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ARTICLE

ABSTRACT
The next generation of life science professionals will require far more quantitative skills 
than prior generations. Calculus is important for understanding dynamical systems in biol-
ogy and, therefore, is often a required course for life science students. However, many life 
science students do not understand the utility value of mathematics to biology. Therefore, 
according to expectancy-value theory, life science students may experience lower moti-
vation, which can impact their performance in a calculus course. This study examines how 
two different biocalculus courses, which integrated calculus and biological concepts and 
successfully halved the rates of students earning a D, F, or withdrawing (DFW), affected life 
science students’ utility value, interest, and overall attitudes toward mathematics. Using 
pre and post surveys, we found that students’ interest in mathematics increased by the 
end of the semester, and they demonstrated a more sophisticated understanding of how 
mathematics is used in biology. Students whose attitudes toward mathematics improved 
primarily attributed these changes to a better understanding of the utility of mathematics 
to biology, feelings of competence in mathematics, or rapport with the instructor. Thus, 
communicating the utility value of mathematics to biology through integrated mathemat-
ics–biology courses can contribute to improved attitudes toward mathematics that can 
impact students’ motivation and performance.

INTRODUCTION
Due to an increasing demand for quantitative skills among life scientists, undergradu-
ates in biology today need to demonstrate competency in a variety of quantitative 
skills (National Research Council [NRC], 2003; Steen, 2005; Association of American 
Medical Colleges–Howard Hughes Medical Institute [AAMC-HHMI], 2009; American 
Association for the Advancement of Science [AAAS], 2011). These skills include the 
ability to create and interpret graphs, the ability to statistically analyze data, and the 
ability to mathematically model systems (NRC, 2003; AAMC-HHMI, 2009; AAAS, 
2011). Because biological systems are dynamic, calculus plays a key role in the mod-
eling of biological systems. For example, calculus is used in population growth models 
to account for complex demography (Ellner and Rees, 2006), in Susceptible-Infec-
tious-Removed (SIR) models to understand disease spread (e.g., Buceta and Johnson, 
2017), and in tumor growth and metastasis models (e.g., Bilous et al., 2019). There-
fore, many life science students are required to take a calculus course to satisfy their 
major or pre-med requirements.

However, life science students are often perceived to be math averse and, therefore, 
may be less than enthusiastic about taking a calculus course. Although recent work did 
not demonstrate particularly poor motivational attitudes among life science majors 
toward the use of mathematics in biology courses, it did reveal a tremendous amount 
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of variation in these attitudes (Andrews and Aikens, 2018). For 
example, Andrews and Aikens (2018) found that, although the 
average score for students’ interest in using mathematics to 
understand biology was 4.5 on a scale from 1 to 7, 1 SD around 
the mean encompassed values from 2.8 to 6.2. Additionally, 
one-third of life science students reported high cost (anxiety 
and effort) of using mathematics in biology courses. Thus, a 
significant portion of life science students likely enter a calculus 
course with little interest and some anxiety. Compounding the 
problem, if calculus courses do not connect the concepts to bio-
logical applications, life science students may complete the 
course without an understanding of why calculus is even 
required for their major or pre-professional program, making 
the course feel like a hurdle to overcome rather than a valued 
learning experience.

Integrated science, technology, engineering, and mathemat-
ics (STEM) courses can improve life science students’ affect 
toward other STEM disciplines. For example, life science stu-
dents in Introductory Physics for Life Science (IPLS), a course 
designed to relate principles of physics to biological concepts, 
reported an increase in their interest in physics at the end of the 
semester (Crouch et al., 2018). Students who have taken IPLS 
report that the biological applications are interesting and rele-
vant to their future careers (Meredith and Bolker, 2012; Crouch 
et al., 2018). In particular, students report that the physics prob-
lems related to biological concepts they have previously encoun-
tered in their biology classes are the most interesting, because 
such problems allow them to see the connections between 
physics and their biology course work (Geller et  al., 2018). 
Therefore, one approach to improving life science students’ atti-
tudes toward mathematics, and calculus in particular, is to 
teach calculus through an integrated biocalculus course in 
which calculus concepts are applied to biological problems.

Recognizing the value of teaching calculus within a biologi-
cal context, a number of biocalculus textbooks and courses 
have been developed (e.g., Adler, 2012; Comar, 2013; Uhl and 
Holdener, 2013; Bodine et  al., 2014; Neuhauser and Roper, 
2018). However, few studies have examined the extent to 
which an integrated biocalculus course can improve life sci-
ence students’ attitudes toward mathematics. In this study, we 
report on students’ affective outcomes after participating in a 
biocalculus course designed to intentionally integrate calculus 
concepts into biological problems. We use expectancy-value 
theory as a framework for understanding students’ affective 
experiences, focusing on utility value, as described in the fol-
lowing section.

Theoretical Framework
Expectancy-value theory connects students’ personal values 
and self-beliefs to their motivation and achievement. Specifi-
cally, it posits that students’ expectations of success on a task 
and their personal values for a task will affect their persistence 
on a task, particularly challenging tasks, and thus their perfor-
mance on a task (Eccles et al., 1983; Wigfield and Eccles, 2000). 
Students who believe that they can successfully complete a task 
are more likely to persist on a task to completion. However, 
simply believing a task can be successfully accomplished does 
not ensure students will persist on a task; they must also find 
some personal value in that task. Task values include intrinsic 
value (interest and enjoyment), utility value (usefulness of the 

task for a future goal), attainment value (importance of doing 
well on a task for one’s identity), and cost (negative aspects of 
engaging in a task; Wigfield and Eccles, 2000).

Utility value represents students’ perceptions of the impor-
tance or usefulness of a task for their future goals (Eccles et al., 
1983). It has been shown to be positively correlated with stu-
dent performance in a variety of contexts (Zusho et al., 2003; 
Cole et al., 2008; Hulleman et al., 2008). Additionally, studies 
in which students’ utility value is experimentally enhanced 
through a utility-value intervention have found increases in per-
formance compared with a control group of students (Hulleman 
and Harackiewicz, 2009; Hulleman et  al., 2010). The utili-
ty-value intervention also has been shown to narrow achieve-
ment gaps between underrepresented and overrepresented 
groups in science (Harackiewicz et al., 2016). Therefore, there 
is strong empirical evidence that students’ perceptions of the 
usefulness of the material they are learning in their class can 
play an important role in their course performance.

Experimental research using utility-value interventions has 
also documented increases in students’ interest in a topic as a 
result of the intervention (Hulleman and Harackiewicz, 2009; 
Hulleman et al., 2010). Hidi and Renninger (2006, pp. 113) 
describe the development of individual interest, an “enduring 
predisposition to reengage particular content over time,” as 
resulting from knowledge, positive feelings, and value. Thus, 
recognizing the value of course material in their lives can con-
tribute to the development of students’ interest in the subject 
matter (Hulleman et al., 2010). Interest is an important predic-
tor of academic achievement (Schiefele et al., 1992) and aca-
demic choices, such as courses taken or major (Harackiewicz 
et  al., 2002). For example, interest in mathematics has been 
found to predict both grades in mathematics and the number of 
mathematics courses taken during high school (Simpkins et al., 
2006). It has also been argued that developing students’ inter-
est should be a goal in and of itself, beyond its role in motiva-
tion, because interest is fundamental to students’ happiness and 
well-being (Harackiewicz and Hulleman, 2010).

