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ARTICLE

ABSTRACT
Hardy-Weinberg (HW) equilibrium and its accompanying equations are widely taught in 
introductory biology courses, but high math anxiety and low math proficiency have been 
suggested as two barriers to student success. Population-level Punnett squares have been 
presented as a potential tool for HW equilibrium, but actual data from classrooms have 
not yet validated their use. We used a quasi-experimental design to test the effectiveness 
of Punnett squares over 2 days of instruction in an introductory biology course. After 1 
day of instruction, students who used Punnett squares outperformed those who learned 
the equations. After learning both methods, high math anxiety was predictive of Punnett 
square use, but only for students who learned equations first. Using Punnett squares also 
predicted increased calculation proficiency for high-anxiety students. Thus, teaching pop-
ulation Punnett squares as a calculation aid is likely to trigger less math anxiety and help 
level the playing field for students with high math anxiety. Learning Punnett squares before 
the equations was predictive of correct derivation of equations for a three-allele system. 
Thus, regardless of math anxiety, using Punnett squares before learning the equations 
seems to increase student understanding of equation derivation, enabling them to derive 
more complex equations on their own.

INTRODUCTION
Population genetics is a topic often taught in undergraduate introductory biology 
courses to connect student understanding of Mendelian inheritance to more abstract 
principles of evolutionary processes (Ortiz et al., 2000; Brewer and Gardner, 2013). 
This instruction frequently focuses on the Hardy-Weinberg (HW) principle (i.e., the 
null hypothesis that allelic frequencies do not change in a population in the absence of 
evolution) and the accompanying HW equations (p + q = 1 and p2 + 2pq + q2 = 1) to 
predict the relationship between allelic and genotypic frequencies (Hardy, 1908; 
Weinberg, 1908). While there is widespread acknowledgment that the HW principle is 
valuable for student understanding of evolution (Mertens, 1992; Ortiz et al., 2000; 
Brewer and Gardner, 2013), it is also recognized that many students struggle with the 
quantitative and abstract nature of HW calculations (Ortiz et al., 2000; Carlton et al., 
2004; Masel, 2012).

One common complaint with current methods of teaching HW equilibrium is that 
the emphasis on calculation undermines student understanding of the biological prin-
ciples behind it, that is, students get caught up in the math and miss the biology 
(Mariner, 1973; Masel, 2012; Brewer and Gardner, 2013). The amount of time that 
instructors invest in helping students with their calculation skills displaces time that 
instructors could be using to help students better understand the biological principles 
behind these equations, such as the mechanisms of evolutionary change. However, 
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quantitative reasoning itself is also an important core compe-
tency that all biology students should be taught, as noted in the 
American Association for the Advancement of Science 
report Vision and Change in Undergraduate Biology Education 
(AAAS, 2011). As the life sciences become more and more inte-
grated with and dependent on quantitative tools, these skills 
should be integrated throughout biology curricula rather than 
removed (Gross, 2000; Bialek and Botstein, 2004), and evi-
dence suggests this can be done successfully even at the intro-
ductory level (Bray Speth et al., 2010; Thompson et al., 2010; 
Madlung et al., 2011; Hoffman et al., 2016). Thus, pedagogical 
practices are needed to teach quantitative topics effectively so 
the math is retained but does not overshadow important biolog-
ical principles.

Barriers to Success with HW Equilibrium
Difficulties with HW calculations may arise for various reasons. 
First, students may lack the skills to perform the calculations. 
Instructors perceive that students with low conceptual under-
standing of probability (Masel, 2012) or lack of algebraic skills 
(Winterer, 2001) may have a hard time with HW calculations. 
Research suggests that, when students struggle with quantita-
tive topics in science, it can either be due to a lack of mathemat-
ical knowledge and preparation or a failure to apply that math-
ematical knowledge in a novel context (Tuminaro and Redish, 
2004; Scott, 2016). Thus, students with the poorest mathemat-
ical background will likely struggle the most with HW calcula-
tions, but even students with strong calculation skills may still 
have difficulties using those skills in the unfamiliar territory of 
population genetics (see also Selden et  al., 2000; Cui et  al., 
2006; Redish and Gupta, 2009).

Second, challenges with HW equilibrium are likely common 
in students with high levels of math anxiety (Stencel, 1991; 
Brewer and Gardner, 2013), which is a construct that describes 
a general negative affect toward mathematics (Hembree, 1990). 
Math anxiety has been associated with a decrease in mathemat-
ical performance, likely because of an impairment in working 
memory, problems with number processing, avoidance behavior 
(and thus loss of math practice), or a combination of all three 
(Ashcraft and Kirk, 2001; Ashcraft, 2002; Miller and Bichsel, 
2004; Buelow and Frakey, 2013; Foley et al., 2017; Skagerlund 
et al., 2019). Interestingly, many studies have found that females 
are more likely to experience math anxiety compared with 
males, which may contribute to gender gaps in participation in 
science (Hembree, 1990; Miller and Bichsel, 2004; Rubinsten, 
Bialik, and Solar, 2012). Lyons and Beilock suggest that inter-
ventions aiming to control negative emotions associated with 
math may be more effective than simply increasing math train-
ing, because many individuals with math anxiety already have 
the skills necessary to perform the calculations (Lyons and 
Beilock, 2012a). The authors further show that the anticipation 
of doing math, rather than the actual performance of math 
itself, is associated with neural activity in brain regions associ-
ated with threat detection and even the experience of pain in 
individuals with high math anxiety (Lyons and Beilock, 2012b).

Pedagogical Efforts to Overcome Barriers
Common approaches to help students overcome barriers to mas-
ter HW equilibrium specifically can be found in the literature, 
including the use of computers or computer simulations to per-

form the calculations for students (Mariner, 1973; Carlton et al., 
2004), the use of classroom exercises where students simulate 
populations (Winterer, 2001; Bray Speth et  al., 2010; Brewer 
and Gardner, 2013), and the use of population Punnett squares 
(PSs) to visually predict the probability of different genotypes in 
the next generation (Stencel, 1991; Mertens, 1992; Ortiz et al., 
2000). Although lesson plans have been published with such 
suggestions on how to teach this topic, there are no studies, to 
our knowledge, that specifically test these strategies to deter-
mine whether they are effective at helping students understand 
HW equilibrium. A recent analysis of the literature also found 
that less than 25% of the articles about instructional strategies 
for teaching evolution topics actually included experimental 
data (Ziadie and Andrews, 2018), so more empirical studies are 
needed in this area generally. We chose to focus on population 
Punnett squares for reasons outlined in the following section.

Theoretical Rationale for Population Punnett Squares
While there are various ways of using population PSs, we spe-
cifically wanted to use a population PS to teach HW equilib-
rium both as 1) a visual representation of random mating in a 
population in a way that was familiar to students after already 
completing a unit on inheritance and 2) a calculation aid to 
help students perform the mathematics traditionally done 
using the HW equations (see Supplemental Material for visu-
als). The PS could be used completely independent of the clas-
sic p and q variables (to act as a calculation aid that stands 
alone) or as a scaffold in conjunction with the p and q variables 
(to derive the HW equations or act as a calculation aid that 
includes the classic symbols). We would like to emphasize that 
this population PS approach still requires students to perform 
the same calculations as are dictated by the HW equations 
(including exercises that require rearrangement of the equa-
tions, or “thinking backward” from offspring to parents). Thus, 
the requirement for mathematical calculation is not elimi-
nated. Accordingly, we would not necessarily expect PS instruc-
tion to help students overcome lack of math skills. Rather, stu-
dents are using the HW equations without realizing it (see 
example assessment items solved using either the classic HW 
equations or a population PS on p. 16 of the Supplemental 
Material). Then, if students are later introduced to the equa-
tions, including p and q variables, the symbols and expressions 
should already have meaning for the students and thus may be 
better understood.

We purposefully chose population PSs in an attempt to help 
students overcome math anxiety as a barrier to success with 
HW equilibrium. Evidence suggests that the anticipation 
(rather than the execution) of math could be the trigger for 
math anxiety (Lyons and Beilock, 2012a,b), so we wanted to 
focus on the way students are introduced to the mathematical 
calculations and/or equation derivation. Because a population 
PS would “look” more like biology than math to the students 
and PSs were used previously in the inheritance unit, we 
hypothesized that initially using population PSs as a visual scaf-
fold for mathematical calculations would elicit less math anxi-
ety in students than if they derived and used formal equations 
right away. We predicted that, without math anxiety to con-
sume working memory (Ashcraft and Kirk, 2001), students 
who normally experience high math anxiety would be better 
able to perform calculations, understand what the calculations 
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represent biologically, and derive the equations later if taught 
the PS method first.

