1), suggesting the students in this 
sample differ from the students used in the 2-PL IRT model. 
One possible explanation for the below-average basic knowl-
edge scores is the fact that participants in this study took the 
test outside class time, whereas participants whose data were 
used to generate the 2-PL IRT model took the test during class 
time and therefore might have taken it more seriously. Also, we 
cannot rule out the possibility that the students who did partic-
ipate may have had greater motivation for learning the material 
or for the extrinsic rewards offered as incentives. Therefore, 
future work should investigate similar research questions in an 
authentic classroom setting. Additionally, given the sample size 
constraint, a sensitivity power analysis with alpha set to 0.05 
and power set to 0.85 reveals a minimal detectable effect of 
0.26 for the basic knowledge and near-transfer analyses and a 
minimal detectable effect of 0.37 for the far-transfer analysis, 
indicating that we could at minimum detect a medium (0.25–
0.40) or large (>0.40) effect. Smaller differential effects may 
exist, but we did not have the statistical power in our data set 
to detect them. Replicating the study with an increased sample 
size could resolve this issue. Fourth, to minimize participant 
burden and increase compliance, we administered assessments 
immediately following instruction. Therefore, we cannot 
answer the question of whether the results obtained persisted 
for longer periods of time. Fifth, our measures of basic knowl-
edge, near transfer, and far transfer may not have been sensi-
tive enough to detect differences that did exist. Finally, we 
investigated only one content area (PBI), so our claims are not 
generalizable to other content areas.

DISCUSSION
Given the calls for second-generation research on active learn-
ing (Freeman et al., 2014) and cross-disciplinary collaborations 
between biology education and educational psychology 
(McDaniel et al., 2017), we set out to determine the compara-
tive impacts of worked examples plus practice, productive fail-
ure, and two forms of guided inquiry (i.e., unscaffolded and 
scaffolded guidance) on student learning of a challenging 

TABLE 3. Pairwise comparisons of near-transfer performance means adjusted for pretest performance

Comparison
Adjusted mean 

difference SE p value
Effect size 

(Cohen’s d)

Productive failure–scaffolded guidance −0.11 0.06 0.32
Productive failure–unscaffolded guidance 0.17 0.06 0.02* 0.65
Productive failure–worked examples plus practice −0.02 0.06 0.99
Scaffolded guidance–unscaffolded guidance 0.28 0.09 0.008* 1.08
Scaffolded guidance–worked examples plus practice 0.10 0.09 0.71
Unscaffolded guidance–worked examples plus practice −0.18 0.06 0.007* 0.72

TABLE 4. Far-transfer performance unadjusted means and 
standard deviations

Instruction Mean SD

Productive failure (n = 38) 0.51 0.25

Scaffolded guidance (n = 28) 0.58 0.24
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concept in biochemistry, PBI. We discuss our findings in the con-
text of past research, explore their significance, and propose 
future directions.

The Nature and Timing of Guidance May Not Matter for 
Near Transfer
We show that multiple, but not all, instructional methods can 
achieve comparable learning gains. Prior research on worked 
examples plus practice, productive failure, and guided inquiry 
suffered from the use of weak controls (e.g., minimal guidance 
or weaker forms of explicit instruction such as lecture only; 
Glogger-Frey et al., 2015; Kapur, 2016). Pedagogies with some 
form of guidance unsurprisingly outperformed those with no 
guidance (Mayer, 2004), but how do guided pedagogies mea-
sure up to one another? Until now, the literature lacked a direct 
comparison of worked examples plus practice, productive fail-
ure, and guided inquiry (Figure 1). In this work, we conducted 
a head-to-head comparison to show that worked examples plus 
practice, productive failure, unscaffolded guidance, and scaf-
folded guidance led to comparable basic knowledge outcomes 
(Figure 4). We also show that worked examples plus practice, 
productive failure, and scaffolded guidance led to comparable 
near-transfer problem solving that is significantly better than 
unscaffolded guidance (Figure 5). Finally, we show that produc-
tive failure and scaffolded guidance produced comparable 
far-transfer problem solving (Figure 6). These novel findings 
shed light on the debate in educational psychology about the 
nature and timing of guidance (Kirschner et al., 2006; Hme-
lo-Silver et al., 2007; Kapur, 2016) and suggest that instructors 
have some flexibility in choosing among the tested approaches.