Redesigning calculus courses to enhance the utility value of 
mathematics for biological applications may be one way to 
increase life science students’ interest in mathematics and, ulti-
mately, positively influence their motivation and performance 
in calculus courses. Cognitive psychologists have demonstrated 
that students are unable to transfer skills between contexts 
(Gick and Holyoak, 1983; NRC, 2000). Therefore, it is not sur-
prising that when mathematics and biology are not explicitly 
linked in a curriculum, students have a difficult time envision-
ing the connection (Arnett and Van Horn, 2009). However, 
when students’ learning experiences integrate the two disci-
plines, they are more likely to report that mathematics is import-
ant to biology (Arnett and Van Horn, 2009; Thompson et al., 
2010). Additionally, placing mathematics in a genuine, real-
world context in an interdisciplinary science and mathematics 
course has led to increases in both students’ perceptions of the 
importance of mathematics to biology and their enthusiasm for 
mathematics (Matthews et al., 2010).

Research Objectives
This study examines changes in students’ utility value, interest, 
and overall attitudes toward mathematics in two distinct biocal-
culus courses at two different institutions: the University of 
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Portland (UP) and Unity College (Unity). At UP, the impetus to 
create a biocalculus course arose out of the observation that 
biology students were demonstrating generally lower 
performance in the standard calculus course than their other 
STEM counterparts and poor quantitative reasoning skills in 
subsequent courses. Therefore, creating a calculus course that 
emphasized the relevance of mathematics to biology seemed 
like a possible avenue to more deeply engage students and 
improve their performance. Unity designed and implemented a 
biocalculus course to foster integration between disciplines as 
part of its larger mission in sustainability science education and 
transdisciplinary problem solving. The development and struc-
ture of both biocalculus courses is described in detail in Diaz 
Eaton and Highlander (2017).

In the study by Diaz Eaton and Highlander (2017), they pro-
vided evidence that a carefully designed biocalculus course can 
improve student performance and retention. Compared with 
students taking a standard calculus course the same semester, 
students in the biocalculus course at UP demonstrated higher 
performance on a common quiz at the end of the semester, 
despite these students initially having significantly lower per-
formance on a common precalculus quiz at the beginning of the 
semester. Additionally, rates of students earning a D, F, or with-
drawing (DFW rates) were about 50% lower in the redesigned 
biocalculus courses at both Unity and UP compared with previ-
ous years when life science students were in traditional, non-bi-
ology calculus courses. In this paper, we build upon those 
results and show such a course can also improve students’ atti-
tudes toward mathematics by demonstrating the relevance of 
calculus to biological problems. Specifically, we asked the fol-
lowing questions: 1) To what extent do students’ perceptions of 
the usefulness of mathematics for their major and their career 
change after taking a biocalculus course? 2) To what extent 
does students’ interest in mathematics change after taking a 
biocalculus course? 3) To what extent do students have more 
sophisticated views of the utility of mathematics to biology after 
taking a biocalculus course? 4) What aspects of the biocalculus 
courses caused students to have generally more positive atti-
tudes about mathematics after taking the course? To answer 
these questions, we conducted pre and post surveys across mul-
tiple sections of the biocalculus classes and analyzed both 
Likert-type items and open-response items.

METHODS
Setting and Participants
The study was conducted from 2011 to 2014 in biocalculus 
courses developed at UP and at Unity. A full description of the 
courses, the development, and the context can be found in Diaz 
Eaton and Highlander (2017). Unity is a small liberal arts col-
lege offering only environmental-related majors. At the time the 
study was conducted, students who took Calculus I typically did 
so as a major program requirement for earth and environmental 
science and wildlife biology. Due to the small size of the college, 
typically one section per semester had been offered. The biocal-
culus course that was created to fulfill Calculus I requirements 
has a mixture of lecture, guided-inquiry worksheets, writing, 
and projects. Modeling (Diaz Eaton et al., 2019), Excel, meta-
cognition, and communication skills (Diaz Eaton and Wade, 
2014) were emphasized, and proofs of major theorems and 
symbolic calculations “by hand” were de-emphasized.

UP is a small, private Catholic university, with professional 
schools in business, education, engineering, and nursing and a 
liberal arts core in the College of Arts and Sciences. Although 
the UP Biology Department elected in 2010 to remove the 
calculus requirement for life science majors, many pre-med stu-
dents were still interested in taking calculus. Therefore, a bio-
calculus course was created for these students with input from 
biology faculty. The course included all of the standard Calculus 
I topics, but with a focus on the applications to modeling bio-
logical phenomena, using Fred Adler’s (2012) Modeling the 
Dynamics of Life: Calculus and Probability for Life Scientists. The 
course was taught using a more traditional, lecture-based 
approach, with an emphasis on collaborative problem solving 
and modeling activities inside and outside class. Students were 
also required to submit regular journal assignments that asked 
them to reflect on what they were learning and how, including 
which concepts they were struggling with and why, and what 
study methods they were implementing. There were two sec-
tions of the course offered each year.

At both institutions, the instructors of the course (C.D.E. and 
H.C.H.) administered a mathematics attitude survey, modified 
from Richard Schori’s survey for the Oregon Collaborative for 
Excellence in the Preparation of Teachers (Schori, 2015). Pre and 
post surveys were given in class on the first and last days of class 
to assess any changes in student attitudes toward mathematics. 
This study was approved by the Institutional Review Board (IRB) 
at Unity (UCIRB 2012-05) and by the IRB at UP (UPIRB 2011).

Surveys at Unity were collected over four semesters (each 
semester from Fall 2012 to Spring 2014) and over five different 
sections of the course (two sections offered in Fall 2012). Sur-
veys at UP were collected over five semesters (each semester 
from Fall 2011 to Spring 2013 and Spring 2014) and over six 
different sections of the course (two sections offered in Spring 
2014). Only students who completed both the pre and post sur-
veys, whose data were able to be matched between the pre and 
post surveys, and who were life science majors or pre-med stu-
dents (four students were not life science majors or pre-med) 
were included in the analyses. Students were instructed to write 
individualized codes on each pre and post survey that consisted 
of a numerical sequence of their birth months, birth dates, and 
the last two digits of their social security numbers to be used to 
match the pre and post survey data. Many students at Unity 
inconsistently reported the coding prompt, making some pre 
and post data matching impossible. In particular, data from 
only two students in one Fall 2012 section and one student in 
another Fall 2012 section could be matched. Because this repre-
sented an extremely low response rate for these sections, data 
from Fall 2012 at Unity were not included in the analyses. The 
average class size of the biocalculus course at Unity was approx-
imately 14 students, and the average class size of the biocalcu-
lus course at UP was approximately 20 students. Response 
rates, calculated as the number of life science students with 
pre–post data that could be matched divided by the total num-
ber of students in the class section, ranged from 58 to 83% at 
Unity and 65 to 88% at UP. A total of 32 students from Unity 
and 87 students from UP are included in the analyses. However, 
two students were dropped from the quantitative analyses, 
because they did not report demographic information included 
as variables in the model-selection process in those analyses. 
Participant demographics are shown in Table 1.
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Measures
Each survey included 25 Likert-type items about students’ 
mathematics attitudes (five-point scale from “strongly disagree” 
to “strongly agree”), as well as demographic items (e.g., major, 
year in school, gender, and self-reported grade point average 
[GPA]), and short, open-response items (see Supplemental 
Material for the full pre and post survey). The Likert-type items 
measuring attitudes were not constructed as scales, which 
necessitated individual analyses of each item rather than sum-
ming or averaging scores across items. For the purposes of this 
study, we only analyzed a subset of Likert-type, demographic, 
and open-response items related to our research questions. 
Among the Likert-type items, we analyzed three items that rep-
resented utility value: 1) Mathematics is important for my cho-
sen profession (career utility value 1), 2) The skills I learn in 
this class will help me in my career after college (career utility 
value 2), and 3) The skills I learn in this class will help me in 
other classes for my major (major utility value). We also ana-
lyzed one item that represented interest: Mathematics is enjoy-
able and stimulating to me.