Research Questions
We tested the effectiveness of PS instruction in the population 
genetics unit of an introductory biology course using a quasi-ex-
perimental, crossover study design. We first compared the 
effects of population PS instruction with classic equations (EQ) 
directly, then tested the order of instruction if students learned 
both methods. We focused on the following research questions:

1.	 Does PS instruction affect HW calculation proficiency com-
pared with classic EQ instruction? Is this effect dependent on 
student math anxiety?

FIGURE 1.  Quasi-experimental study design. Two sections of an introductory course for 
majors had the same curriculum, except for 2 days of instruction about HW equilibrium 
during the second half of the semester. The EQ 1st section started with equation derivation 
and usage, then learned population PSs on day 2. The PS 1st section had the treatments in 
the reverse order. Both sections had the same examples and practice problems used in 
class on day 1 and on day 2. Assessments used for data collection are shaded in gray.

2.	 If both methods are taught, does the order of instruction 
affect the work type (PS vs. EQ) students choose to use? 
Does this effect on work type depend on student math 
anxiety?

3.	 If both methods are taught, does the order of instruction 
affect calculation proficiency?

4.	 If both methods are taught, does the work type students 
choose (PS vs. EQ) affect calculation proficiency? Is this 
effect dependent on student math anxiety?

5.	 If both methods are taught, does the order of instruction 
affect students’ understanding of HW equilibrium and the 
derivation of the HW equations? Is this effect dependent on 
student math anxiety?

METHODS
Ethics Statement
The study design was reviewed and 
approved by the Institutional Review 
Board at Brigham Young University. All 
research subjects gave written consent to 
participate in the study.

Course Description and Participants
This study was conducted in an introduc-
tory biology course for nonmajors, taught 
at a private university with an enrollment 
of ∼30,000 students. This course is often 
taken to fulfill a general education require-
ment and has no prerequisites. The course 
curriculum includes topics concerning the 
nature of science, chemistry, cell and mole-
cular biology, genetics, evolution, and ecol-
ogy. By the time of the unit on HW equilib-
rium, all students had already been taught 
to use PSs to solve genetics problems (see 
placement in course in Figure 1). Instruc-
tional methods included interactive lecture 
with frequent formative assessment, clicker 
questions, and think–pair–share.

Two sections of this course were used 
in this study. Students registered for the 
course section of their choice, and each 
section met separately (one at 10 am and 
one at 11 am). The section that started 
with equation derivation (“EQ 1st sec-
tion”; see Figure 1) had 97 students 
enrolled, with 70 students both consenting 
to participate in the study and completing 
the mid-assessment. The section that 
started with PSs (“PS 1st section”) had 110 
students enrolled, with 71 students both 
consenting to be participants and complet-
ing the mid-assessment. Some measures 
have sample sizes lower than 70 and 71 
because students failed to take an assess-
ment or answer a specific question. We 
always included as many students as pos-
sible to maximize sample sizes and avoid 
bias, so sample sizes change slightly from 
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analysis to analysis for this reason. Thus, sample sizes are listed 
with each figure or analysis.

Experimental Design
Because students self-selected into course sections, we 
employed a quasi-experimental approach (see Figure 1). To 
limit variability between sections, both sections were taught in 
the same room, by the same instructor (author E.G.B.), during 
the same semester; using the same curriculum, homework 
assignments, and exams; and having the same teaching assis-
tants. Learning activities and instructional methods were con-
sistent between sections, with the exception of the described 
treatment shown in Figure 1. We recognize that having an 
author of this study instruct the course has the potential to add 
bias. We strove for researcher neutrality by incorporating good 
teaching practices into both treatments and have included all 
relevant lesson plans in the Supplemental Material to show the 
differences between sections.

Because students could not be sorted randomly into the two 
sections, we assessed equivalency of the student populations in 
each section with a pre-assessment at the beginning of the 
semester (assessing scientific reasoning skills upon course 
entry) and a pre-assessment directly before the treatment 
(investigating levels of math anxiety and mastery of math skills; 
see Figure 1). Instruction about HW equilibrium was then given 
over two class sessions. In the first class session, one section 
derived the HW equations to solve HW problems, while the 
other section was taught to use a population-level PS to solve 
HW problems (see Supplemental Material for lesson plans). 
The two sections solved the exact same practice problems, but 
they used different methods. After the first day of instruction 
(having been taught only one method), students from both sec-
tions completed an assessment evaluating their ability and con-
fidence in solving HW problems (see “Mid-Assessment” in the 
Supplemental Material). On the second day of instruction, each 
section received the opposite treatment: the section that was 
taught the equations first was now taught how to use a popula-
tion PS to model HW equilibrium, while the section that had 
learned to use a population PS derived the HW equations (see 
Supplemental Material for lesson plans). Again, sections were 
given the same practice problems but just used a different 
method to solve them. After the second day of instruction (with 
all students now having been taught both methods), a final 
instrument was administered assessing students’ ability to solve 
HW problems, understanding of the biological meaning of the 
HW equations, ability to derive more complex HW equations, 
math anxiety at the end of the unit, and other attitudes (see 
“Post-Assessment” in the Supplemental Material).

Due to the crossover design of the study, the results of the 
mid-assessment and the post-assessment can be used to answer 
different experimental questions. The mid-assessment, given 
after the first day of instruction, allowed for direct comparison 
of the two instructional methods and was used to address 
research question 1. The post-assessment, given after the sec-
ond day of instruction, was used to investigate the effect of the 
order of instruction (research questions 2–5).

Instruments and Data Collection
Scientific Reasoning.  We used the 24-item version of the Law-
son Classroom Test of Scientific Reasoning (LCTSR; Lawson, 

1978; Lawson et al., 2000) to assess content-independent scien-
tific reasoning ability. We chose this instrument because we 
wanted to assess students’ level of reasoning without measuring 
any kind of domain-specific preparation. Validity of this instru-
ment has been established previously for college student popu-
lations, verifying that the tasks do not require domain-specific 
knowledge (Lawson et al., 2000). A more recent study of U.S. 
college freshmen also verified the LCTSR’s validity as a unidi-
mensional construct of scientific reasoning, and the authors 
demonstrated high internal consistency (Cronbach’s alpha = 
0.85) with the scoring method we used (Bao et al., 2018). This 
instrument was administered to students on the pre-assessment 
at the beginning of the semester (see Figure 1).

Math Anxiety.  We chose to use the Abbreviated Math Anxiety 
Survey (AMAS; Hopko et  al., 2003) to assess math anxiety, 
because it was brief and specifically developed for undergradu-
ate students. It was previously shown to have strong internal 
consistency (Cronbach’s alpha = 0.9), test–retest reliability (r = 
0.85), and convergent/divergent validity (r = 0.85 with the 
longer Math Anxiety Rating Scale–Revised instrument) with 
college students (Hopko et al., 2003).

The AMAS consists of nine questions (available in the Sup-
plemental Material), and respondents were asked to rate each 
math task with a level of anxiety from one to five (low anxiety 
to high anxiety). Student responses were then summed for all 
nine questions to give a total “anxiety score” (ranging from 9 to 
45). For some analyses, we categorized students into three cat-
egories: low, moderate, or high anxiety. We defined “low anxi-
ety” as reporting an anxiety score of 18 or lower (equivalent to 
marking low or some anxiety on all items), “moderate anxiety” 
for scores of 19–27 (e.g., marking some or moderate anxiety on 
all items), and “high anxiety” as an anxiety score above 27 
(e.g., moderate anxiety or higher on all items). The highest 
score we obtained was 36. In all regression analyses, raw math 
anxiety score was used to give more information. This instru-
ment was administered to students on the pre-assessment 
directly before the HW unit and on the post-assessment after 
the HW unit (see Figure 1).

Math Skills.  Pretreatment math skills were assessed using a six-
item instrument that required students to solve open-response 
mathematics problems. This instrument was created in two 
steps. First, we identified key mathematical ideas involved in 
HW equilibrium and equations, such as basic probability, prob-
abilities regarding independent events, and solving with equa-
tions. We then took these mathematical ideas and referenced 
the mathematics education research literature to create specific 
items to test those ideas (e.g., Sfard, 1991; Sfard and Linchevski, 
1994; Lecoutre, 1992; Lecoutre and Fischbein, 1998; Panizza 
et al., 1999; Shaughnessy and Ciancetta, 2002; Batanero and 
Sanchez, 2005). For example, we created separate questions for 
probabilities associated with independent events when those 
events produce the same outcomes or different outcomes 
(Lecoutre, 1992; Lecoutre and Fischbein, 1998; Shaughnessy 
and Ciancetta, 2002). We also created a question to assess 
whether students conceptualized terms within an equation (or 
groups of terms) as their own entities (Sfard, 1991; Sfard and 
Linchevski, 1994). The math skills assessment is provided in the 
Supplemental Material, along with validity justifications for 
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each open-response question. This instrument was adminis-
tered to students on the pre-assessment before the population 
genetics unit (see Figure 1).

