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ARTICLE

ABSTRACT
Previous studies have found that students’ concept-building approaches, identified a pri-
ori with a cognitive psychology laboratory task, are associated with student exam perfor-
mances in chemistry classes. Abstraction learners (those who extract the principles un-
derlying related examples) performed better than exemplar learners (those who focus on 
memorizing the training exemplars and responses) on transfer exam questions but not 
retention questions, after accounting for general ability. We extended these findings to in-
troductory biology courses in which active-learning techniques were used to try to foster 
deep conceptual learning. Exams were constructed to contain both transfer and retention 
questions. Abstraction learners demonstrated better performance than exemplar learn-
ers on the transfer questions but not on the retention questions. These results were not 
moderated by indices of crystallized or fluid intelligence. Our central interpretation is that 
students identified as abstraction learners appear to construct a deep understanding of the 
concepts (presumably based on abstract underpinnings), thereby enabling them to apply 
and generalize the concepts to scenarios and instantiations not seen during instruction 
(transfer questions). By contrast, other students appear to base their representations on 
memorized instructed examples, leading to good performance on retention questions but 
not transfer questions.

LEARNING INTRODUCTORY BIOLOGY: STUDENTS’ CONCEPT-BUILDING 
APPROACHES PREDICT TRANSFER ON BIOLOGY EXAMS
A central goal in college biology courses is for students to gain conceptual understand-
ing of core concepts, rather than committing to memory a large corpus of biology facts 
(e.g., National Research Council [NRC], 1996; Jensen et al., 2014). This type of deep 
conceptual understanding is best assessed by performance on questions that require 
students to apply learned concepts to new contexts and situations (Anderson et al., 
2001), also known as transfer questions (Loibl et al., 2017). Although many biology 
courses primarily focus on comprehension and understanding (Momsen et al., 2010), 
some ambitious instructors exclusively assess students with higher-order questions 
(such as application, analysis, synthesis, and evaluation) that are designed to assess 
and reinforce acquisition of deep conceptual understanding (e.g., see Bissell and Lem-
ons, 2006; Crowe et al., 2008; Jensen et al., 2020). Another type of question to assess 
deep conceptual understanding is a transfer question; these questions require the stu-
dents to solve problems that go beyond previously taught or worked examples (Barnett 
and Ceci, 2002; for examples in general chemistry, see McDaniel et al., 2018; Frey 
et al., 2020). In the present study, we focus on transfer questions as the higher-order 
assessment.
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To support these educational goals, for at least two decades 
(e.g., see National Science Education Standards; NRC, 1996), 
science educators have suggested incorporating an active-learn-
ing approach into science instruction, and college biology ped-
agogy has tended to embrace this approach (e.g., Knight and 
Wood, 2005; Armstrong et al., 2007; Haak et al., 2011; Luckie 
et al., 2012; Auerbach et al., 2018; Halmo et al., 2020; Jensen 
et al., 2020). A recent meta-analysis supports this stance. Based 
on approximately 310 studies in peer-reviewed journals (from 
biology, chemistry, engineering, or physics courses), Freeman 
et al. (2014) reported generally higher postcourse performance 
on exams and concept inventories for courses that included 
active-learning (interactive engagement) instruction versus 
courses that relied extensively on traditional instructional 
methods (e.g., lecture). Given this overwhelming evidence for 
the benefits of incorporating active learning into science instruc-
tion, Freeman and colleagues (2014, p. 8413) suggested that a 
productive focus for “second-generation research” would be to 
use advances in educational psychology and cognitive science 
to test hypotheses about which type of active learning is most 
appropriate and efficient for certain student populations.

The present study responds to this call for a next-generation 
focus on how students achieve conceptual understanding in 
active-learning classrooms. We appeal to current findings in 
cognitive science (e.g., McDaniel et al., 2014; Little and McDan-
iel, 2015) and chemistry education (Frey et  al., 2017, 2020; 
McDaniel et al., 2018) to advance novel hypotheses about the 
influence of individual differences in concept-building 
approaches (described in the following section) on students’ 
success in applying content knowledge learned in their intro-
ductory biology courses (courses incorporating active-learning 
techniques). We first outline the theoretical framework, review 
initial findings that support the framework in chemistry educa-
tion, and then introduce the current study.

Individual Differences in Concept-Building Tendencies
Our theoretical orientation is based on basic research in cogni-
tive science demonstrating that, for a given conceptual learning 
challenge, individual learners can extract qualitatively different 
representations. That basic work has revealed two fundamental 
types of representations. One type is primarily based on memo-
rizing the individual training examples, termed “exemplar 
based” (Medin and Schaffer, 1978; Nosofsky, 1984; Kruschke, 
1992). The other type is based on the abstract regularities (e.g., 
rules) that capture the relations among the training examples, 
termed “abstractor based” (Bourne, 1974; Little et al., 2011). 
The literature has established that some learners construct 
exemplar representations (termed “exemplar learners”), 
whereas other learners extract an underlying abstraction of the 
training set (termed “abstraction learners”) for a range of labo-
ratory conceptual learning tasks, including category learning 
(e.g., Craig and Lewandowsky, 2012; Little and McDaniel, 
2015), function learning (McDaniel et al., 2014), multiple-cue 
prediction learning (Juslin et al., 2003; Hoffmann et al., 2014), 
and skill learning (Bourne et al., 2010).