We included the following demographic variables in our 
analyses: gender (male or female), self-reported GPA at the end 
of the semester, and year in school (first-year, sophomore, 
junior, or senior). For GPA, students chose the range in which 
they believed their GPAs fell: 2.00–2.99, 3.00–3.24, 3.25–3.49, 
3.50–3.74, or 3.75–4.00. Thus, GPA is a categorical variable 
with five levels. Although students reported their GPAs in both 
the pre and the post survey, many of the students were taking 
the biocalculus course during their first-year Fall semester. 
Thus, we chose to use self-reported GPA on the post survey in 
our analyses because it was not clear to us what a GPA at the 
beginning of a student’s first semester in college represented.

For the open-response items, we qualitatively analyzed 
responses to two questions: 1) In your opinion, is the knowl-
edge of mathematics beneficial to biologists? Why or why not? 
2) Do you feel that your attitude toward and/or beliefs about 
mathematics has changed over the course of this semester? 
Why or why not? If you answered “yes,” what has most influ-

enced any changes in your attitude or beliefs about mathemat-
ics? The first question was included on both the pre and post 
survey, and we used this question to address our third research 
question related to students’ sophistication in their understand-
ing of the utility value of mathematics for biology. The second 
question was only on the post survey. We used this question to 
address our fourth research question, in which we aimed to 
identify the factors that contributed to a positive change in stu-
dents’ attitudes.

Data Analysis
Quantitative Analysis: Likert-Type Items.  We used ordinal 
mixed-effects regression models with an adaptive Gauss-Her-
mite quadrature approximation (10 quadrature points) to 
determine whether students’ utility value and interest, as mea-
sured by the Likert-type items, significantly changed from the 
beginning to the end of the course. Ordinal regression is more 
appropriate for Likert-type items than linear regression, because 
the numbered responses represent ordered categories. Unlike 
the difference between integers, where the linear distance 
between 1 and 2 is the same as between 2 and 3, differences 
between ordered categories may not be equal. In other words, 
the difference between strongly disagree and disagree may not 
be the same “distance” as the difference between disagree and 
neutral (Theobald et  al., 2019). We conducted four separate 
regressions in which each of the four Likert-type items, repre-
senting utility value or interest, served as a dependent variable. 
Time (categorical variable that is either “pre” or “post”) was 
included as a predictor variable in all regressions. The time vari-
able is important in repeated-measures mixed-effects models, 
because it represents differences in scores between the time 
points (i.e., change in scores). In our model, “pre” was the ref-
erence level for the time variable, so the regression output for 
the time variable indicates the degree to which post scores are 
different from pre scores. We used model selection to determine 
whether other predictor variables should be included as fixed 
effects in each regression. All analyses were conducted in R v. 
3.5.0 (R Core Team, 2018) using the ordinal package (Chris-
tensen, 2018).

We used mixed-effects models in order to include repeated 
measures of each student as a random effect. Additionally, we 
tested whether class section necessitated inclusion as a random 
effect in each model by calculating the intraclass correlation 
coefficient (ICC) and by comparing Akaike information crite-
rion values corrected for small sample sizes (AICc) between full 
and reduced models (Theobald, 2018). ICC is a ratio of 
between-group variance (i.e., between–class section variance) 
to total variance, and is calculated for a regression model that 
includes only the random effect (Theobald, 2018). Small ICC 
values (<0.05) suggest little variance between groups, and thus 
a random effect accounting for group variation may not be 
needed in the model (Theobald, 2018). ICC values for class 
section in our regression models ranged from 0 to 0.06. For 
each attitude item, we also compared the AICc value for a full 
regression model with class section as a random effect to the 
AICc value for a reduced regression model without class section 
as a random effect (Theobald, 2018). Lower AICc values indi-
cate a model with better fit, but AICc values within 2 indicate 
models with similar fit (Burnham and Anderson, 2002). When 
the difference in AICc values between the full and reduced 

TABLE 1.  Participant demographics by institution (n = 87 for UP, 
n = 32 for Unity, total n = 119)

UP Unity Total

Gendera

  Male 29 8 37 (31%)
  Female 57 24 81 (68%)

Year in school
  First-year 44 16 60 (50%)
  Sophomore 26 4 30 (25%)
  Junior 9 7 16 (13%)
  Senior 8 5 13 (11%)

Self-reported final GPAb

  2.00–2.99 4 6 10 (8%)
  3.00–3.24 12 6 18 (15%)
  3.25–3.49 22 8 30 (25%)
  3.40–3.74 24 4 28 (24%)
  3.75–4.00 24 8 32 (27%)
aGender is missing for one student.
bFinal GPA is missing for one student.
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model was within 2, we kept the simpler model (i.e., the 
reduced model). For all four of our regressions, the reduced 
model had a lower AICc value than the full model with class 
section as a random effect. Moreover, not including class sec-
tion in the regression models did not change the significance of 
any predictor variables in our final model. Therefore, although 
some of the ICC values were slightly above 0.05, we chose to 
use simpler models in our analyses by not including class sec-
tion as a random effect.

For each regression model, we also used model selection to 
determine which predictor variables to include in the model. 
The full model included categorical main effects, interaction 
terms, and student as a random effect:

Dependent variable ∼ time (pre or post) + institution (UP or 
Unity) + gender + final GPA + year in school + time*institution 
+ time*gender + time*final GPA + time*year in school + 
(1|student)

We compared AICc values among the full model and all pos-
sible nested models that included time and student using the 
dredge function in the package MuMIn (Bartón, 2018). We 
examined all models with AICc values within 2 of the best mod-
els and chose the simplest of these models to run as our final 
model. In evaluating the significance of the predictor variables 
in our final models, we adjusted our alpha level using a Bonfer-
roni correction to account for multiple hypothesis tests. Across 
the four regression models, we conducted hypothesis tests on 
seven predictor variables, so our alpha was 0.007. Using an 
alpha of 0.007 as a threshold for significance allows for conser-
vative tests, such that any predictor variable with a p value less 
than 0.007 is likely not a result of a type I error (false positive).

In ordinal regression, the odds ratio calculated from the 
regression coefficient represents the odds of increasing from 
one level of the dependent variable to a higher level of the 
dependent variable. A major assumption of ordinal regression 
is that the odds are the same for all levels of the dependent 
variable. In other words, the odds of moving from the lowest 
level to a higher level are the same odds as moving from the 
second-lowest level to a higher level. This is known as the 
proportional odds assumption. We tested whether our data fit 
the proportional odds assumption by modeling time and 
institution as nominal effects, which relaxes the assumption 
that the odds of each of the variables are the same among all 
levels (Christensen, 2018). We then used likelihood ratio 
tests to compare the models including time and institution as 
nominal effects with our ordinal model in which we assumed 
proportional odds. For all four models, the likelihood ratio 
tests indicated the model assuming proportional odds was a 
better fit, indicating our models met the assumption of pro-
portional odds.