HW Calculations and Work.  On both the mid-assessment 
(after day 1 of instruction) and the post-assessment (after day 
2 of instruction; see Figure 1), we tested students’ ability to 
perform calculations for populations assumed to be in HW equi-
librium. Students were asked to calculate allelic, genotypic, or 
phenotypic frequencies given a different allelic, genotypic, or 
phenotypic frequency for a population. This required correctly 
identifying the frequencies that were given and understanding 
the mathematical relationships between frequencies. There 
were six unique questions, three given on the mid-assessment 
and three on the post-assessment. All test items were multi-
ple-choice format and can be found in the Supplemental Mate-
rial.

Students were also asked to show work for all calculations. 
Two researchers (K.R.W., A.B.) independently coded student 
work into one of three categories: included a population PS in 
their work (“PS,” students may or may not have still done cal-
culations outside the PS), only performed calculations using the 
HW equations (“EQ,” students may or may not have used the p 
and q variables), or showed no work at all (“NW”). The two 
researchers agreed for 98.1% of mid-assessment items (Cohen’s 
kappa = 0.97). Generally, differences in coding arose from con-
fusion about whether or not to count a PS if it had been crossed 
out or erased. We decided that even crossed-out or erased PSs 
would be counted in the PS category (because they were evi-
dence that students used the PS as they thought through the 
problem), and this led to unanimous agreement on final catego-
rization. Student work on the post-assessment was coded in the 
same way (initial coding by two raters, K.R.W. and A.B., yielded 
99.5% agreement and Cohen’s kappa = 0.98; the two raters 
then came to agreement). The percent of the time students used 
a type of work was calculated by taking the number of ques-
tions on which students used a particular type of work and 
dividing it by the total number of questions.

Self-Efficacy.  Students’ feelings of self-efficacy were assessed 
by self-reported confidence in their HW calculation proficiency 
on a five-point Likert scale (1 = no confidence, 5 = complete 
confidence). The full wording of this question can be found in 
the Supplemental Material. Because we assessed self-efficacy 
using this single item on the mid-assessment and again on the 
post-assessment (see Figure 1), the lack of validity of this con-
struct is a limitation of our study.

Conceptual Understanding of HW Equilibrium and Equa-
tions.  We attempted to assess students’ understanding of HW 
equilibrium and its associated equations in three different ways 
on the post-assessment (see the Supplemental Material). First, 
we gave students an open-response question to derive HW 
equations to model a three-allele, diploid system given the vari-
ables p, q, and r while showing their work. We graded this ques-
tion as number of equations correct: 0, 1, or 2. Equations had to 
be exactly correct to count as “correct.” Two raters (K.R.W., AB) 
independently coded student work used into two categories: 
drew a 3 × 3 PS or did not. Initial coding yielded 96.3% agree-
ment (Cohen’s kappa = 0.92), and then a third rater (E.G.B.) 

looked at disagreement and decided whether there was a PS 
or not.

As a second way to assess understanding, we asked students 
to explain why the mathematical model of HW equilibrium 
would no longer hold if one of its assumptions were to be vio-
lated. Two researchers (S.R.W., R.F.G.) coded all responses 
along four separate dichotomous categories: 1) whether or not 
the student’s response included a correct mathematical expla-
nation, as opposed to speaking strictly in biological terms or 
including an incorrect mathematical explanation; 2) whether or 
not the student drew or referred to a PS in any way; 3) whether 
or not the student wrote the classic HW equations or referred to 
p/q variables; and 4) whether or not the student attempted to 
write an altered HW equation of some kind (e.g., if mutation 
occurred, p + q + r = 1 rather than p + q = 1; or if homozygous 
recessive offspring would not survive past birth and thus were 
selected against, p2 + 2pq = 1 rather than p2 + 2pq + q2 = 1). 
First, the two researchers coded separately, with initial coding 
yielding 93.5% agreement (Cohen’s kappa = 0.77), but then 
they came to agreement on all after discussion.

As a third way to assess understanding, we asked students to 
define each term of the HW equations (p, q, p2, 2pq, q2) in bio-
logical terms. We first had two researchers (K.R.W., A.B.) inde-
pendently code each definition to determine whether or not the 
student was defining the correct biology entity. Initially, coders 
reached 87% agreement (Cohen’s kappa = 0.48). We then went 
through the differences and determined that most of them 
arose from disagreement about how stringent to be about the 
use of “allele,” “gene,” “genotype,” and “trait” (e.g., some stu-
dents would define the variable correctly but add on the word 
phenotype when it was not needed). We decided to be lenient 
with such cases as long as we could tell they were referring to 
the correct entity. Raters then came to unanimous agreement. 
Coding for the combined term p2 + 2pq was slightly different. 
Two researchers (K.R.W., A.B.) classified definitions into the fol-
lowing three categories: a correct response that included the 
overarching idea of a phenotype, a correct response that focused 
on the sum of two genotypes rather than a shared phenotype, 
or incorrect. When we compared the two raters’ classifications 
into these three categories, we found 88.8% agreement and 
Cohen’s kappa = 0.78. The raters then came to unanimous 
agreement. These three categories were treated as a nominal 
variable in analyses (not ranked).

Instruction Preference.  After both days of instruction, we 
asked students which day of instruction they found most help-
ful for their learning (single-choice question, EQ or PS day). 
Unfortunately, some students did not follow instructions and 
handwrote “both” instead of choosing the EQ day or the PS day. 
For the analysis, we only included students who picked a day as 
their preference. See this question in the post-assessment in the 
Supplemental Material.

Statistics
We first compared our two groups (EQ 1st vs. PS 1st) directly 
using simple statistical tests as described in the text. Due to our 
quasi-experimental approach, we then used multiple linear 
(ordinary least-squares) regression to predict outcome vari-
ables using various student characteristics in addition to exper-
imental treatment (Theobald and Freeman, 2014). For each 
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regression analysis, we verified that no assumptions of linear 
regression were violated. While some student characteristics 
were correlated (math anxiety and math skills, reasoning 
scores and math skills, etc.), correlation coefficients were all 
less than 0.5. Furthermore, variance inflation factor values 
were always between 1.07 and 1.56, suggesting that we did 
not have any issues with multicollinearity. Furthermore, when 
interactions were included in multiple linear regression, vari-
ables were centered around their mean before interaction 
terms were calculated to avoid multicollinearity with their 
component variables.

Our sample size was constrained by the number of students 
who enrolled in the course and consented to participate in the 
study. A priori power analyses estimated that, with our sample 
size (n = 141 overall, or n = 138 in analyses that included 
LCTSR scores), we would have high statistical power (0.8 or 
higher) to detect medium effect sizes. Thus, small effects could 
possibly be undetectable with our data set, and any small effects 
we would detect would likely have inflated effect sizes 
(Ioannidis, 2008). We comment on this limitation of our study 
in the Discussion section.

Student characteristics used in the regression analyses were 
restricted to those that theoretically should impact HW calcula-
tions (math anxiety, math skills, and scientific reasoning) and 
any that differed between course sections. Our regression anal-
yses included seven or eight predictors depending on the anal-
ysis. This allowed for 17–20 subjects per variable, which is con-
sidered appropriate for detecting medium effect sizes (Green, 
1991) and more than sufficient for estimating the magnitude of 
regression coefficients and their confidence intervals (Austin 
and Steyerberg, 2015). In our a priori power analyses, further 
restriction of the number of independent variables in our regres-
sion analyses did not increase power substantially enough to 
allow us to detect small effects (see also the recommendations 
in Green, 1991), so we chose to just provide our full regression 
models in the text rather than performing model selection.

All statistical analyses were conducted using IBM SPSS Sta-
tistics v. 27. Figures were generated using GraphPad Prism v. 
9.0.0. All error bars represent standard error of the mean.

RESULTS
Section Equivalence
Because our experiment is only quasi-experimental (students 
chose the section in which they wanted to enroll), we first inves-
tigated whether the two course sections were equivalent in terms 
of preparation and demographics. As summarized in Table 1, 
mean scores on pretreatment math skills (probability and alge-
bra), math anxiety, and scientific reasoning were indistinguish-
able between the two sections, as were student gender ratios. 
Sections did differ in terms of school year, as the section that was 
taught the equations first had more juniors and seniors, while the 
section that was taught the PS method first had more freshmen 
and sophomores (see Table 1). They also differed in terms of 
proportions of science, technology, engineering, and mathemat-
ics (STEM) versus non-STEM majors; the section that learned 
the PS method first had more STEM majors than the other sec-
tion (see Table 1). We wondered whether these two differences 
were related, for example, that non-STEM majors were more 
likely to be older, but there was no relationship between school 
year and major; χ2(3) = 0.044, p = 0.998, n = 141.