A key theoretical foundation of the present study is that a 
learner’s tendency toward an exemplar-based versus abstrac-
tor-based approach to conceptual learning can be relatively sta-
ble across very different kinds of conceptual-learning tasks 
(McDaniel et  al., 2014; see later discussion regarding the 

stability of concept-building approaches across time). Support 
for this assumption comes from a study in which learners com-
pleted a laboratory function-learning task followed by unre-
lated categorization tasks over the following several weeks 
(McDaniel et  al., 2014). From their pattern of extrapolation 
performance in the function-learning task, learners were identi-
fied as adopting an approach of memorizing the particular 
training pairs (each input value–output value pair) or an 
approach of abstracting the function rule (a bilinear “V shape”). 
The crucial result was that learners’ approaches on the func-
tion-learning task predicted their performances on two unre-
lated categorization tasks. Those who appeared to memorize 
particular training pairs on the function-learning task (i.e., 
exemplar learners) demonstrated categorization performance 
that reflected an exemplar representation (on the categoriza-
tion transfer tests), whereas those learners who displayed rule 
learning on the function-learning task (abstraction learners) 
showed abstraction-driven categorization performance (on the 
categorization transfer tests). Further, students’ tendency to 
rely on exemplar- versus abstractor-based concept-learning 
approaches was only modestly associated with their working 
memory capacity and with their fluid intelligence; together, 
working memory and fluid intelligence accounted for 10.4% of 
the variance in learner type (McDaniel et al., 2014).

Especially critical for the present focus on science, technol-
ogy, engineering, and mathematics (STEM) learning, several 
recent studies have converged on the conclusion that these indi-
vidual differences in conceptual representations revealed on 
laboratory learning tasks appear to extend to students’ learning 
of chemistry (Frey et al., 2017, 2020; McDaniel et al., 2018). 
First, students in chemistry classes who displayed exem-
plar-learning tendencies (as determined by a laboratory learn-
ing instrument described in Methods) performed less well on 
summative assessments (exams) in the first two semesters of 
general chemistry and in organic chemistry II (Frey et  al., 
2017). Indeed, organic chemistry, the course that arguably 
required the most abstraction for successful exam performance, 
showed the most prominent performance decrements for stu-
dents with an exemplar-based concept-building tendency rela-
tive to those with an abstraction-based concept-building ten-
dency. Second, for the exams given in the first semester of 
general chemistry, the exam items (problems) were subse-
quently classified as requiring generalization and transfer of 
content from class lectures and homework (transfer items) or as 
requiring responses based directly on previously-trained prob-
lems (retention items). When students’ performances were 
re-examined separately for transfer and retention items, a more 
nuanced pattern emerged (McDaniel et  al., 2018). Exemplar 
learners performed relatively poorly relative to the abstraction 
learners on transfer exam items (problems), but those same 
learners performed equivalently to abstraction learners on 
retention exam items.

In a more recent study, a small sample of students was asked 
to think aloud while solving several problems related to their 
general chemistry instruction, one problem representing a 
retention problem and two other problems requiring transfer 
(Frey et al., 2020, study 2). Those students with an exemplar 
concept-building tendency often relied on algorithms associated 
with a particular example problem and its solution presented in 
class or homework without understanding the principles behind 
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the algorithms. By contrast, students who displayed tendencies 
to abstract in the laboratory learning task tended to rely on the 
principles and concepts that were the underpinnings of the class 
or homework problems. Further, the exemplar learners showed 
a sharp decline in performance accuracy on the transfer prob-
lems (especially far transfer) relative to the retention problem, 
whereas the performance decline for the abstraction learners 
was not as severe (because of the small N, these observations 
could not be confirmed with formal statistical tests). Overall, 
then, at least in several general chemistry courses, the reported 
patterns are consistent with the idea that those students with 
exemplar-based concept-building tendencies constructed repre-
sentations that were rich in the surface features of studied prob-
lems (i.e., memorized examples; cf. Regehr and Brooks, 1993), 
thereby disfavoring transfer to novel problems (Gick and 
Holyoak, 1980; Novick, 1988) but not penalizing performance 
on problems (exam items) that were very similar to studied 
problems (e.g., Novick, 1988). In contrast, those with abstrac-
tion concept-building tendencies constructed representations of 
studied problems that captured deep-structure characteristics of 
problems (abstract characteristics), thereby supporting transfer 
(Gick and Holyoak, 1983).