Qualitative Analysis: Open-Response Items.  Responses to 
the open-response questions were analyzed using deductive 
and inductive coding. A set of codes were established a priori 
for whether students thought mathematics was beneficial 
(three codes: beneficial, not beneficial, not sure) and for 
whether students’ attitudes changed after taking the biocalcu-
lus course (three codes: attitude improved, attitude stayed the 
same, attitude worsened). However, we used inductive coding, 

in which we derived codes based on the data in students’ 
open-response answers (Saldaña, 2016), to code why students 
reported mathematics was beneficial to biology and why their 
attitudes changed.

The two questions were analyzed separately, each following 
the same general procedure for initial coding. First, a subset of 
20 responses to the question were coded independently by two 
researchers (M.L.A. and a biology education graduate student 
for the first question; M.L.A. and an undergraduate researcher 
in biology education for the second question). The researchers 
met and discussed the codes, came to consensus on the codes, 
and created an initial codebook. The researchers then inde-
pendently coded another 20 responses to the question and 
through discussion came to consensus on the codes. They 
revised the codebook as necessary, either by adding new codes 
or by revising the definitions, inclusion criteria, or exclusion cri-
teria of the original codes. When codes were added or revised, 
the researchers reread previously coded responses and recoded 
as necessary. This iterative cycle of independently coding 20 
responses, coming to consensus on codes, revising the code-
book, and recoding as necessary was repeated until all responses 
had been coded.

For the first open-response question asking students whether 
and how mathematics is beneficial to biologists, we first coded 
whether students said mathematics was beneficial, mathemat-
ics was not beneficial, or they were not sure if mathematics was 
beneficial. For those students who expressed that mathematics 
was beneficial, we then coded the explanations they gave for 
why mathematics was beneficial. We did not code explanations 
for why mathematics is not beneficial, because only four stu-
dents, between the pre and post surveys, reported that mathe-
matics was not beneficial, representing a very small sample size 
on which to base conclusions. We assessed the reliability of our 
codes by giving 30% of the pre survey and 30% of the post sur-
vey responses to H.C.H. to be independently coded. We used 
Holley and Guilford’s (1964) G index of agreement as a mea-
sure of interrater reliability (IRR) due to the high frequencies of 
some codes and the low frequencies of other codes. When codes 
demonstrate distributional skew, either because they are used 
extremely frequently or very rarely, Cohen’s kappa can be quite 
low even with high interrater agreement (Xu and Lorber, 2014). 
The G index of agreement is less sensitive to distributional skew 
in the codes, but still takes into account chance agreement (it 
assumes an equal probability of choosing a code; Xu and Lorber, 
2014). All codes had a G greater than 0.80, and only two codes 
had a G < 0.90. Because we had generated a large number of 
codes, many of which were found in only a handful of responses, 
we condensed some of the initial codes into broader categories 
(Saldaña, 2016). As codes were clustered into categories, all 
responses within each code were reread to ensure each coded 
segment reflected the meaning of the broader category. The 
codebook with the initial codes, categories, and definitions of 
the codes and categories is included in the Supplemental 
Material.

For the second open-response question, which asked stu-
dents if their attitudes had changed and why, we first coded 
whether students’ attitudes had improved, worsened, or stayed 
the same. If students’ attitudes stayed the same, we coded 
whether they had positive or negative mathematics feelings. If 
students’ attitudes improved or worsened, we coded reasons for 
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these changes. We assessed the reliability of our codes by giving 
30% of the student responses (found only on the post survey) 
to C.D.E. to be independently coded. One code had a G = 0.76, 
but all other codes had a G > 0.80 (and only one code had a G 
>0.80 but <0.90). At the end of coding, we had generated 15 
codes, only seven of which applied to students whose attitude 
improved, which is the focus of our study; therefore, we did not 
condense codes into broader categories. The codebook with the 
initial codes and definitions of the codes is included in the Sup-
plemental Material.

RESULTS
Model selection resulted in slightly different models for each 
measure of utility value (Supplemental Table S1), but in no case 
did utility value significantly change from the beginning to the 
end of the semester (Supplemental Table S2). Only one of the 
career utility-value items (Mathematics is important for my 
chosen profession) demonstrated significant institutional differ-
ences, with UP students reporting overall lower scores on this 
item compared with Unity students; B = −1.69 (±0.56), p = 
0.002. Gender was included in the best model explaining major 
utility value, but it was not significant according to our adjusted 
alpha value.

In contrast to the results for the utility-value items, students 
at both Unity and UP reported a significant increase in their 
interest in mathematics by the end of the semester; B = 1.02 
(± 0.29), p = 0.0004 (Supplemental Table S2). The final model 
for interest included both time and institution as predictors. 
Overall interest gains were similar between institutions (0.40 at 
Unity and 0.33 at UP), although Unity had overall lower 
(though not statistically significant lower) interest scores than 
UP (Figure 1).

Qualitative Results: Why Is Mathematics Beneficial to 
Biology?
In response to the open-ended question asking students whether 
mathematics is beneficial for biology and why, 94% (111 out of 
118 total responses on this question) of students stated that 
mathematics was beneficial for biology in the pre survey, and 
99% (117 out of 118 total responses on this question) of stu-
dents stated that mathematics was beneficial for biology in the 
post survey. In the pre survey, 3% of students reported mathe-
matics was not beneficial to biology, and another 3% of stu-
dents reported they were unsure whether mathematics was 
beneficial to biology or not. However, only one student (1%) 
reported mathematics was not beneficial in the post survey.

Students provided a variety of reasons for why mathematics 
is beneficial to biology that revealed a range of sophistication in 
understanding the role of mathematics in biology. We describe 
the seven major categories that emerged from the open-re-
sponse data: Broad Utility, Biology Utility, Chemistry Utility, 
Calculations, General Analytical Skills, Science Process Skills, 
and Specific Applications (Table 2; Figure 2A). Percentages 
reported are based on the number of students who reported 
mathematics was beneficial.

The Broad Utility and Biology Utility categories represent 
vague responses for why mathematics is beneficial for biology. 
Responses in the Broad Utility category did not contain reasons 
why mathematics was important specifically for understanding 
biology; rather, students reported that mathematics was broadly 
important for daily life or for understanding science in general. 
Overall, these responses indicated that students believed math-
ematics was important, but they did not demonstrate an explicit 
connection between mathematics and biology. On the other 
hand, the Biology Utility category contained student responses 
in which students stated mathematics was important for broad 
understanding of biological concepts or processes or for doing 

FIGURE 1.  Least-squares means of pre and post scores for the 
interest survey item: Mathematics is enjoyable and stimulating to 
me. Error bars represent ± SE.

TABLE 2.  Major categories for students’ responses as to why mathematics is beneficial to biology

Category Definition

Broad Utility Student expresses that mathematics is useful for daily life or science broadly but does not specifically reference 
biology.

Biology Utility Student expresses that math is useful for understanding biology concepts, understanding a broad subdiscipline of 
biology, or doing biology experiments or research. However, student does not detail how mathematics is 
specifically used in biology or biology research.

Chemistry Utility Student expresses that math is generally useful for understanding chemistry broadly or the chemistry that is related 
to biology.