As noted in the Methods section, we did not have the statis-
tical power to confidently detect small effects, and all differ-
ences between sections were either insignificant or small (Table 
1, Cohen’s d < 0.5; Cohen, 1988). Thus, there could be small 
differences we did not detect, and the effect sizes for significant 
effects could be exaggerated (Ioannidis, 2008). In an effort to 
account for differences that already existed in our two student 
populations, we wanted to include student characteristics as 
possible predictors in later regression models (Theobald and 
Freeman, 2014). We decided to include all variables that signifi-
cantly differed by section (STEM major and year in school) plus 
those we had initially predicted would affect success with HW 
calculations based on theory (scientific reasoning, math anxi-
ety, and math skills).

Research Question 1
Does PS instruction affect HW calculation proficiency compared 
with classic EQ instruction? Is this effect dependent on student 
math anxiety? The first three items on the mid-assessment 
required students to calculate frequencies of variables assuming 
a population was in HW equilibrium. We coded student work 
on each problem according to the method they used: including 
a population PS (“PS”), showing calculations and equations but 
no PS (“EQ”), or showing no work at all (“NW”). The number 
of problems on which students used a PS differed by section, 
independent-samples t test with Welch’s correction, t(121.5) = 
13.4, p < 0.0005, EQ n = 70, PS n = 71, with a majority of stu-
dents in both sections using the method that they had been 
taught in class as expected (Figure 2A).

As shown in Figure 2B, the section that learned the popula-
tion PS method scored higher on this assessment (M = 1.8, SD 
= 1.2, n = 71) than the EQ section (M = 1.5, SD = 1.1, n = 70), 
but this raw difference was not significant by independent-sam-
ples t test, t(139) = 1.57, p = 0.12, or Mann-Whitney U-test 
(because data were not normally distributed), U = 2877.5, p = 
0.09. Next, we used multiple linear regression to target student 
performance (no. correct) on these HW calculation items, with 
possible predictors including STEM major and year (because 
these differed between sections); reasoning, math skills, and 
math anxiety (because these should theoretically impact stu-
dent calculation proficiency); with treatment (EQ vs. PS) and 
an interaction between treatment and math anxiety (our exper-
imental questions). Model results are shown in Table 2. Stu-
dents’ math skills, scientific reasoning (LCTSR), and math anx-
iety were all significant predictors of increased calculation 
proficiency, as expected. Teaching the PS method also signifi-
cantly predicted an additional 0.33 questions correct, although 
the effect was small and only accounted for 1.4% of variation in 
scores. This effect could not be explained by there being younger 
students or more STEM majors in that section, because year in 
school and major were both included in the model. Finally, 
there was not a significant interaction between instruction and 
math anxiety (Table 2).

Interestingly, the PS section outperformed the EQ section 
only on the first question of the mid-assessment (Fisher’s exact 
test: p = 0.011, odds ratio = 2.45, n = 141; see Supplemental 
Material for questions), while the two sections performed 
equally on the second and third questions (Fisher’s exact test: 
p = 0.60 and 0.74, respectively, n = 141 for both). The differen-
tial performance by treatment on the first question cannot be 
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explained by pre-existing group differences (proportion of 
STEM majors) as both non-STEM and STEM majors were more 
likely to get the first question on the mid-assessment correct if 
they received PS instruction (see Supplemental Figure S1).

Students’ feelings of self-efficacy in solving HW problems 
after 1 day of instruction were assessed by self-reported confi-
dence. The PS 1st section reported somewhat higher confidence 
(small to medium effect size), but the distributions of the two 
sections’ confidence levels were indistinguishable by the 
Mann-Whitney U-test (U = 2831.5, p = 0.13, Cohen’s d = 0.26; 
EQ 1st: M = 2.90, SD = 1.02, n = 70; PS 1st: M = 3.14, SD = 
0.96, n = 71).

Research Question 2
If both methods are taught, does the order of instruction affect the 
work type (PS vs. EQ) students choose to use? Does this effect on 
work type depend on student math anxiety? We again coded stu-
dent work for each of the three HW calculation problems (PS, 
EQ, or no work). As shown in Figure 2C, there was more diver-
sity in the work used compared with the mid-assessment, but 
the majority of students still used the method that they were 
taught first. Two-way ANOVA results suggest that treatment 
order (p < 0.0005, ω2 = 0.10), math anxiety category (p = 0.02, 

FIGURE 2.  Performance on HW calculation problems. (A) The work 
students used (PS, EQ, or no work) was coded for each of three HW 
calculation questions on the mid-assessment. The average number 
of problems for each type of work is shown here by treatment (EQ: 

TABLE 1.  Sections were generally equivalent except for school year and STEM versus non-STEM majors

Variable

EQ 1st PS 1st Statistical test:  
test statistic, p, effect sizeaM SD N M SD N

Math skillsb,c 4.2 1.1 70 4.3 1.1 71 Independent-samples t:  
t(139) = 0.44, p = 0.66, Hedges’ g = 0.07

Math anxietyb,d 19.6 5.6 70 20.4 6.6 71 Independent-samples t:  
t(139) = 0.80, p = 0.43, Hedges’ g = 0.13

Reasoninge,f 19.6 3.0 68 18.7 4.5 70 Welch’s t:  
t(122) = 1.42, p = 0.16, Glass’s Δ = 0.21

School yearg,h 2.5 0.9 70 2.2 0.8 71 Mann-Whitney U:  
U = 2017, p = 0.03, Cohen’s d = 0.36

Gendere 42 mal, 28 fem 43 mal, 28 fem Chi-square:  
χ2(1) = 0.005, p = 0.95, φ = 0.006

Math anxietyi 31 L, 31 M, 8 H 31 L, 29 M, 11 H Chi-square: 
χ2(2) = 0.533, p = 0.77, φ = 0.061

Majorg 25 STEM, 45 not 38 STEM, 33 not Chi-square:  
χ2(1) = 4.52, p = 0.03, φ = 0.18

aHedges’ g was calculated instead of Cohen’s d, where possible, to reduce bias. Glass’s Δ was calculated instead of Cohen’s d when 
two samples had significantly different standard deviations.
bData were obtained from a pre-assessment right before the first day of population genetics instruction.
cBoth probability skills and algebra skills are included in this measure.
dAMAS (Abbreviated Math Anxiety Survey), scores between 9 and 45.
eData were obtained from a pre-assessment at the beginning of the semester.
fLCTSR (Lawson’s Classroom Test of Scientific Reasoning).
gData were obtained from class rolls at the beginning of the semester.
hFreshman = 1, sophomore = 2, junior = 3, or senior = 4.
iAMAS categories: L = low (scores < 19), M = moderate (scores 19–27), H = high (scores > 27).

n = 70; PS: n = 71). (B) Frequencies of mid-assessment scores are 
shown by treatment. (C) Post-assessment work used was calculat-
ed as in A and shown by treatment order and math anxiety (EQ 1st: 
Low n = 31, Moderate n = 31, High n = 8; PS 1st: Low n = 31, 
Moderate n = 29, High n = 11). (D) Frequencies of mid-assessment 
scores are shown by treatment (EQ 1st: n = 68, PS 1st: n = 70).
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ω2 = 0.03), and an interaction between the two (p = 0.02, ω2 = 
0.04) all significantly explained variance in the use of PS work 
(adjusted R2 = 0.22; EQ 1st n = 68, PS 1st n = 70; Figure 2C).

High-anxiety students used PS work much more than 
low-anxiety students in the EQ 1st section (blue, Figure 2C) but 
not in the PS 1st section (orange). Specifically, moderate- and 
high-anxiety students in the EQ 1st section abandoned the EQ 
method after being taught the PS method, but low-anxiety stu-
dents in the PS 1st section did not abandon the PS method in 
favor of the EQ method.

To account for differences between sections (year in school 
and STEM major) and other variables that could impact work 
type used (reasoning and math skills), we performed multiple 
linear regression with %PS work as the target. In this analysis, 
actual math anxiety score was used as a predictor rather than 
math anxiety category, providing more information. As shown 
in Table 3, instruction order, math anxiety, and an interaction 
between the two were still significant predictors of PS use. 
Learning about PSs first was predictive of using PS work on one 
more question compared with those who learned EQ first, a 
medium-sized effect. In addition, upper-level students were less 
likely to use PS work.