Overview of the Current Study
In this study, we examined the idea that the influence of stu-
dents’ concept-building tendencies extends to learning in 
introductory biology. Overlap exists between undergraduate 
chemistry and biology in terms of the students who take the 
courses, concepts, and problem types, yet the two differ in 
important ways. Chemistry demands that students solve prob-
lems using quantitative reasoning, visual pattern recognition, 
and heuristics. Biology demands that students develop an 
extensive vocabulary, knowledge of processes, and analysis of 
patterns from graphs and tables. Although quantitative reason-
ing is essential to biology as a discipline, many undergraduate 
biology courses do not emphasize quantitative problem solv-
ing. Biology problems in this study involved recall and under-
standing of terms and concepts, but the transfer problems 
involved reasoning from information and data (e.g., as pre-
sented in tables and graphs) and linking inferences to concep-
tual understanding of biological processes. This study enabled 
us to extend prior work by focusing on retention and transfer 
questions for nonquantitative problem solving that involves 
reasoning and inference (for a related case-study in general 
chemistry, see Frey et al., 2020).

To achieve this aim, we adopted and refined the approach 
reported in McDaniel et al. (2018). One potential limitation of 
this approach is that examination items were classified as reten-
tion or transfer items after the examination was administered. 
In the present study, we constructed retention and transfer 
examination items a priori by considering the content and activ-
ities students completed in class and as homework (these item 
types are fully described in Methods). Based on the prior theo-
retical work and classroom research summarized earlier, we 
posited that some learners would tend to rely on exemplar 
learning (e.g., memorization) to support their acquisition of 
biology content (learners with exemplar-learning concept-build-
ing tendencies, as determined by our laboratory learning instru-
ment), and other learners would tend to rely on abstraction 
(deeper understanding) of the underlying principles and 

concepts of biology (learners with abstraction-based concept- 
building tendencies). Based on this hypothesis, we predicted 
the following patterns of exam performance. For the retention 
exam items, the exemplar learners would fare relatively well, 
performing at levels comparable to those displayed by abstrac-
tion learners. In contrast, on the transfer items—the exam items 
that required extension or application of the underlying princi-
ples—the exemplar learners would show significant declines in 
performance relative to the abstraction learners.

We emphasize that these predictions assume a strong influ-
ence of students’ concept-building approaches in terms of the 
nature of the representations they construct for the instructed 
biology content. It is important to reiterate that the present 
study was conducted in biology courses incorporating an array 
of active-learning techniques. The instructors framed their 
courses around real-world problems to increase student interest. 
They used inclusive strategies, such as learning students’ names 
and emphasizing that all students could be successful. During 
class time, the instructors frequently interrupted lecture, which 
focused on key concepts and scientific practices, to pose ques-
tions that students answered via note cards or response systems. 
Students worked in informal groups, and the instructors led stu-
dents in small- and large-group discussion. They addressed stu-
dents’ questions responsively, based on the common challenges 
emerging during class (the Appendix in the Supplemental Mate-
rial provides a description of one lesson). Courses designed with 
active-learning pedagogy are intended to focus students on 
understanding the underlying principles, concepts, and abstrac-
tions that are core to the biology curriculum, rather than empha-
sizing memorization of the examples and facts that illuminate 
underlying principles and concepts (Knight and Wood, 2005; 
Haak et al., 2011; Auerbach et al., 2018; Halmo et al., 2020; 
Jensen et al., 2020). The theoretical orientation (and supporting 
empirical work) guiding the present study suggests, however, 
that there is a subset of students (who can be identified a priori) 
with the exemplar concept-building approach (i.e., a reliance on 
memory of examples to represent the content) that might over-
ride the intended thrust of active-learning techniques, at least 
the techniques adopted in the introductory biology courses 
examined herein.

One final feature of this study warrants mention. An alterna-
tive interpretation that might be offered for the predicted 
patterns is that the anticipated advantage on transfer items (on 
the exams) for students with abstraction concept-building 
approaches is wholly a consequence of individual differences in 
general ability or intelligence (e.g., Putz-Osterloh, 1981; 
Putz-Osterloh and Luer, 1981; Wenke et al., 2005). That is, stu-
dents with abstraction concept-building approaches tend to 
have modestly higher levels of fluid intelligence than students 
with exemplar-learning tendencies (McDaniel et al., 2014; but 
see Little and McDaniel, 2015, for a counter finding), and these 
differential levels of intelligence might be responsible for the 
superior performance on transfer items anticipated for the 
abstraction learners. Though previous studies have found that 
concept-building tendencies are not highly related to general 
ability or intelligence, and moreover, that general ability or 
intelligence does not account for the relation between con-
cept-building approaches and transfer (Frey et  al., 2017; 
McDaniel et al., 2014, 2018), we nevertheless thought it prudent 
to continue to explore this possible alternative interpretation for 
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learning and transfer of biology content. We used students’ com-
posite ACT scores (includes math, English, and, reading) or con-
cordant Scholastic Aptitude Test (SAT) scores (Dorans, 1999) as 
an index of general ability (also termed crystallized intelli-
gence). We administered the Raven’s Advanced Progressive 
Matrices (RAPM; Raven et al., 1991) to index fluid intelligence; 
the RAPM is a psychometrically sound measure commonly used 
to assess fluid intelligence (e.g., Jonsson et al., 2021). To deter-
mine whether the patterns of results associated with con-
cept-building tendency might be more directly a consequence of 
general ability, fluid intelligence, or both, we included SAT/ACT 
and RAPM scores as covariates in our analyses. If concept-build-
ing approaches reflect cognitive mechanisms above and beyond 
general ability and intelligence, then significant advantages of 
abstraction learners for transfer items should emerge even after 
accounting for general intelligence.