Calculations Student expresses that mathematics is useful for doing calculations or making estimations in biology.
General Analytical Skills Student expresses that mathematics is useful for general problem-solving, critical-thinking, or reasoning skills.
Science Process Skills Student expresses that mathematics is useful for specific skills associated with doing science research.
Specific Applications Student expresses that mathematics is important for doing specific functions or solving specific biological problems.
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Some students were much more spe-
cific in their responses, indicating that 
mathematics was useful for specific skills 
used in biology (Figure 2A). A small per-
centage of students indicated that mathe-
matics was important for calculations (pre 
survey: 8%; post survey: 3%). Many more 
students indicated that mathematics was 
useful for more higher-order cognitive 
skills. Some students responded that 
mathematics was useful for critical think-
ing, problem solving, or logical reasoning 
(pre survey: 7%; post survey 5%). These 
responses were coded as General Analyti-
cal Skills, because they referred to a gen-
eral set of higher-order cognitive skills 
identified as important to biology. In con-
trast, other students reported mathematics 
was useful for specific skills in reference to 
conducting biological research, which we 
have categorized as Science Process Skills. 
Science Process Skills include collecting 
data, analyzing data, using or creating 
models, and making predictions. The 
number of students reporting a science 
process skill as a reason why mathematics 
is beneficial to biology increased from 32% 
in the pre survey to 48% in the post survey. 
Among the students who reported a sci-
ence process skill on the pre survey (n = 
35), 54% reported that mathematics was 
useful for data analysis in biology research. 
However, among the students who 
reported a science process skill in the post 
survey (n = 56), almost the same percent-
ages of students reported that mathemat-
ics was useful for making predictions 
(34%), using or creating models (32%), 
and analyzing data (38%) (Figure 2B).

Finally, 15% of students on the pre survey indicated a spe-
cific biological example in which mathematics was useful; this 
increased to 31% of students on the post survey (Figure 2A). 
Most of the examples were related to population growth and 
dynamics, though drug dosage, game theory, epidemics, and 
carbon dating were also mentioned by students.

Qualitative Results: Has Your Attitude toward Mathematics 
Changed? How and Why?
Of the 117 students who wrote responses that could be coded, 
47% of students reported that their attitudes toward mathemat-
ics improved by the end of the semester, 44% of students 
reported their attitudes toward mathematics had not changed, 
and 9% of students reported that their attitudes toward mathe-
matics had worsened. Of the 51 students whose attitudes stayed 
the same, 31% of students had positive mathematics attitudes, 
41% of students had negative mathematics attitudes, and the 
remaining students did not indicate whether they had positive 
or negative mathematics attitudes.

Students whose attitudes toward mathematics improved 
over the semester reported three primary reasons for this 

biological research but did not clarify in what ways mathemat-
ics might be important. Responses did not identify how mathe-
matics may be used in biology, biological concepts or processes 
for which mathematics may be particularly useful, or any 
specific practices of biological research that use mathematics, 
any of which would indicate a deeper understanding of the con-
nection between the disciplines. Overall, the lack of specificity 
in responses coded as Biology Utility suggests a less sophisti-
cated understanding of the role of mathematics in biology. 
Together, the Broad Utility and Biology Utility categories 
encompassed 31% of student responses (16% Broad Utility, 
15% Biology Utility) on the pre survey, but only 20% of student 
responses (11% Broad Utility, 9% Biology Utility) on the post 
survey (Figure 2A).

A small percentage of students (5%) reported on the pre 
survey that mathematics was useful for understanding chemis-
try or for specific chemistry applications, such as titrations 
(Figure 2A). Most of these responses reflect students’ percep-
tions that mathematics is indirectly used in biology through 
chemistry applications. No students reported mathematics was 
useful for understanding chemistry on the post survey.

FIGURE 2.  (A) Frequency of categories describing why mathematics is beneficial to 
biology among individuals who reported mathematics to be beneficial to biology (n = 111 
in pre survey; n = 117 in post survey). (B) Frequency of specific science process skill codes 
(from initial coding) among individuals whose responses to why mathematics is beneficial 
to biology were categorized under Science Process Skills (n = 35 in pre survey; n = 56 in 
post survey). Multiple categories or specific science process skills may have been coded 
per student, so total percentage sums to greater than 100%.
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change: the relevance and applicability of the material to 
biology, an ability to comprehend the material, and the pro-
fessor’s teaching style (Table 3 and Figure 3). Other codes 
were used only once or twice in student answers and are not 
discussed here (see Supplemental Material for complete 
codebook).

The most common reason reported for a positive change in 
attitudes was understanding the relevance of mathematics 
(45% of students whose attitudes improved). Some students 
emphasized how much they preferred learning about the appli-
cations of the calculus concepts rather than simply memorizing 
mathematical equations. Therefore, explicitly showing students 
how mathematics could be used within a biological context, 
that is, demonstrating the utility of mathematics to the field of 
biology, positively changed how students viewed mathematics.

Another common reason reported for improved attitudes 
was students’ ability to understand the calculus (35% of stu-
dents). In some cases, students explicitly mentioned previous 
struggles with calculus. Students’ responses did not indicate 
that the restructuring of the calculus course into a biocalculus 
course was the reason for their ability to understand the mate-
rial. Rather, it seemed to be related to the instructional style. 
Regardless, understanding the material appeared to increase 
students’ perceived competence in their mathematical skills, 
which promoted a more positive attitude toward mathematics.

Finally, 35% of students whose attitude improved indicated 
that something about the way the professor taught the course 

was the underlying reason. This code was found for both 
instructors in this study, indicating it was not just one particular 
instructor’s unique teaching methods. Rather, this code included 
a variety of aspects of an instructor’s teaching style that 
promoted a positive learning environment. Students mentioned 
things such as patience, dedication to the students, and the cre-
ation of a supportive learning environment as being critical to 
their improved attitudes. Therefore, student–instructor rapport 
and classroom climate may be important factors to consider 
when examining students’ attitudes about a subject.

DISCUSSION
Life science majors and pre-medical students are often required 
to take a calculus course, yet many calculus courses do not 
make explicit, authentic connections between calculus and biol-
ogy concepts. This can deter students from developing an 
understanding of the relevance of mathematics to biology and 
an interest in mathematics, which has been shown to affect stu-
dent performance. We sought to understand the extent to which 
two redesigned biocalculus courses for life science students, in 
which calculus concepts were explicitly rooted in biological 
problems, would improve students’ utility value and interest in 
mathematics, and what components of the course were critical 
for improving overall attitudes toward mathematics. Figure 4 
summarizes the relationships we found (solid arrows), as well 
as relationships we posit based on theory and results from other 
studies (dashed arrows). Our data suggest that integrating biol-
ogy and calculus, such that the relevance of calculus to biologi-
cal contexts is emphasized, can improve students’ understand-
ing of the utility of mathematics for biology, which can promote 
positive overall attitudes toward mathematics among life sci-
ence students. Additionally, although we could not test this 
here, we hypothesize that the observed increase in students’ 
interest in mathematics was mediated, at least partially, by their 
more sophisticated understanding of the relevance of mathe-
matics to biology. Our data also demonstrate that students’ per-
ceived competence at mathematics and the rapport they have 
with the instructor are also important factors that contribute to 
improved attitudes toward mathematics. Thus, cultivating pos-
itive attitudes toward mathematics goes beyond simply demon-
strating the relevance of mathematics to biology, but also 
encompasses instructional techniques and behaviors that culti-
vate feelings of competence and rapport, such as clarity in 
explanations, opportunities for students to succeed, enthusiasm 
for the subject, and approachability.