Research Questions 3 and 4
If both methods are taught, does the order of instruction affect 
calculation proficiency? If both methods are taught, does the 
work type students choose (PS vs. EQ) affect calculation profi-
ciency? Is this effect dependent on student math anxiety? As 

shown in Figure 2D, student scores on HW calculation items 
increased after 2 days of instruction compared with 1 day 
(Figure 2B). However, order of instruction had no effect on 
performance; independent-samples t test: t(136) = 0.87, d = 
0.15, p = 0.39; Mann-Whitney U-test: U = 2651.5, p = 0.21; 
EQ n = 68, PS n = 70. Next, we used multiple linear regres-
sion to target student performance (no. correct) on these 
post-assessment HW calculation items. Possible predictors 
included year and STEM major (differed by section); reason-
ing, math anxiety, and math skills (theoretically predictive of 
success); treatment order (EQ 1st vs. PS 1st), percent of prob-
lems with PS work, and an interaction between percent work 
PS and math anxiety (experimental questions). Results are 
shown in Table 4. After both days of instruction, high scien-
tific reasoning ability and STEM major were significant pre-
dictors of HW calculation success. Neither instruction order 
nor work type used was predictive of success, but there was a 
significant interaction between using PS work and math anx-
iety (small effect). To better interpret the positive coefficient 
of this interaction variable, we plotted math anxiety versus 
raw number of HW problems correct for students who never 
used PSs and those who always used PSs (Figure 3). By sim-
ple linear regression, there was a significant relationship 
between math anxiety and calculation success for students 
who never used a PS (m = −0.07, p = 0.0002, R2 = 0.23, n = 
55), but there was no significant relationship between anxi-
ety and success when students always used a PS (m = −0.03, 
p = 0.12, R2 = 0.04, n = 60).

TABLE 2.  Results of multiple linear regression to target student’s performance (no. correct out of 3) on test items requiring HW calcula-
tions after 1 day of instruction

R2 Adjusted R2 Variable B SEB β (standardized) p value ω2 a

0.393 0.360 (Intercept) −0.544 0.705 0.442

Math skills 0.375 0.085 0.356 <0.0005 0.086
Reasoning (LCTSR) 0.068 0.025 0.226 0.007 0.030
Math anxiety −0.032 0.015 −0.167 0.036 0.016
Taught PSsb 0.335 0.166 0.145 0.046 0.014
Year −0.128 0.097 −0.094 0.187 0.004
STEM majorc 0.128 0.168 0.055 0.446 −0.002
Taught PSs * math anxiety −0.012 0.027 −0.032 0.656 −0.004

aTotal sample size = 138. Due to our small sample size, omega-squared was used to estimate the proportion of target variance associated with each predictor.
bTaught PSs = 1, taught EQ = 0.
cSTEM major = 1, non-STEM major = 0.

TABLE 3.  Results of multiple linear regression to predict the work type students chose to use (% PS) when solving HW calculation problems 
after both days of instruction

R2 Adjusted R2 Variable B SEB β (standardized) p value ω2 a

0.294 0.256 (Intercept) 0.259 0.306 0.399
Taught PS 1stb 0.349 0.072 0.380 <0.0005 0.125
Math anxiety 0.018 0.006 0.234 0.007 0.036
Taught PS 1st * math anxiety −0.028 0.012 −0.184 0.019 0.026
Year −0.09 0.042 −0.167 0.032 0.020
Math skills −0.065 0.037 −0.156 0.080 0.012
Reasoning (LCTSR) 0.012 0.011 0.103 0.261 0.002
STEM majorc −0.009 0.073 –0.010 0.901 −0.005

aTotal sample size = 138. Due to our small sample size, omega-squared was used to estimate the proportion of target variance associated with each predictor.
bTaught PS 1st = 1, taught EQ 1st = 0.
cSTEM major = 1, non-STEM major = 0.
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Students’ feelings of self-efficacy in their ability to solve HW 
problems did increase compared with 1 day of instruction for 
both sections, but comparison of the distributions of the two 
sections’ confidence levels found them to be indistinguishable 
by the Mann-Whitney U-test (U = 2388.5, p = 0.84, Cohen’s d = 
0.03; EQ 1st: M = 3.58, SD = 0.89, n = 67; PS 1st: M = 3.60, SD 
= 0.82, n = 70).

Research Question 5
If both methods are taught, does the order of instruction affect 
students’ understanding of HW equilibrium and the derivation of 
the HW equations? Is this effect dependent on student math anx-
iety? To assess students’ levels of understanding of the HW 
equations after learning both methods, we asked students to 
derive more complex HW equations (p + q + r = 1 and p2 + q2 + 
r2 + 2pq + 2 pr + 2qr = 1) to model a three-allele, diploid system 
given allelic frequency variables p, q, and r (Khan et al., 2018). 

This was something that was not done or discussed in class, 
and we expected it to be much more difficult than calculating 
frequencies for populations in HW equilibrium. Again, students 
were asked to show their work so we could get a glimpse of 
their thought processes. Students who learned PSs first were 
more likely to use a 3 × 3 population PS when deriving the 
equations (Fisher’s exact test, p = 0.016, odds ratio = 2.63, n = 
137; Figure 4A).

As shown in Figure 4B, students in the PS 1st section were 
also more likely to correctly derive the two more complex equa-
tions compared with the students in the EQ 1st section 
(Mann-Whitney U-test: U = 3122.0, p < 0.0005, n = 137). To 
concurrently consider differences between sections (year and 
STEM major), student characteristics that would theoretically 
affect derivation ability (reasoning, math anxiety, math skills), 
and our experimental questions (treatment order, interaction 
between treatment order and math anxiety, and use of PSs), 
we used multiple linear regression to target the number of 

FIGURE 3.  Using PSs was helpful for students with high math 
anxiety. The y-axis represents the number of correct HW calcula-
tion problems, with math anxiety scores on the x-axis. For 
summarizing data, students were grouped by math anxiety by 
fours (scores 10–13, 14–17, etc.; n = 5–17 students per symbol). 
Lines represent the best-fit line obtained by simple linear regres-
sion using every data point (not the summary points).

TABLE 4.  Results of multiple linear regression to target student’s performance (no. correct out of 3) on test items requiring HW calcula-
tions after both days of instruction

R2 Adjusted R2 Variable B SEB β (standardized) p value ω2 a

0.315 0.271 (Intercept) 0.734 0.541 0.177
Reasoning (LCTSR) 0.076 0.019 0.350 <0.0005 0.077
STEM majorb 0.362 0.129 0.219 0.006 0.037
%PS work*math anxiety 0.054 0.024 0.176 0.023 0.023
Math anxiety −0.019 0.012 −0.140 0.114 0.008
Taught PS 1stc 0.201 0.139 0.122 0.152 0.006
Math skills 0.035 0.066 0.046 0.600 −0.004
Year 0.034 0.075 0.035 0.653 −0.004
%PS work −0.043 0.154 −0.024 0.781 −0.005

aTotal sample size = 138. Due to our small sample size, omega-squared was used to estimate the proportion of target variance associated with each predictor.
bSTEM major = 1, Non-STEM major = 0.
cTaught PS 1st = 1, taught EQ 1st = 0.

FIGURE 4.  Student work deriving more complex HW equations 
after both days of instruction. Students were asked to derive two 
HW equations for a three-allele system. (A) The work students 
showed as they solved this problem was coded as either using a 
three-by-three PS (3 × 3 PS) or not (Other). Frequency of work used 
by treatment is shown. (B) Frequency of student performance is 
shown as number of equations correctly derived (0, 1, or 2).
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equations derived correctly. Pre-assessment scientific reasoning 
(LCTSR) score and treatment order were both significantly pre-
dictive of correct derivation of complex HW equations (Table 
5). Neither use of a 3 × 3 PS nor an interaction between treat-
ment order and math anxiety were significantly predictive of 
derivation success.

To further assess students’ understanding of HW equilibrium 
and to specifically investigate their ability to connect math and 
biology, we asked them to pick an assumption of HW equilib-
rium and explain why the classic HW equations would not hold 
if that assumption were violated. As described in the Methods, 
students’ responses were coded by researchers for multiple 
characteristics. Unfortunately, our sample size was not large 
enough to run reliable binomial logistic regression and predict 
the characteristics of students’ responses with multiple vari-
ables at once. Thus, we simply compared the different charac-
teristics of student responses by treatment order and math anx-
iety using multiple chi-square tests of independence. Because 
we performed 12 tests (three tests for each of the four variables: 
one to test the effect of treatment order, and two to test the 
effect of math anxiety in each section), we used Bonferroni’s 
correction to set our critical p level for significance, or α, to 
0.004. In terms of treatment order and math anxiety, we found 
no interesting differences in the way students referred to/used 
PSs or the classic equations and p/q variables in their explana-
tions (unpublished data). Students were also equally likely to 
correctly integrate math into their explanations regardless of 
treatment order or math anxiety. As shown in Figure 5A, we did 
find a close-to-significant association between math anxiety 
and writing an altered HW equation in the EQ 1st section 
(blue), with low-anxiety students being more likely to do so; 
chi-square:  χ2(2) = 9.91, p = 0.007, n = 67, φ = 0.38. There was 
no significant association between anxiety and writing an 
altered HW equation for the PS 1st section; orange; chi-
square:  χ2(2) = 1.81, p = 0.40, n = 69, φ = 0.08). Treatment 
order had no effect on whether or not students attempted to 
write an altered HW equation in their explanations (Fisher’s 
exact test, p = 0.67, n = 136).