METHODS
Study Design
The major factor in the design was the designation of students 
as exemplar learners or abstractor learners, based on their per-
formances on an unrelated (to the course content) laboratory 
function–learning task (described in detail in a following sec-
tion). Because the function-learning task is computer paced and 
requires approximately 40–60 minutes to complete, students 
had to do the task outside class and online. The task is challeng-
ing, and with online administration, past studies indicate that a 
significant proportion of students either do not complete the 
task or fail to meet the learning criterion (Frey et  al., 2017; 
McDaniel et al., 2018; when learning is incomplete, extrapola-
tion performances are ambiguous with regard to the learners’ 
emerging representations). In line with this, the current study 
focused primarily on the 67 students who met the func-
tion-learning task criterion (21 exemplar learners; 46 abstrac-
tor learners), representing 43% of the students from the intro-
ductory biology classes who participated.

The outcome variable of interest was midterm exam perfor-
mances as a function of exam question type. Each of four mid-
terms was constructed to include questions that reflected reten-
tion of taught content and questions that required transfer of 

taught content (this distinction is detailed in a following sec-
tion). Thus, the study reflected a 2 × 2 mixed factorial design 
with learning approach (exemplar vs. abstraction learner) as 
the between-subjects factor and exam question type (retention, 
transfer) as the within-subjects factor.

Context and Participants
The UGA institutional review board approved this study under 
exempt status (STUDY00000660 and PROJECT000000090). 
Data collection for the study took place during Spring and Sum-
mer semesters of 2018 at a research-intensive institution in the 
southeastern United States. Spring 2018 participants were 
enrolled in one section of the first-semester introductory biol-
ogy course offered at this university (BIOL 1107). The course 
was taught by one instructor and focused on cells and cell divi-
sion, biomolecular structure and function, cell transport and 
signal transduction, patterns of inheritance, and basic carbohy-
drate metabolism. Summer 2018 participants were enrolled in 
one section of the second-semester introductory biology course 
offered at this university (BIOL 1108). The course was taught 
by a different instructor and focused on micro- and macroevolu-
tionary mechanisms, speciation and phylogenetics, homeostasis 
and physiology, ecological species interactions, and ecosystem 
dynamics. In both semesters, all enrolled students (first-semes-
ter course: N = 142; second-semester course: N = 77) were 
invited to participate and to complete study activities as a nor-
mal part of their course work. Students who participated 
received a small amount of course credit for their participation 
(approximately 1% or less of overall points in the course).

Table 1 summarizes the points of exclusion and the number 
of students excluded at each step to arrive at the final samples. 
For the final samples, it also identifies the number of abstrac-
tion learners, exemplar learners, and non-learners (those 
excluded for having a final training block the mean absolute 
error [MAE] ≥10, as described in a following section). Twenty- 
three of the 133 consenters in the first-semester course were 
excluded from the concept-building sample: six did not com-
plete all exams, and 17 others did not complete the con-
cept-building task. In the second-semester course, 30 of the 75 
consenters were excluded from the concept-building sample: 

TABLE 1.  Total population and samplesa

BIOL 1107 BIOL 1108 Total

Total students 142 77 219
Consenters 133 75 208
Concept-building sample 		  110

•	 31 Abstraction
•	 13 Exemplar
•	 66 Non-learner

		  45
•	 15 Abstraction
•	 8 Exemplar
•	 22 Non-learner

		  155
•	 46 Abstraction
•	 21 Exemplar
•	 88 Non-learner

ACT sample 		  106
•	 29 Abstraction
•	 13 Exemplar
•	 64 Non-learner

		  42
•	 15 Abstraction
•	 8 Exemplar
•	 19 Non-learner

		  148
•	 44 Abstraction
•	 21 Exemplar
•	 83 Non-learner

RAPM sample 		  100
•	 28 Abstraction
•	 12 Exemplar
•	 60 Non-learner

		  30
•	 14 Abstraction
•	 3 Exemplar
•	 13 Non-learner

		  130
•	 42 Abstraction
•	 15 Exemplar
•	 73 Non-learner

aACT sample includes all students from the concept-building sample who also had available ACT (or SAT) scores. RAPM sample includes all student in the ACT sample 
who also completed Raven’s Advanced Progressive Matrices. Non-learners are those with final block training MAE ≥ 10 and were not included in the primary analysis of 
exam scores.
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six were repeat students from the first-semester sample, two did 
not complete all exams, and 22 did not complete the con-
cept-building task. In the next step, for analysis involving ACT 
as a single covariate, four students in the first semester and 
three students in the second semester were removed from the 
concept-building sample for not having ACT or SAT scores 
available from the registrar (SAT scores were converted to ACT 
equivalent scores; Dorans, 1999). Finally, for analysis involving 
both ACT and RAPM as covariates, 12 students from the first 
semester and six students from the second semester were 
removed from the ACT sample for not completing the RAPM 
task. Table 1 contains information about the sample for each 
analysis.