Situating Calculus in a Biological Context Improves 
Students’ Understanding of the Utility of Mathematics 
to Biology
The biocalculus courses were designed to demonstrate the 
utility of mathematics to biology through problems that used a 

FIGURE 3.  Frequency of predominant codes for why students’ 
attitudes toward mathematics improved among individuals who 
reported their attitudes improved (n = 55). Multiple reasons may 
have been coded per student, so total percentage sums to greater 
than 100%.

TABLE 3.  Most commonly reported codes reflecting why students’ attitudes toward mathematics improved

Code Definition

Relevant or applicable Students’ attitudes improved because they found the material or class to be relevant to their interest or major and/or 
applicable to their field of study.

Ability to comprehend 
the material

Students’ attitudes improved because they felt like they understood the concepts, how to approach the problems, and/
or materials presented in class.

Professor Students’ attitudes improved because of something about the professor and the way the professor teaches.
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biological context. For example, at UP, where most students 
enrolled in biocalculus were interested in careers in medicine, 
students developed discrete-time dynamical systems to model 
the change in chemical concentration within the human lung 
when an individual breathes in the surrounding air containing 
a fixed concentration of the chemical. Upon model develop-
ment, they then used various graphical and analytical tools 
from calculus to study the resulting equilibrium concentration 
within the lung. At Unity, where a significant number of stu-
dents were wildlife biology majors, students worked on deriv-
ing a recommendation for a land trust’s lake by using dis-
crete-time models to allow for population growth, stocking, and 
harvesting. In this project, they were asked to consider addi-
tional constraints beyond known biology such as reproductive 
rate—for example, the target permit numbers for tourism and 
planning, the amount of investment capital the trust had to 
invest in stocking, and environmental variability. They then had 
to write a report of findings to the land trust with a final 
recommendation.

Because of the applied nature of these courses, we predicted 
a shift in utility-value scores from the pre survey to the post sur-
vey, but these predictions were not borne out by the quantitative 
data. Examining the pre survey data, we found that students’ 
utility-value scores were high; approximately 75% of students 
chose 4 or 5 on a five-point Likert scale for each of the three 
utility-value items, indicating most students agreed or strongly 
agreed that mathematics was important for biology before even 
taking the biocalculus course (Supplemental Figure S1). There-
fore, there was little room for improvement in scores on the post 
survey, and ceiling effects may explain why we did not see a 
significant increase. Other studies have reported similarly high 
values for life science students’ perceptions of the importance of 
mathematics to biology, either before engaging in a quantitative 
biology curriculum (Karsai et al., 2015; Hoffman et al., 2016) or 
in a control group of students who did not engage in a quantita-
tive biology curriculum (Thompson et  al., 2010), suggesting 
that most life science majors recognize, at least superficially, the 
importance of mathematics to the biological sciences.

The qualitative data provided deeper insight into students’ 
utility value of mathematics for biology by asking them how 
they perceived mathematics to be useful to biology. This ques-
tion illuminated gaps in students’ understanding of the connec-
tion between mathematics and biology that the quantitative 

data were unable to demonstrate. Notably, on the pre survey, 
only 45% of students described mathematics as useful for a 
specific science process skill and/or a specific application in 
biology, meaning that 55% of students who indicated mathe-
matics was beneficial for biology did not connect mathematics 
in a meaningful way to the process of biological research or to 
the understanding of biological phenomena. However, by the 
end of the course, the percentage of students who cited a sci-
ence process skill and/or a specific application that requires 
mathematical knowledge increased to 68%. Together, the quan-
titative and qualitative data suggest that biology education suc-
cessfully inculcates in students the idea that mathematics is 
important for biology, but there is room for improvement in 
teaching students how mathematics is actually used in biology. 
Integrated mathematics–biology courses such as biocalculus are 
one way to effectively fill this knowledge gap in students. These 
data also point to the limitations of using quantitative measures 
of utility value and raise the question of the extent to which 
students need to understand how a task is useful to their future 
goals for it to meaningfully affect their academic performance 
and choices.

Among the science process skills, data analysis was most 
commonly cited in students’ responses in both the pre and post 
surveys. It is not surprising that many students think of data 
analysis when they think of mathematics in the biological sci-
ences. Biology labs often incorporate data collection and inter-
pretation into their curricula, and if students have read primary 
literature for their courses, then they have likely encountered 
statistics. Additionally, at Unity, most students take statistics 
before Calculus I. One successful outcome of the biocalculus 
courses was to broaden students’ perspectives on the way math-
ematics is used in biology. On the post survey, “using and creat-
ing models” and “making predictions” were cited almost as 
many times as “data analysis” (Figure 2B). Because of the 
courses’ emphasis on mathematical modeling, students gained 
a greater understanding and appreciation of the role of model-
ing in the biological sciences, which is a core competency for 
life science students (AAAS, 2011). Exposing students to a wide 
array of uses of mathematics within biology can enrich stu-
dents’ views of how mathematics enhances understanding in 
the biological sciences.

Understanding of the Utility of Mathematics to Biology 
and Perceived Competence Promote Positive Attitudes 
toward Mathematics
It was encouraging that almost half of the students taking the 
biocalculus courses reported more positive overall attitudes 
toward mathematics by the end of the semester. Recognizing 
the relevance and utility of mathematics to biology was one of 
the main drivers of these improved attitudes (Figure 3). Many 
students reported that they had developed a better appreciation 
of or respect for mathematics after seeing how applicable and 
important it was to biological problems. These results are simi-
lar to those found in other integrated STEM courses, such as the 
IPLS courses (Meredith and Bolker, 2012; Crouch et al., 2018). 
Although overall attitudes toward mathematics have been 
found to only weakly correlate to achievement in mathematics 
(Ma and Kishor, 1997), it seems plausible that improved atti-
tudes may positively affect how students engage with mathe-
matics in their life science courses and careers. As pointed out 

FIGURE 4.  Factors that contribute to improved affect toward 
mathematics among life science students in biocalculus courses. 
Solid arrows represent relationships supported by the results of 
this study. Dashed arrows represent relationships supported by 
theory and/or other studies. The arrow from perceived compe-
tence to another arrow represents moderation.
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by Wilkins and Ma (2003, pp. 52): “A person’s mathematical 
disposition related to her or his perceptions about and attitude 
toward mathematics may be as important as content knowl-
edge for making informed decisions in terms of willingness to 
use this knowledge in everyday life.”

Although some students reported on the open-response 
question that the application of calculus to biological problems 
made the mathematics more interesting, we cannot make a 
causal connection between students’ enhanced views of the 
utility of mathematics for biology and their increase in interest 
in mathematics as demonstrated through the quantitative data. 
However, studies have established that utility-value interven-
tions can result in an increase in interest in the topic (Hulleman 
et al., 2008, 2010; Hulleman and Harackiewicz, 2009). How-
ever, this relationship appears to be moderated by students’ per-
ceived competence and whether the utility value is directly 
communicated or self-generated. When the utility value of a 
topic to a student’s career is directly communicated, those with 
lower perceived competence may actually report lower interest 
in the subject (Canning and Harackiewicz, 2015). In contrast, 
students with higher perceived competence report greater inter-
est in the task or subject because it reinforces the importance of 
something at which they are already competent (Canning and 
Harackiewicz, 2015; Durik et al., 2015). This aligns with Hidi 
and Renninger’s (2006) concept of interest development, in 
which positive emotions, such as those generated by feelings of 
competence, in conjunction with values drive the development 
of individual interest. Interestingly, in our study, students’ confi-
dence in their ability to understand the calculus concepts and 
do the problems was an important factor in improving their 
overall attitudes toward mathematics. Therefore, increasing 
students’ ability beliefs in mathematics through instruction may 
be critical for leveraging the utility value communicated 
through the curriculum of a biocalculus course. Future studies 
should aim to explore more deeply the relationships among util-
ity value, interest, and perceived competence in integrated 
STEM courses.