As a final way to investigate students’ understanding of 
HW equilibrium, we asked students to define each term of 
the equations using biology vocabulary. No significant differ-
ences were found between sections for any of the terms 

except p2 + 2pq (see Supplemental Table S1). If defining p2 
+ 2pq as the frequency of either the dominant phenotype or 
as the sum of the two dominant genotypes (AA and Aa) were 
both counted as correct, students in the two sections were 
equally likely to define p2 + 2pq correctly (Fisher’s exact test, 
p = 0.67; Supplemental Table S1). However, students who 
learned the PS method first were more likely to define p2 + 
2pq as the combination of two genotypes, while students 
who learned the equations first were more likely to include 
the overarching idea of the dominant phenotype in their cor-
rect definitions; chi-square test: χ2(2) = 6.18, p = 0.045, n = 
134, phi = 0.21 (Figure 5C). Because we performed a total of 
seven tests for definitions, our critical p level for significance, 
or α, would be 0.007 with Bonferroni’s correction. Thus, this 
effect would not be considered significant under conservative 
practices.

Student Instruction Preference and Student Post Anxiety
The majority of students from both sections found the PS 
instruction more helpful to their learning compared with EQ 
derivation (Figure 6), but there was no relationship between 
treatment order and instruction preference (Fisher’s exact test, 
p = 0.49, n = 133). Additionally, for students who learned the 
EQ first, there was a relationship between math anxiety and 
which day of instruction students preferred: students with 
higher math anxiety were more likely to find the PS instruction 
day more helpful; χ2(2) = 8.92, p = 0.012, n = 65, phi = 0.37 
(Figure 6, blue). For the section that was taught the PS method 
first, this relationship was not observed, as students at every 
level of math anxiety preferred the PS instruction; χ2(2) = 0.62, 
p = 0.73, n = 68, phi = 0.10 (Figure 6, orange).

We again assessed math anxiety on the post-assessment to 
see whether treatment order would affect students’ self-re-
ported math anxiety. We found no difference in math anxiety on 
the pre- and post-assessments (Supplemental Table S2), no dif-
ference between sections, and no interaction between section 
and time. We should note that the instrument we used to assess 
math anxiety (Hopko et al., 2003) has questions that ask about 
how students feel in math-related situations in general (trait-
math anxiety) rather than in the moment (state-math anxiety). 
Thus, we would not necessarily expect our short treatment to 
change students’ scoring on this instrument.

TABLE 5.  Multiple linear regression to target student’s performance on three-allele system HW equation derivation after both days of 
instruction (target = no. correct equations out of 2)

R2 Adjusted R2 Variable B SEB β (standardized) p value ω2 a

0.208 0.158 (Intercept) −0.055 0.533 0.918

Taught PS 1stb 0.491 0.128 0.327 <0.0005 0.086
Reasoning (LCTSR) 0.042 0.02 0.214 0.034 0.023
Year 0.105 0.073 0.119 0.152 0.007
Used 3 × 3 PSc 0.146 0.137 0.09 0.286 0.001
Math anxiety −0.009 0.011 −0.073 0.429 −0.002
STEM majord 0.088 0.127 0.059 0.487 −0.003
Taught PS 1st * math anxiety 0.006 0.02 0.026 0.753 −0.006
Math skills 0.01 0.064 0.015 0.877 −0.006

aTotal sample size = 138. Due to our small sample size, omega-squared was used to estimate the proportion of target variance associated with each predictor.
bTaught PS 1st = 1, taught EQ 1st = 0.
cUsed 3 × 3 PS = 1, did not = 0.
dSTEM major = 1, non-STEM major = 0.
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DISCUSSION
The use of population-level PSs in HW instruction had previ-
ously been suggested but not tested (Stencel, 1991; Mertens, 
1992; Ortiz et al., 2000). We used a quasi-experimental study 
design to test the effectiveness of using PSs to teach HW equi-
librium and its associated calculations. We were especially 
interested in the usefulness of population PSs as a calculation 
aid for students with math anxiety.

Research Question 1
We investigated student performance on HW calculation prob-
lems after 2 days of HW instruction (either PS instruction or 

FIGURE 5.  Effect of treatment order and math anxiety on student understanding of HW 
equilibrium. (A) On the post-assessment, students were asked to choose an assumption of 
HW equilibrium and explain why the classic HW equations would not hold if that 
assumption were violated. Researchers coded the open responses for whether or not 
students attempted to create an altered equation. The y-axis shows the percent of 
students in anxiety groups so that results can easily be compared across groups of 
differing size (EQ 1st: Low n = 29, Moderate n = 30, High n = 8; PS 1st: Low n = 31, Moder-
ate n = 27, High n = 11). (B) Students were asked to define HW equation terms biologically 
on the post-assessment, and researchers coded definitions of p2 + 2pq as incorrect, 
correct but emphasizing the combination of two genotypes, or correct and emphasizing 
the shared phenotype.

classic EQ instruction). First, the signifi-
cance of math anxiety and math skills in 
the model predicting performance (Table 
2) confirmed anecdotal accounts from the 
literature that both affect performance on 
HW calculations (Stencel, 1991; Winterer, 
2001; Masel, 2012; Brewer and Gardner, 
2013). In terms of our treatment, we were 
interested in how students who were 
taught to perform HW calculations using a 
PS as an aid would compare to those who 
learned the classic EQ. This is important, 
because we did not want to take quantita-
tive reasoning out of population genetics. 
Rather, our goal was to be creative about 
the way we taught students to use mathe-
matical models in hopes of leveling the 
playing field for those with math anxiety. 
We found that PS instruction did not dis-
advantage students in terms of calculation 
proficiency. If anything, PS instruction 
may have led to increased HW calculation 
performance (Figure 2B and Table 2), but, 
if real, the effect was small (ω2 = 0.014, 
B = 0.3 questions).

Performance on the first question of the 
mid-assessment seemed to be affected by 
PS instruction the most. One difference 
between question 1 and the other two 
questions is that the given frequency was 
not explicitly named. Rather, students had 
to read “20% of the US population cannot 
taste PTC” and realize that a phenotypic 
frequency was given. In the other two 
questions, “the frequency of the recessive 
allele” and “95% of a population has the 
normal phenotype” aligned more closely 
with the exact definitions that were given 
of the equation variables. Thus, it appears 
that learning to approach question 1 using 
a PS may have helped students avoid mis-
taking the frequency of the inability to 
taste PTC (a phenotype) as an allelic fre-
quency (the most common mistake).

This could suggest that the PS, a model 
that may have already had biological 
meaning for the students after learning 
about inheritance, helped students keep 
track of the different types of biological 

entities (alleles vs. genotypes vs. phenotypes) better than the 
foreign symbols p and q (which previously had no meaning for 
students), especially when biological entities were not explicitly 
named. However, research suggests that many students do not 
understand the science behind PSs even though they are famil-
iar with the tool. Tolman (1982) reported that 80% of students 
in the study commonly assigned the wrong number of alleles to 
parents and offspring while using a PS, demonstrating that the 
biological concepts tied to the PS were not clearly understood. 
Other studies have shown that when solving monohybrid and 
dihybrid cross problems, students can get the right answer 
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using a PS without being able to explain the processes they are 
representing (Stewart, 1982, 1983; Moll and Allen, 1987). 
Thus, students are often filling out a PS as a learned algorithm 
when solving genetics problems rather than understanding the 
biological concepts of meiosis, genetic combination, and inher-
itance (Moll and Allen, 1987; Stewart and Kirk, 1990). To 
ensure better understanding of the impact of PS instruction on 
students’ ability to correctly identify different biological entities, 
future research should use an assessment that contains a greater 
number of HW calculation problems that are carefully varied to 
provide and ask for different biological entities with different 
wording. Follow-up interviews would also be useful to investi-
gate the specific ways students are using PSs and whether an 
approach is more algorithmic, biology focused, or a combina-
tion of the two.

We had originally hypothesized that PS instruction would 
benefit students with higher math anxiety more than their 
low-anxiety peers. We thought that the visual PS tool would not 
trigger math anxiety in the same way as an equation would 
with its symbols, thus not using up working memory. However, 
we did not see a significant interaction between treatment (EQ 
vs. PS) and math anxiety (Table 2). Perhaps an assessment 
immediately after that first day of instruction was not sufficient 
to show any differential benefits for high- versus low-anxiety 
students. It is also possible that PS instruction benefits students 
with all math anxiety levels.