Data Collection
Development of Exam Questions.  To ensure that exams for 
both the first- and second-semester courses contained both 
retention and transfer items, the course instructors (one of 
whom was author L.B.L.) worked together with author P.P.L. as 
follows: First, the course instructors created exam questions 
aligned with the course learning objectives for each exam. 
Instructors aimed to create at least five transfer items per exam. 
After doing so, each instructor made a preliminary rating of 
every exam item according to four categories specified in the 
McDaniel et al. (2018) rubric: category 1 indicated questions 
very similar to how the material was covered in class or home-
work (retention items); category 2 indicated covered material, 
but the question required applying it to a new situation (i.e., a 
comparison); category 3 indicated using learned material to 
address a situation/problem that could appear foreign or differ-
ent from all previous presentations; and category 4 indicated 
problems that required the highest level of thinking and appli-
cation, often conceptual thinking beyond the scope of algo-
rithms or focused lecture topics (McDaniel et al., 2018, p. 243). 
Following McDaniel et  al., category 1 items were considered 
retention items and category 3 or 4 items were considered 
transfer items; category 2 items did not seem to fall definitively 
within the retention or transfer categories and thus were not 
included in the present analyses (as in McDaniel et al., 2018).

After the exam draft was created, P.P.L., who had previously 
taught the material for both courses, reviewed the exams and 
independently rated each item. She sent her rating back to the 
instructors with questions about the items and suggestions for 
revisions. A primary objective was to produce a subset of items 

that were in category 3 or 4 (transfer items). For example, P.P.L. 
often asked the instructors whether particular problem types 
were practiced in class and made suggestions concerning how to 
shift the questions toward categories 3 or 4. Typically, this pro-
cess went through one iteration, but the instructors and P.P.L. 
exchanged feedback on some exam items more than once. The 
process was considered complete when the instructors and P.P.L. 
agreed on all items’ ratings and when each exam contained at 
least five strong category 3/4 candidates. Next, the instructors 
finalized the exams and administered them to students. Follow-
ing the exams, the instructors identified three problematic items 
that students interpreted in unintended ways or for which the 
correct answer did not completely capture minor irregularities in 
presented data (and accordingly the instructor accepted all 
answers). These three items were not considered in the analyses 
(one retention item and two transfer items; one of those transfer 
items was from exam 2 in Bio 1108, resulting in four scored 
transfer items for that exam). Table 2 provides the final compo-
sition of each of the exams (along with the category 2 “indeter-
minate” items that were not included in the present analyses), 
and basic descriptive statistics of the performances within each 
category of item (retention, transfer, indeterminate).1

Concept-Building Task.  To index students’ concept-building 
approach (classifying them as exemplar or abstraction learners) 
independently of the course content, we assigned the same con-
cept-building task used in previous studies (McDaniel et  al., 
2014, 2018; Frey et al., 2017, 2020). So that students would 

TABLE 2.  Item count and performance as a function of exam and item type

Course Exam

Retention items Transfer items Indeterminate items

No. of items M (SD) Min. No. of items M (SD) Min. No. of items M (SD) Min.

BIOL 1107 Exam 1 7 0.75 (0.18) 0.29 7 0.74 (0.20) 0.14 6 0.76 (0.19) 0.17
Exam 2 7 0.72 (0.14) 0.29 5 0.54 (0.22) 0.00 9 0.78 (0.16) 0.33
Exam 3 1 0.95 (0.21) 0.00 13 0.72 (0.20) 0.23 6 0.79 (0.18) 0.33
Exam 4 6 0.72 (0.18) 0.17 6 0.73 (0.24) 0.17 8 0.74 (0.15) 0.12

BIOL 1108 Exam 1 5 0.96 (0.10) 0.60 8 0.71 (0.13) 0.50 6 0.96 (0.08) 0.67
Exam 2 5 0.86 (0.16) 0.40 4 0.92 (0.16) 0.25 9 0.86 (0.10) 0.67
Exam 3 5 0.94 (0.11) 0.60 9 0.77 (0.16) 0.33 6 0.92 (0.11) 0.67
Exam 4 5 0.81 (0.18) 0.40 9 0.82 (0.14) 0.33 5 0.89 (0.15) 0.60

aReported statistics are for the proportion of items correct for the given exam and item type. Statistics are calculated from the sample who completed the concept-build-
ing task (including non-learners) and had complete exam scores, n = 110 for BIOL 1107 and n = 45 for BIOL 1108. Min., minimum. Maximum proportion correct was 
1.00 for all item types for all exams.