We did not detect differences among worked examples plus 
practice, productive failure, or scaffolded guidance on 
near-transfer performance. Likewise, for far transfer, we did not 
detect differences in learning for productive failure compared 
with scaffolded guidance. Taken together, these findings sug-
gest that at least near transfer can be achieved whether the 
nature of guidance involves explicit explanations (i.e., worked 
examples plus practice and productive failure) or scaffolded 
instructional materials (i.e., scaffolded guidance). Transfer can 
also be achieved whether guidance is early, late, or distributed 
throughout problem solving, although future research should 
compare worked examples plus practice, productive failure, 
and scaffolded guidance for far-transfer problem solving (Kapur, 
2016).

We stress one important caveat regarding the nature of guid-
ance. If guided inquiry is used, scaffolded instructional materials 
seem to be important. Our scaffolded guidance materials 
sequenced problem solving into increasingly complex ques-
tions, while the unscaffolded guidance condition simply pro-
vided problems for participants to solve. Even though the 
unscaffolded guidance condition was designed to provide just-
in-time support, perhaps this was not sufficient, because only 
some students requested help, and there were not enough 
members of the instructional team to help students break down 
the problem into components pieces. The unscaffolded guid-
ance condition involved two learning assistants, while the scaf-
folded guidance condition involved four learning assistants. 
Unscaffolded guidance can occur unintentionally among 
instructors who aim to create active-learning environments. 
These instructors may give students problem sets, but not break 

them down into manageable chunks that 
lead students from simple to complex 
thinking. This could happen even if 
instructors stop lecturing and give stu-
dents plenty of time to work in class. Along 
these lines, note that our implementation 
of unscaffolded guidance would be cate-
gorized as student centered by the Class-
room Observation Protocol for Undergrad-
uate STEM (COPUS) protocol (Smith 
et al., 2013; Lund et al., 2015), multi-
ple-voice by the Decibel Analysis for 
Research in Teaching (DART) method 
(Owens et al., 2017), and high structure 
(Eddy and Hogan, 2014). Unscaffolded 
guidance participants engaged in problem 
solving for nearly the entire class period, 
supported by an instructor and two learn-
ing assistants. Despite this design, 
near-transfer learning for the unscaffolded 
guidance condition was inferior to the 
three conditions receiving more guidance.

The general comparability of pedagog-
ical approaches observed in the present 
study is somewhat surprising given the 
heated debates among their proponents. 
However, all the pedagogies tested have 
been shown to positively impact learning, 
so maybe their differences are not as 
important as was previously suspected. 

FIGURE 6. A comparison of far-transfer problem-solving performance between produc-
tive failure (PF) and scaffolded guidance (SG). For each box-and-whisker plot, the black 
horizontal line represents the median far-transfer performance (unadjusted for pretest 
performance), the hinges represent the first and third quartiles, and the whiskers extend 
to the highest and lowest values that are within 1.5 times the interquartile range of the 
hinge. Dots represent individual participants.
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Alternatively, the instructional approaches we implemented 
may not differ enough from one another. We may have inad-
vertently omitted critical features from one or more of the 
methods that would have led to differential impacts on near- 
or far-transfer problem solving. For example, perhaps unscaf-
folded guidance could be successful if the number of learning 
assistants was increased. Another alternative explanation is 
that the dosage of instruction was not adequate. We might 
have detected differences if the instructional sessions lasted 
longer or if instruction spanned over multiple lessons, 
although a previous meta-analysis on instructional guidance 
indicates that the length of an instructional study does not 
impact its effect size (Lazonder and Harmsen, 2016). Finally, 
the limitations of our study may mask differential impacts (see 
Limitations).