Benefits of PSs even for low-anxiety students could be 
explained by cognitive load theory. Intrinsic cognitive load is 
considered inherent for a given task, dependent on the neces-
sary interactivity of all of its component parts, and unchange-
able, except by altering the knowledge of the learner; however, 
extraneous cognitive load can be altered, as it is caused by the 
unnecessary information processing imposed by our instruc-
tional strategies (Sweller, 2010; Sweller et  al., 1998, 2019). 
The element interactivity, and thus the intrinsic cognitive load, 

of the concept of HW equilibrium is high by nature, because 
students must understand the connected concepts of alleles, 
genotypes, phenotypes, gametes, inheritance, and the assump-
tions of equilibrium plus the interdependent quantitative rela-
tionships between biological entities. Normally, the abstract p 
and q symbols are another element that students must use to 
connect the biology and math. Using a PS as a calculation aid 
(and later a scaffold for deriving the equations) could reduce 
extraneous load, because it eliminates (or delays) the need for 
those abstract symbols, allowing the biological concepts to be 
directly connected to their quantitative relationships without an 
intermediate. In addition to unneeded element interactivity, 
split attention has long been postulated to increase extraneous 
cognitive load (Chandler and Sweller, 1992; Sweller et  al., 
1998), and a large meta-analysis confirmed that integrating 
instructional materials spatially results in learning gains (Ginns, 
2006). Thus, the population PS may also reduce extraneous 
cognitive load by visually integrating the biological concepts 
(alleles, genotypes, gametes, inheritance) and the actual math-
ematical calculations. However, as discussed earlier, lessening 
extraneous cognitive load by using PSs as an algorithmic tool 
would not necessarily mean that students have a better under-
standing of the biology.

Research Question 2
As we investigated the work type students chose to use after 
learning both methods, our first finding was that students tended 
to stick with the first method they were taught (Figure 2C and 
Table 3). This is similar to established findings in mathematics 
education that teaching computational procedures first inter-
feres with subsequent conceptual development, in that students 
tend to stay focused on the procedures (Kamii and Dominick, 
1998; Kieran, 1984; Mack, 1990; Pesek and Kirshner, 2000). 
However, our study adds a different dimension, in that this was 
not only true of procedural knowledge, but that students tended 
to prefer whatever method it was that they learned first.

Second, we saw an interaction between math anxiety and 
treatment order in terms of work type used (Figure 2C and 
Table 3). Why would math anxiety influence work type choice 
in the EQ 1st section differently than in the PS 1st section? This 
would make sense if students’ math anxiety was triggered more 
in the EQ 1st section. Past work in neurobiology has found that 
simply viewing mathematical equations can trigger a neural 
response related to threat avoidance in individuals with high 
levels of math anxiety (Pizzie and Kraemer, 2017). Even with-
out a stimulus, cortical network structure differences between 
low– and high–math anxiety individuals are apparent as sub-
jects simply anticipate performing math (Klados et al., 2017). 
During day 1 of instruction, students in the EQ 1st section saw 
equations and thus may have been stimulated to anticipate 
math, while PS 1st students never saw an equation or a stimu-
lus to warn them that math was coming. Thus, we would 
expect students with math anxiety to have that anxiety trig-
gered more in the EQ 1st section than the PS 1st section. Stu-
dents in the PS 1st section did see and use equations on day 2, 
but it is possible that seeing the equations on day 2 did not 
elicit the same level of math anxiety as it would have on day 1, 
because the students had already been performing the calcula-
tions; the equations already had meaning beyond just being a 
math equation. This would be better supported in our data if 

FIGURE 6.  In general, students preferred the PS day of instruction, 
especially for high-anxiety students in the EQ 1st section. On the 
post-assessment, students were asked which day of instruction 
was most helpful for their learning. Some students did not follow 
instructions and circled both options, so these students are 
excluded from the analysis. The y-axis shows the percent of 
students in anxiety groups so that results can easily be compared 
across groups of differing size (EQ 1st: Low n = 26, Moderate n = 31, 
High n = 8; PS 1st: Low n = 30, Moderate n = 27, High n = 11).
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we had seen moderate- or high-anxiety students in the PS 1st 
group abandoning the PS method to use the EQ after day 2, 
but we did not even see many low-anxiety students do this 
(compare Figure 2A and C, orange). Rather, it was the moder-
ate- and high-anxiety students in the EQ 1st section abandon-
ing the EQ for the PS method (Figure 2A and C, blue). Thus, it 
seems plausible that math anxiety was invoked in the EQ 1st 
section, leading moderate- and high-anxiety students to adopt 
the visual PS method, but we cannot say for sure whether mod-
erate- and high-anxiety students in the PS section had that 
same anxiety triggered or not. In the future, we could explicitly 
test this hypothesis by repeating this study with a method for 
assessing state-math anxiety (in specific moments and in con-
nection with specific tasks) as opposed to trait-math anxiety 
(Orbach et al., 2019).

We should also note that some students were more flexible 
in their use of the visual PS method than others. In coding stu-
dent work, we included anything that resembled a PS, but stu-
dents differed in how they drew them in some cases (e.g., dif-
ferent-sized boxes vs. uniform sizes despite different allelic 
frequencies, outermost border of the box present vs. absent, 
etc.). This could be related to more algorithmic thinking (as 
discussed earlier) rather than using the PS as a true biological 
model. Future qualitative work will be helpful to understand 
why students draw PSs the way that they do and how that influ-
ences their thinking about the mathematical task.

Research Questions 3 and 4
Although all students ended up learning both methods (EQ and 
PS), we were interested in whether the order of instruction and 
the work type students chose would impact their calculation 
proficiency. Instruction order did not significantly predict HW 
calculation performance after day 2 of instruction (Figure 2D 
and Table 4). Thus, while students had been taught both 
methods, the order in which they were taught did not appear to 
directly impact student performance. However, treatment order 
may impact scores indirectly due to effects of work type used, as 
students in the PS 1st section were more likely to use a PS 
(Table 3). While using a PS was not significantly predictive of 
scores on its own, there was a positive interaction between 
using PSs and math anxiety (Table 4, small effect). As shown 
visually in Figure 3, using PS work specifically helped students 
with high math anxiety.

Perhaps for high-anxiety students, avoiding the equations 
reduces the effect of their math anxiety and frees up working 
memory for performing the calculations (Ashcraft and Kirk, 
2001). As discussed earlier, using a PS to perform the calcula-
tions also may have reduced extraneous load via the split-atten-
tion effect (Chandler and Sweller, 1992) or by reducing ele-
ment connectivity (Sweller, 2010), as high-anxiety students 
could use the PS to avoid the abstract p and q variables. Using 
a PS did not seem to benefit low-anxiety students (Figure 3), 
perhaps because they are already performing near the ceiling of 
what our assessment could detect. It is also feasible that the PS 
method actually starts to increase extraneous load for low-anx-
iety students because they have obtained more expertise 
(termed “the expertise reversal effect”; Chen et  al., 2017) or 
because the PS is now redundant for them (termed “the redun-
dancy effect”; Chandler and Sweller, 1991). However, if the PS 
method truly increases extraneous load for low-anxiety stu-

dents, they would likely just refrain from using the PS and use 
the equations instead to reduce their mental effort. It is also 
possible that low-anxiety students were framing the problem as 
a PS in their mind even when not physically drawing it. Leutner 
et  al. (2009) found that imagining images reduced cognitive 
load and increased comprehension, but our methods did not 
allow for us to know whether or not students imagined the 
visual image they had been taught unless they drew it. Again, 
future qualitative interviews would allow for a better under-
standing of why students choose to use PSs, and studies with 
actual cognitive load assessments would be helpful.

Research Question 5
Overall, we have somewhat conflicting evidence regarding 
whether teaching the PS or EQ first leads to greater student 
understanding of HW equilibrium. First, we looked at students’ 
ability to derive more complex HW equations that had never 
been discussed in class. As shown in Figure 4A, students who 
were taught PSs first were more likely to use a 3 × 3 PS. This 
was interesting, because both sections had learned the connec-
tion between the equations and the population PS, but only the 
PS 1st section had connected the PS and EQ together when 
deriving the EQ for the first time (on day 2). The EQ 1st section 
derived the equations on day 1 before being introduced to a PS. 
The method they used to derive the equation the first time 
clearly mattered. Again, like computation procedures interfer-
ing with later conceptual understanding (Kieran, 1984; Mack, 
1990; Kamii and Dominick, 1998; Pesek and Kirshner, 2000), 
the context in which they first derived the equations seemed to 
be more memorable for them than later connections. While the 
PS 1st section was more likely to use a PS when solving this 
problem (Figure 4A), the type of work used did not have a sig-
nificant effect on performance on this problem (Table 5).

Treatment order did significantly predict success: students 
who learned the PS method first were more likely to correctly 
derive the two more complex HW equations for a three-allele 
system (Figure 4B and Table 5). Learning the PS method first 
predicted that students would derive an additional 0.5 of an 
equation correctly (see coefficients of Table 5), a large effect in 
practical terms but close to medium in terms of variation 
explained (ω2 = 0.09). These data support the hypothesis that 
learning HW equilibrium using a PS before the equations are 
introduced increases students’ understanding of the equations 
themselves.