1A reviewer requested information about the reliability of the exams. Because 
there were no test–retest scores (as is typical with classroom exams) from which 
to compute reliability, we computed Cronbach’s alpha for all retention items and 
all transfer items combined across the four exams within each course (using all 
consenting participants with full exam scores who completed the concept-build-
ing task). (Cronbach’s alpha indexes the degree to which all items on a test mea-
sure the same construct, and is commonly reported in measurement development; 
Henson, 2001.) For retention items, alpha was 0.49 and 0.40 for the first- and 
second-semester exams, respectively; for transfer items, alpha was 0.78 and 0.50 
for first- and second-semester exams, respectively. However, as argued elsewhere 
(e.g., Solomon et al., 2021), internal consistency is not wholly appropriate for 
evaluating the reliability of a test in which the items cover a range of content: One 
may not expect that a student would perform similarly across that range because 
the student may have a good understanding of some content but not other con-
tent. Test–retest reliability would be a more informative index of the exams’ stabil-
ity; indeed, see Solomon et al. (2021) for high test–retest reliability of a knowledge 
assessment (like an exam) in the face of relatively low Cronbach alpha values.
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10–13 blocks (see end of paragraph for 
details). Each block consisted of 20 trials, 
presenting each of the input values once. A 
random order was created for each block, 
such that the order of input values differed 
across training block, with input order 
constant for all participants for each block. 
At the conclusion of a training block, 
participants were given their mean predic-
tion error (MAE) for the block. Beginning 
with block 2, participants also saw their 
MAE from the previous block and a corre-
sponding message. Those who had 
reduced their error were told: “Your accu-
racy IMPROVED. Keep up the good work!” 
Those whose error did not improve were 
told: “Your accuracy DID NOT IMPROVE. 
Keep working to improve your predic-
tions!” Participants completed at least 10 
training blocks (200 trials); training ended 
for participants with MAE < 10 on the 10th 
training block. For participants not meet-
ing this criterion, training continued for 
up to three additional training blocks; 
training ended if the MAE fell below 10 in 
either blocks 11 or 12. Participants not 
meeting criterion in blocks 10–12 received 
one more training block (block 13: 260 tri-
als total).

Upon completing training, participants 
began the test phase. In the test phase, 
they predicted the outputs for novel 
(untrained) inputs. Thirty of the inputs 
reflected extrapolation trials, and six 
reflected interpolation trials (36 total test 
trials). The extrapolation trials consisted 
of odd-numbered inputs outside the train-
ing domain (all odd numbers between 31 
and 59 and between 101 and 129). The 
interpolation trials consisted of even-num-
bered inputs within the training domain 
(94, 80, 64, 88, 100, and 72). The test 

phase paralleled the training phase, except that participants 
received no feedback on the accuracy of their responses. Partic-
ipants instead saw a message that said “Prediction Recorded. 
Get ready for the next trial.” The training and test phases com-
bined took participants approximately 40 minutes to complete.

Following prior studies (McDaniel et al., 2014, 2018; Frey 
et  al., 2017, 2020), classification of a participant’s con-
cept-building approach was limited to participants with final 
training block MAE less than 10 (“learners”). This cutoff was 
established by initial work indicating that participants with 
MAE ≥ 10 for the final training block showed response patterns 
that deviated noticeably from the criterion values (shown in 
McDaniel et al., 2014, Figure 3, top panel), reflecting incom-
plete or poor learning. The same pattern is evident for partici-
pants in the current study (displayed in Supplemental Figure 
S1). The participants’ (those with MAE ≥ 10) final training 
block predictions varied little across the input values, resulting 
in a flat prediction curve that deviated substantially from the 

have no prior knowledge about the task, they were told to imag-
ine that they were going to study an organism found on Mars 
that absorbs an element called Zebon and releases an element 
called Beros. The students’ objective was to learn to predict an 
output variable (amount of Beros released) based on an input 
variable (amount of Zebon absorbed). Unbeknownst to the par-
ticipants, these input–output points followed an inverted-V 
function.

In the first phase, students were given between 200 and 260 
training trials. For each training trial, students were presented 
with an input (a bar representing the amount of Zebon 
absorbed), had to predict the output (adjusted a bar to predict 
the amount of Beros released), and were given feedback (a bar 
reflecting the correct quantity of Beros and written specification 
of the prediction error). See Figure 1 for a sample trial.

Participants were given as much time as they needed on 
each trial. Training consisted of 20 unique input values (all the 
odd numbers between 61 and 99), and trials were presented in 

FIGURE 1.  Screen shots of a trial from the concept-building task. The top left screen 
shows the initial display with the input. The top right shows the screen after the partici-
pant enters a prediction for the output. The bottom screen shows the feedback provided 
after the prediction is entered. Reprinted from Figure 1 in Frey et al. (2017). Copyright © 
2017 American Chemical Society and Division of Chemical Education, Inc.
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information (i.e., the underlying function) 
in learning the training trials, allowing 
them to significantly outperform a simple 
exemplar model in extrapolation. Exam-
ination of Figure 2 confirms that the 
abstraction learners demonstrated extrap-
olation that followed the function.