Improving students’ perceptions of the usefulness of mathe-
matics for biology and their interest in using mathematics within 
a biological context is important for promoting positive student 
outcomes related to quantitative biology. Many studies have 
found that students’ utility value or interest in a topic predict, 
either directly or indirectly, their academic performance (Durik 
et al., 2006; Simpkins et al., 2006; Cole et al. 2008; Hulleman 
et al., 2008). Additionally, studies in which interventions have 
been employed to increase students’ utility value or interest in a 
topic have led to increases in student performance compared 
with control groups lacking the intervention (Hulleman and 
Harackiewicz, 2009; Hulleman et  al., 2010; Canning et  al., 
2018). In this study, we did not collect individual student 
grades, so we are unable to examine the extent to which changes 
in interest or students’ understanding of the utility value of 
mathematics to biology affected student achievement. However, 
comparing DFW rates in the biocalculus courses at Unity and UP 
to DFW rates in the standard, non-biology calculus courses that 
preceded these courses at these institutions demonstrated that 
DFW rates were halved after implementation of the biocalculus 
curriculum (Diaz Eaton and Highlander, 2017). Additionally, 
students in the biocalculus course at UP had significantly higher 
final common quiz scores than students who were taking the 

traditional calculus course that same semester (Diaz Eaton and 
Highlander, 2017). It is important to point out, though, that 
perceived competence, which is empirically similar to expectan-
cies of success in expectancy-value theory, is also posited to pre-
dict performance (Wigfield and Eccles, 2000). Because this was 
a prevalent code among students whose attitude improved, we 
cannot discount the idea that changes in students’ perceived 
competence in the subject matter, rather than utility value or 
interest, may have factored into the observed changes in DFW 
rates and quiz scores. Utility value and interest have also been 
found to predict students’ academic choices, such as course 
enrollment choices or intentions to remain in a STEM major 
(Durik et al., 2006; Simpkins et al., 2006; Canning et al., 2018). 
Future studies should examine whether changes in students’ 
interest or understanding of the relationship between mathe-
matics and biology arising from integrated mathematics and 
biology courses increase their likelihood of taking additional 
quantitatively focused biology courses.

Instructor–Student Rapport Affects Students’ Attitudes 
toward the Content
Although not related to the redesign of the calculus courses, the 
positive influence of the instructor on students’ attitudes toward 
mathematics must be noted. This result aligns with findings 
from the social psychology and instructional communication 
literature on the relationship between instructor behaviors and 
student affective and cognitive learning outcomes. Students’ 
affective learning outcomes, or their attitudes toward the 
instructor and content of the course, have been shown to be 
affected by instructor immediacy (Rodriguez et al., 1996; Witt 
et al., 2004) or behaviors that enhance psychological percep-
tions of liking and closeness (Mehrabian, 1971). More recently, 
the importance of instructor–student rapport, or a perception 
there is a mutual, trusting, prosocial bond between the instruc-
tor and student, to learning outcomes has been emphasized 
(Frisby and Martin, 2010; Frisby and Housley Gaffney, 2015). 
Instructor–student rapport is a perception that results from 
instructors’ behaviors, such as immediacy, and may therefore 
serve as a link to explain how instructor behaviors affect stu-
dent learning outcomes (Frisby and Martin, 2010; Frisby and 
Housley Gaffney, 2015). Responses from our study coded as 
“Professor” contain descriptions of the professor that corre-
spond to many of the components that have been used to mea-
sure instructor–student rapport, such as helpful, enthusiastic, 
encouraging, and enjoyable (Wilson et  al., 2010). These 
responses suggest an element of instructor–student rapport was 
important for improving student attitudes toward the mathe-
matics content. This is an important consideration that should 
be factored into future studies examining changes in student 
attitudes of course content.

Limitations and Future Directions
We implemented a pre–post study design that did not have a 
control group and cannot state with certainty that all changes 
observed between the pre and post surveys were due to partici-
pation in the biocalculus course. In particular, the increase in 
interest and the change in sophistication of students’ responses 
about how mathematics is beneficial to biology could be due to 
general maturation or a shift that would have naturally been 
seen over this time period regardless of the biocalculus course 
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(Shadish et al., 2002). Alternatively, we cannot rule out the pos-
sibility that the observed changes may have been a result of 
other experiences the students had over the course of the 
semester, perhaps in other courses or in a research experience. 
Additionally, changes in interest may have simply resulted from 
changes in students’ perceived competence in calculus, rather 
than from the integrated nature of the course. However, the 
responses obtained when we queried students directly about 
the impact of the course on their overall attitudes suggests that 
at least some change in interest in mathematics is due to the 
integration of the disciplines. Moreover, many of the responses 
on the post survey question asking students why mathematics 
was beneficial for biology referenced specific applications that 
had been covered in the biocalculus course (e.g., population 
growth, modeling the concentration of a chemical in a lung 
over time), suggesting the course content was indeed influenc-
ing their views on how mathematics is used in biology. Never-
theless, a control section, in which calculus was taught in a 
traditional manner to biology students, would have strength-
ened our conclusions about the effect of integrating mathemat-
ics and biology on students’ attitudes toward mathematics.

Additionally, the data collected were from primarily female 
students in biocalculus courses at two small, predominantly 
white institutions with two instructors, which limits the general-
izability of the data. Importantly, gender and first-generation 
college status have been found to affect students’ interest in 
mathematics or their perceptions of the utility of mathematics to 
their careers (Gaspard et al., 2015; Andrews and Aikens, 2018). 
We included gender (as a binary variable) in our analyses and 
did not find it to be a statistically significant predictor of atti-
tudes or of change in attitudes. However, there are two caveats 
to this finding: 1) model selection results suggested the presence 
of gender differences in students’ scores for major utility value, 
but our sample size (overall sample size and sample size of male 
students) may not have been large enough to detect a statisti-
cally significant difference using a Bonferroni-corrected alpha 
value; and 2) our sample size may not have been large enough 
to detect an interaction between time and gender, which would 
indicate changes in attitudes from pre to post differ between the 
genders. We did not collect demographic data about first/con-
tinuing-generation or race/ethnicity from students. Therefore, 
we recommend that additional studies examine change in affect 
in a broader diversity of students to more fully understand how 
attitudes change in different students. Moreover, we recom-
mend examining biocalculus courses at a wide variety of institu-
tions to understand how institutional context may influence 
changes in affect. For example, class size may affect instructor–
student rapport, which may affect the extent to which students’ 
attitudes change. Studies conducted across diverse contexts 
with diverse students will ultimately allow for the identification 
of the critical elements of a biocalculus course necessary to 
engender positive affect toward mathematics.