As with any study in which two instructional methods are 
compared, it is possible that one treatment led to more learning 
because it was just a better lesson overall (more student-cen-
tered, more active, etc.). We believe that is unlikely here. In 
both sections, students were asked to work in pairs or groups to 
generate equation terms and the mathematical relationships 
between terms on their own before the equations were derived 
as a class on the board. The instructor used students’ ideas for 
this derivation on the board, so the instruction for both sections 
emphasized student-generated equations. The only differences 
we can think of (other than the timing in relation to PS instruc-
tion) is whether summing equation terms to 1 was discussed 
before or after term generation and whether specific allelic fre-
quencies were part of the derivation discussion. Students in the 
EQ 1st section first came up with all of the terms and then were 
prompted to notice their mathematical relationship (that they 
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all summed to 1), because they started with specific allelic fre-
quencies (p = 0.7, q = 0.3) in addition to generalizable terms (p 
and q). On the other hand, students in the PS 1st section were 
told that their terms should sum to 1 before terms were gener-
ated (because summing to 1 had already been part of solving 
problems with the PS), and they were not given specific allelic 
frequencies to use during their derivation. The post-assessment 
question asked the students to derive the equations in terms of 
p, q, and r (no specific allelic frequencies were given), so it was 
slightly more similar to the PS 1st students’ experience. How-
ever, the EQ 1st students also derived the equations with p and 
q, so the post-assessment prompt was still similar to the activity 
they did in class.

The bigger difference between sections was that students in 
the EQ 1st section were introduced to the principles of popula-
tion genetics and the probability of generating offspring with 
different genotypes at the same time as they were deriving the 
EQ with its abstract symbols. On the other hand, students in the 
PS 1st section had already been introduced to the principles of 
population genetics and the probability of generating different 
offspring using the PS and had been performing the calcula-
tions before the abstract symbols of the EQ were introduced. By 
the time they reached EQ derivation on day 2, students in the 
PS 1st section may have already formed schemas about HW 
equilibrium (even the quantitative concepts), freeing up work-
ing memory to understand the meaning behind the abstract 
symbols and equations when they first came in contact with 
them. Even if these students used the PS as an algorithmic tool 
rather than completely understanding the biology behind it, as 
is often the case, this may still have reduced the cognitive load 
of EQ derivation.

We also investigated students’ understanding of HW equilib-
rium using an open-response question about violating an assump-
tion of HW equilibrium and by asking students to define the HW 
EQ terms. We generally did not see differences by treatment 
order in answers about HW assumption violations. However, in 
Figure 5A, we see whether students generated an altered equa-
tion in their response (a mathematical task that demonstrates an 
explicit connection between the assumptions of HW equilibrium 
and the HW EQ). The data of Figure 5A could be evidence that 
math anxiety was not triggered as much in the PS 1st section 
(orange), as math anxiety was not predictive of students’ ten-
dency to generate a novel equation like it was in the EQ 1st sec-
tion (blue). Future research with state-based measurements of 
math anxiety would be needed to verify this conclusion.

On the other hand, the results of Figure 5B suggest that learn-
ing the EQ first may possibly help students focus on the big pic-
ture of phenotypes. We had originally expected the opposite 
trend, supposing that the PS method would help students see the 
holistic biological picture of phenotype rather than separate 
terms of an equation. The greater likelihood of EQ 1st students to 
see the big picture is especially surprising, because students in the 
EQ 1st section were more likely to misinterpret a given dominant 
phenotype on the first question of the mid-assessment. We also 
cannot ignore the possibility that EQ 1st students were simply 
more likely to memorize the given definition of p2 + 2pq (“fre-
quency of the dominant phenotype”) that was written on a review 
slide shown during day 1 of instruction. More rigorous qualitative 
data would be needed to determine whether the EQ 1st treat-
ment truly led to greater mastery of the meaning of p2 + 2pq.

Limitations
As discussed in the Methods, our sample size (n = 141) was 
limited to students who would consent, which limits our statis-
tical power. A priori power analyses suggested that we had suf-
ficient power to detect medium or large effect sizes, but not 
small effects. Our effects that were medium sized or approach-
ing medium sized (and thus those we are the most confident 
about) are 1) the effect of treatment order on the work type 
students chose (Table 3), 2) the effect of treatment order on the 
ability to derive more complex HW equations (Table 5), 3) the 
relationship between math anxiety and attempting to create an 
altered HW equation for a violated assumption in the EQ 1st 
section (Figure 5A), and 4) the association between math anxi-
ety and instruction preference in the EQ 1st section (Figure 6).

We saw the following small effects: 1) treatment on calcula-
tion performance after 1 day (Table 2), 2) treatment order inter-
acting with math anxiety to predict work type used after 2 days 
(Table 3), 3) PS work interacting with math anxiety to predict 
calculation success after 2 days (Table 4), and 4) the association 
between treatment order and defining p2 + 2pq as a phenotype 
(Figure 5B). Thus, like other educational studies conducted in 
small- or medium-enrollment courses, our low-power, small 
effects should be interpreted cautiously, and the exact effect 
sizes may be exaggerated here. There also may be other small 
effects that we were not able to detect. Future studies in larg-
er-enrollment courses would be useful to confirm these results.

Our work is also limited in that we only assessed pre and 
post math anxiety as a trait rather than looking at state mea-
surements of anxiety. We can also only hypothesize about the 
effect of PS versus EQ on students’ cognitive load. In future 
research, it would be interesting to repeat this experiment with 
sophisticated methods for assessing in-the-moment math anxi-
ety and cognitive load and include qualitative data about stu-
dent thought processes.

Implications for Instructors
We suggest the following implications for instructors. If time 
permits only one method to be taught, we recommend teaching 
the population-level PS method. This method still allows for 
students to learn the same mathematical relationships of HW 
equilibrium without sacrificing calculation proficiency (see 
Figure 2B and Table 2). This method may even slightly increase 
student success in HW calculations compared with teaching stu-
dents to derive and use the equations, possibly due to a decrease 
in extraneous cognitive load usually imposed by the abstract 
equations. This choice is further supported by our attitudinal 
data. When asked to pick which day of instruction was most 
helpful in our study, a majority of moderate- and high-anxiety 
students in both sections chose the PS day (Figure 6). Low-
math anxiety students in the EQ 1st section did generally prefer 
the EQ day, but low-anxiety students in the PS 1st section pre-
ferred the PS day. Using only the PS method still allows stu-
dents to perform all of the same calculations that they normally 
would when using the classic HW equations, but they will not 
be familiar with the conventional p and q variables. This would 
not matter in a nonmajors’ course, but it is worth considering 
for majors based on needs in more advanced courses.

Overall, students appear to benefit from learning both 
methods over 2 days of HW equilibrium instruction. In our 
study, student scores on HW calculation items improved after 
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2 days of instruction (compare Figure 2B and D), and giving 2 
days of instruction leveled the playing field somewhat for stu-
dents with high math anxiety and low math skills (compare the 
effect of these two variables in Tables 2 and 4). We should also 
note that these 2 days of instruction only covered the general 
principle of HW equilibrium, calculating allelic frequencies 
from observed genotypic frequencies, and calculating predicted 
allelic, genotypic, or phenotypic frequencies for populations in 
HW equilibrium. Instructors may want to add more instruc-
tional days to cover other extensions of these topics.

If instructors choose to include two class sessions on HW 
equilibrium and teach both methods, students appear to benefit 
from learning the population PS method first, especially stu-
dents with high levels of math anxiety. Learning to use PSs as a 
calculation aid before equations are introduced may be less 
likely to trigger math anxiety (see Figures 2C, 5A, and 6, and 
Table 3 for examples of math anxiety being predictive of student 
choices only in the EQ 1st section). In our study, teaching the PS 
method first also made it more likely that students would use a 
PS when solving problems (Figures 2C and 4A, and Table 3), and 
using PS work may help high–math anxiety students be more 
successful when performing HW calculations (Figure 3 and 
Table 4). Learning to perform calculations using a population PS 
before deriving the HW equations also appears to increase stu-
dent ability to derive more complex equations on their own 
(Figure 4B and Table 5), suggesting that the equation derivation 
done together in class had more meaning to them after they 
already had experience with the mathematical relationships 
using the PS as a tool. Our study makes it less clear whether 
treatment order matters for overall student understanding of the 
biological concept of HW equilibrium (Figure 5) and whether 
the PS is providing students with greater biological understand-
ing of the inheritance process or just a helpful algorithm.

Other instructional methods for HW equilibrium exist, nota-
bly simulating populations in HW equilibrium (Winterer, 2001; 
Brewer and Gardner, 2013;) and enlisting the aid of computers 
to sidestep calculations (Mariner, 1973; Carlton et al., 2004). 
These also may prove to be valuable activities for generating 
student understanding of this difficult concept, and the effects 
of these methods and the interactions between various methods 
remain unresolved. Future research is needed to determine the 
generalizability of our results to other populations (biology 
majors, students with different levels of math preparedness and 
math anxiety, other institutions, etc.) and other quantitative 
topics in biology where equation derivation is relevant.
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