Implications for Active-Learning Instructors
Instructors new (and even somewhat new) to active learning 
frequently want to know whether one instructional method is 
better than another or whether there are things not to do. Our 
data provide much-needed guidance for these instructors. First, 
our data suggest that some variability in the nature and timing 
of guidance may be just fine for student learning. For example, 
instructors who struggle to see themselves going from straight 
lecture classrooms to guided inquiry (in which most of the class 
period is spent in student work) may find productive failure as a 
potentially easier transition that appears to be equally effective. 
With productive failure, an instructor must carefully craft a chal-
lenging problem for the start of class and follow it by connecting 
students’ solutions with the varieties of ways experts solve the 
problems (Kapur, 2016; Loibl et al., 2017). Crafting these prob-
lems may be challenging for a new active-learning instructor, 
but explicitly explaining the problem to students should feel 
familiar. Second, our data suggest that unscaffolded guidance 
should be avoided. Even though unscaffolded guidance looks 
and feels like active learning, it did not maximize near-transfer 
problem solving in our study. Getting students talking and work-
ing more in class, while a great first start, is not sufficient to 
implement successful active learning. Instructors may experi-
ence less than optimal student outcomes if they only add clicker 
questions or challenging problems to their lessons. Instead, 
instructors should aim to create well-scaffolded lesson materials 
that break problems down into manageable pieces, sequence 
them carefully from the start to finish of a lesson, and consider 
how they will introduce and follow up questions. Finally, and 
unsurprisingly, what students know coming into a classroom 
setting matters, and instructors should remember that eliciting 
students’ prior knowledge is a worthwhile endeavor.

Potential Implications for Classroom Climate 
and Other Noncognitive Factors
Although our study did not investigate classroom climate or 
other noncognitive factors, future research should take these 
factors into consideration. First, different instructional methods 
may be better suited for building classroom equity. Classroom 
equity refers to promoting fairness in the classroom so that all 
students have the opportunity to participate, think, pose ideas, 
construct their knowledge, and feel welcomed into the intellec-
tual discussion (Tanner, 2013; Miller and Tanner, 2015). In our 
study, only the scaffolded guidance condition provided all 

students with access to guidance from instructional materials 
along with opportunities to construct knowledge through inter-
actions facilitated by the instructional team. Worked examples 
plus practice and productive failure provided all students with 
guidance through the problem-solving process. However, stu-
dents had limited opportunities to pose ideas or to receive feed-
back from the instructor. On the other hand, the unscaffolded 
guidance condition provided all students with the chance to 
pose ideas and questions, construct knowledge, and participate 
in intellectual discussion. Yet the instructional materials them-
selves offered no guidance, only prompts to solve a challenging 
problem. These differences may impact students’ perceptions of 
classroom equity. Second, various instructional methods may 
differentially interact with noncognitive aspects of student 
development. The amount of struggle and level of challenge 
that students experience in worked examples plus practice, pro-
ductive failure, and guided inquiry likely varies. Worked exam-
ples plus practice reduces challenge and provides explicit expla-
nations and support, so little to no struggle is experienced. In 
contrast, productive failure and guided inquiry force students to 
struggle with the material and even to fail at solving problems 
correctly. Noncognitive aspects of student development that 
may interact with these instructional methods include, but are 
not limited to, motivation to learn, self-efficacy, and resilience 
(Trujillo and Tanner, 2014; England et al., 2019; Henry et al., 
2019). A potentially fruitful area of research would be to com-
pare the impacts of each method on classroom equity and other 
noncognitive factors.

CONCLUSIONS
This work serves as a model of research that draws from theoret-
ical and empirical work in educational psychology to inform 
classroom practice in biology, while refining context-specific 
boundaries for worked examples plus practice, productive fail-
ure, and guided-inquiry approaches. Importantly, this work pro-
vides the first direct comparison of these approaches while 
simultaneously extending previous work on these pedagogies to 
the conceptual domain of biochemistry. The biochemistry lesson 
materials developed for this study target known student difficul-
ties and help students craft explanations for near- and far-trans-
fer problems. While this work advances both the fields of educa-
tional psychology and DBER, there is still more cross-disciplinary 
work to be done. Lessons developed here can be further 
improved by incorporating other known principles from educa-
tional psychology, like drawing to learn (Van Meter and Garner, 
2005; Ainsworth et al., 2011; Quillin and Thomas, 2015; Fiorella 
and Zhang, 2018). Additionally, future work can address the 
question of who benefits most from these different pedagogies.
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