Measure of General Intellectual Abil-
ity.  We collected two measures of intellec-
tual ability. One was ACT score, or if not 
available, SAT score (which we translated 
into concordant ACT composite score). SAT, 
and by extension ACT (because the two are 
highly concordant), can be considered a 
measure of general intelligence (for the 
relation between IQ and standardized 
achievement tests, see Frey and Detterman, 
2004; also Duckworth et al., 2012), as well 
as scholastic achievement. A second mea-
sure was the RAPM, considered to index 
fluid intelligence, another component of 
general cognitive ability (the RAPM and 
SAT are correlated, but the two do not over-

lap substantially; r = 0.48 [Frey and Detterman, 2014, experi-
ment 2]). In the RAPM, a matrix of related patterns is displayed 
(typically a matrix of nine patterns), with the final pattern miss-
ing. Respondents have to pick one of eight possible options to 
complete the matrix. We gave students the shortened version of 
the RAPM (Bors and Stokes, 1998); they completed 12 trials 
(this version also has a “do not know” option) in self-paced man-
ner, with a final score reflecting the proportion of 12 items they 
got correct. The task took approximately 10 minutes to complete.

Software and Analysis Details
R v. 4.1.0 (R Core Team, 2021) was used for all analyses. 
Between-subjects analyses of variance (ANOVAs) were con-
ducted with the base aov function with contrasts set to c(“contr.
sum”, “contr.poly”). Mixed-effects models were conducted with 
the lmer function from the package lmerTest (v. 3.1.3; 
Kuznetsova et al., 2017), which extends the lmer function from 
the package lme4 (v. 1.1.27; Bates et  al., 2015) by allowing 
significance tests to be conducted on the output. The anova 
function from lmerTest was used to generate type III sums of 
squares ANOVA tables of fixed effects from lmer output, and the 
degrees of freedom were computed using the Kenward-Roger 
method (note that this accepted method of determining degrees 
of freedom sometimes gives degrees of freedom that diverge 
somewhat from conventional ANOVA models; e.g., as com-
puted in SPSS). Effect sizes, Sum of squares (SS) Error, mean 
squared (MS) Error, and partial eta-squared were computed 
manually based on the information available in the output of 
anova. The emmeans package (v. 1.6.1; Lenth, 2021) was used 
to conduct follow-up analyses for both aov and lmer models, 
with the ref_grid function used to generate estimated marginal 
means and the contrast function used to conduct pairwise con-
trasts. For lmer models, contrast degrees of freedom were calcu-
lated using the Kenward-Roger method. Plots were generated 
with the ggplot2 package (v. 3.3.3; Wickam, 2016), with assis-
tance from the emmip function from emmeans.

inverted-V target function. These participants (with relatively 
high final training block MAEs ≥ 10) could not be classified, 
because with incomplete learning, transfer patterns are not 
diagnostic of a particular learning approach; 88 participants in 
the sample exceeded the learning criterion and thus were not 
included in the main analyses. The remaining participants’ (N = 
67) extrapolation MAEs were used to evaluate their correspon-
dence to the extrapolation MAE derived from a simple exem-
plar model (as in McDaniel et al., 2018; Frey et al., 2020). The 
simple exemplar model (no generalization from input or output 
nodes; McDaniel and Busemeyer, 2005) predicts flat extrapola-
tion extending from the end points of the training domain (the 
dashed horizontal lines in Figure 2). In particular, for the func-
tion used in this research, the simple exemplar model responds 
with an output of 148 for every extrapolation trial; the result-
ing MAE = 34.72 (error relative to the inverted-V function that 
generated the input–output points). Note that any set of predic-
tions that average 148 and never overestimate the output value 
produce an MAE of 34.72.

Learners’ concept-building approaches were determined by 
comparing their extrapolation MAE and surrounding 95% con-
fidence interval (CI) to this 34.72 value. Learners with all or 
part of their 95% CI greater than 34.72 were classified as exem-
plar learners, and learners with their entire 95% CI less than 
34.72 were classified as abstraction learners. Past work has 
established that the classification of the two groups based on 
the MAE scores does reflect a bimodal distribution of MAE 
scores not simply a partitioning of a unimodal distribution of 
extrapolation performances (displayed in Figure 9, McDaniel 
et  al., 2014). The exemplar learners’ training performances 
(last block MAE) clearly showed that they learned specific 
input–output associations, but their extrapolation MAEs 
indicted they did not abstract the appropriate function rule 
(their extrapolation was relatively flat, like a simple exemplar 
model, especially on the right side; see Figure 2). By contrast, 
the abstraction learners presumably extracted some rule-based 