Implications for Mathematics and Biology Educators
Understanding biological concepts relies on an understanding 
of chemistry (e.g., metabolic pathways), physics (e.g., physio-
logical mechanisms), and mathematics (e.g., modeling commu-
nities or ecosystems), yet life science students often lack an 
understanding of how these disciplines are connected to biol-
ogy and are less enthusiastic about taking these required 

courses. Our results provide empirical evidence that student 
attitudes toward mathematics improved after completing a 
course that highlighted the relevance and applicability of calcu-
lus to biology. Creating an integrated mathematics–biology 
course, such as a biocalculus or biostatistics course, can be one 
way to achieve this goal. Furthermore, a biocalculus course can 
contribute to the development of three of the core competencies 
outlined in Vision and Change (AAAS, 2011) for life science stu-
dents: the ability to use quantitative reasoning, the ability to 
use modeling and simulation, and the ability to tap into the 
interdisciplinary nature of science. Based on reflection as 
instructors, and to help guide other instructors, we suggest a 
focus on the following three key items to nurture positive stu-
dent attitudes toward mathematics: 1) interdisciplinary curric-
ula and conversations, 2) authentic problems for the audience, 
and 3) intentional metacognition interventions.

Interdisciplinary Curricula and Conversations.  For those 
interested in how to develop an interdisciplinary biocalculus 
course, we refer readers to Diaz Eaton and Highlander (2017). 
However, we recognize that creating a separate biocalculus 
course may be beyond the scope of what most departments can 
do. Therefore, we recommend that both mathematics and biol-
ogy instructors incorporate examples and problems into their 
current courses that draw upon the other discipline. Impor-
tantly, many curricula have already been developed for that 
purpose. The QUBES website (www.qubeshub.org) has a repos-
itory of quantitative biology curricular activities, and Course-
Source (coursecourse.org) has quantitative activities listed 
under some of the learning goals in the Science Process Skills 
Learning Framework. Duane Nykamp at the University of 
Minnesota has developed freely available materials, including 
videos, projects, and in-class worksheets, for a flipped-format 
biocalculus course (Nykamp, 2020). These materials have been 
used heavily at UP since Spring 2014. Curricular resources have 
also been described in a number of papers (e.g., Jungck et al., 
2010; Thompson et  al., 2010; Schultheis and Kjelvik, 2015; 
Hoffman et al., 2016). However, even though we are mathe-
matical biologists by training, our work in connecting mathe-
matics and biology for students has been deeply enhanced by 
ongoing interdisciplinary conversations with our biology col-
leagues and vice versa (Diaz Eaton et al., 2019). To guide broad 
collaborative discussions between life scientists and mathema-
ticians, we recommend the special issue “Interdisciplinary Con-
versations” published in Problems, Resources, and Issues in 
Undergraduate Mathematics Education (Ganter et al. 2019a,b).

Authentic and Relevant Problems.  Critically, when integrat-
ing mathematics and biology to enhance life science students’ 
understanding of the connection between the disciplines, 
thought must be given to incorporating authentic biological 
problems. Authentic biological problems do not just use mathe-
matics to solve a problem situated within a biological context, 
but rather integrate mathematics into a biological problem in a 
way that allows the student to come to a greater understanding 
of a biological phenomenon or process (Watkins et al., 2012). 
Developing authentic biological problems that integrate mathe-
matics requires expertise from both disciplines and will benefit 
from time invested in collaborative relationships. To guide the 
creation and revision of authentic problems, we recommend 
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using the framework presented by Svoboda Gouvea and 
colleagues (2013), which can be used to reflect on how the 
disciplines interact in the problems.

It is also important to consider how to make the problems 
relevant to the interests of the students. Biology students have 
diverse interests, ranging from cellular and molecular mecha-
nisms to physiology and medicine to ecology and evolution. 
Therefore, an understanding of what specific interests the stu-
dents in a class have can be used to design relevant biocalculus 
problems. For example, C.D.E. realized that medically oriented 
time-of-death problems used in the exponential growth and 
decay section were met with reluctant engagement by her pre-
dominantly wildlife biology–focused students. But a colleague in 
conservation law stopped her in the hallway one day excitedly to 
tell her about using the same technique and tables to discern the 
time of death for a deer in a suspected poaching. C.D.E. was able 
to share this story with the students, relating a newly revised and 
contextualized problem to concepts learned in other classes and 
touted by an expert in their desired career, and they anecdotally 
seemed more interested and engaged (e.g., see Geller et  al., 
2018, which supports this anecdotal evidence). Both H.C.H. and 
C.D.E. also reflect that conversations with junior and senior biol-
ogy majors in the class can be similarly helpful in recognizing 
key linkages between classes and impressing upon younger stu-
dents the importance of these topics.

Metacognition and Utility-Value Interventions.  Both H.C.H 
and C.D.E. employed metacognitive interventions at least every 
other week. For example, H.C.H. regularly shared relevant arti-
cles with students and asked them to reflect on the articles in 
their journals. In one such journal assignment, the prompt was 
as follows:

Read the article posted on Moodle entitled “The ‘Gift’ of Math-
ematics in the Era of Biology” and provide a one-paragraph 
summary of the article. Topics you may want to address 
include the following:

•	 What is BIO 2010? What did it urge colleges to do?
•	 �What are some similarities they mention between math and 

biology?
•	 What was most surprising in this article?
•	 �Were there parts of the article you didn’t understand or 

terms you didn’t know? If so, include these in your 
summary.

C.D.E. presented students with a variety of prompts to 
encourage reflection. For example, one prompt asked students 
to read excerpts of news articles and discuss how one excerpt 
related to the class. Interested readers can find the full set of 
writing prompts that C.D.E. used on QUBES (Diaz Eaton, 2020).

Utility-value interventions are motivation interventions 
aimed specifically at boosting students’ utility value. They are 
relatively easy to implement; students simply write about how 
what they are learning in class is relevant to their lives (e.g., see 
Canning and Harackiewicz, 2015). Several studies have demon-
strated the positive effect of a utility-value intervention on stu-
dent interest and performance, though these effects appear to 
primarily occur in students with lower perceived competence 
(Hulleman and Harackiewicz, 2009; Hulleman et  al., 2010). 

Recent work suggests that the timing of the utility-value inter-
vention is important to consider but that three utility-value 
interventions over the course of a semester, with written feed-
back, are ideal, because they allow students multiple opportu-
nities to make connections between the topics and their lives 
(Canning et al., 2018).

CONCLUSION
Our results demonstrate that integrated biocalculus courses can 
improve life science students’ attitudes toward mathematics by 
explicitly demonstrating the relevance of mathematics to bio-
logical problems. Importantly, by the end of the course, many 
students had a more sophisticated understanding of how math-
ematics is used in the biological sciences, and their responses 
represented a broader perspective on the role mathematics can 
play in the biological sciences. Therefore, adding a biology-ori-
ented calculus option for life science students can improve stu-
dents’ understanding of the connection between the disciplines, 
ultimately improving student motivation for learning and their 
performance. Recognizing that transforming disciplinary 
courses into interdisciplinary courses is a significant undertak-
ing, we recommend that instructors of both mathematics and 
biology courses initiate a dialogue to select and/or design prob-
lems that can be included in both types of courses, ensuring 
they are biologically authentic. Further research on integrated 
mathematics–biology courses among more diverse student pop-
ulations and institutions will be invaluable for identifying the 
instructional and curricular aspects of integrated courses that 
are critical for improving student motivation and learning. 
Additionally, documenting longer-term outcomes of integrated 
mathematics–biology courses, such as how students engage 
with mathematics in their future courses, will be essential for 
understanding the extent to which these courses induce long-
term change in students’ epistemological beliefs about the role 
of mathematics in the biological sciences.
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