FIGURE 2.  Mean exemplar learner predictions and abstraction learner predictions for final 
training block and extrapolation trials. Learners with all or part of their 95% CI greater 
than 34.72 in extrapolation (the MAE value for extrapolation based on an exemplar model; 
see text for details) were classified as exemplar learners. Learners with their entire 95% CI 
in extrapolation less than 34.72 (extrapolation tending toward the function rule) were 
classified as abstraction learners. Error bars represent the standard error of the mean.
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RESULTS
We first examined whether students identified as abstractor 
learners were characterized by higher levels of general intellec-
tual ability, as assessed by composite ACT scores and by RAPM 
scores, than students identified as exemplar learners. Abstractor 
and exemplar learners did not statistically differ on either com-
posite ACT scores, Ms = 28.75 and 27.71, respectively; t(145) = 
1.28, p = 0.408; or RAPM scores, Ms = 6.52 and 5.67, respec-
tively, t(127) = 0.99, p = 0.587.2 Further, exemplar learners 
were not students at the lower end of general intellectual ability 
relative to other students in the class. The exemplar learners 
scored nominally higher than the remaining students in the 
class (i.e., those whose learning approach could not be deter-
mined, because they did not meet the learning criterion on the 
function-learning task) on both composite ACT (M = 26.69; p = 
0.354) and RAPM (M = 5.04; p = 0.726). These patterns rein-
force prior reports indicating that general intellectual ability is 
not necessarily a proxy or determinant of students’ tendencies 
to learn and represent concepts in a relatively more abstrac-
tion-based versus exemplar-based manner (Frey et  al., 2017; 
McDaniel et al., 2018). Still, the nonsignificant differences in 
general intellectual ability (ACT and RAPM) favored the abstrac-
tion over the exemplar learners. Accordingly, we included those 
indices as covariates in the statistical analyses of exam perfor-
mances to ensure that any effects of students’ concept-building 
approaches were not a consequence of intellectual ability per se.

Exam Performance
Exam performance was analyzed as a function of concept-build-
ing approach (exemplar, abstraction) and question type (reten-
tion, transfer). To account for the within-subjects nature of ques-
tion type, mixed-effects models were conducted with a random 
effect of student (i.e., the intercept was allowed to vary across 
student). In an initial model, concept-building approach, ques-
tion type, and ACT scores were included as fixed effects, as well 
as question type by concept-building and question type by ACT 
interaction terms. Before being entered into the model, ACT 
scores were first centered by subtracting the mean value of 27.45.

In general, abstraction learners outperformed exemplar 
learners, F(1, 62) = 8.46, mean squared error (MSE) = 0.005, 
p = 0.005, ηp

2 = 0.12; but this main effect was qualified by a 
significant interaction with question type, F(1, 62) = 16.58, 
MSE = 0.005, p < 0.001, ηp

2 = 0.21.3 The estimated marginal 
means for this interaction are displayed in Figure 3. This figure 
shows that abstraction and exemplar learners performed nearly 
identically on the retention questions (M = 0.83 and 0.81, 
respectively), but abstraction learners performed notably better 

on the transfer questions than did exemplar learners (M = 0.82 
and 0.68, respectively). Simple contrasts confirm that abstrac-
tion and exemplar learners performed equivalently on retention 
questions, t(96) = 0.60, p = 0.550; but abstraction learners sig-
nificantly outperformed exemplar learners on transfer ques-
tions, t(96) = 4.51, p < 0.001. ACT performance was not signifi-
cantly related to exam performance in general, F(1, 62) = 3.03, 
p = 0.087; but did interact with question type, F(1, 62) = 4.17, 
MSE = 0.005, p = 0.046, ηp

2 = 0.06. This interaction results from 
the slope between ACT and performance being significantly 
more positive for transfer items (0.011) than for retention items 
(0.002). Clearly, however, the interaction of ACT and question 
type represented a smaller effect (which met the convention of 
ηp

2 = 0.06 for a medium-size effect) than the interaction of con-
cept-building approach with question type (which exceeded the 
convention of ηp

2 = 0.14 for a large-size effect). Finally, perfor-
mance on retention questions was better than that on transfer 
questions, F(1, 62) = 38.46, MSE = 0.005, p < 0.001, ηp

2 = 0.38.
We next added RAPM (centered by subtracting the mean 

value of 5.59) as a second covariate (in addition to ACT) to the 
foregoing analysis to evaluate whether this aspect of intellec-
tual ability (i.e., fluid intelligence) might underlie or account 
for the effects of concept-building approach on exam perfor-
mance. RAPM did not relate to exam performance in general, 
F(1, 53) = 1.24, p = 0.27; but did significantly interact with 
question type, F(1, 53) = 7.29, MSE = 0.004, p = 0.009, ηp

2 = 
0.12. This interaction reflects that the slope between RAPM 
and performance was nearly flat for transfer questions (0.001) 
but actually negative for retention questions (−0.011). ACT also 
still interacted with question type, F(1, 53) = 5.19 MSE = 0.004, 
p = 0.027, ηp

2 = 0.09. Despite the additional intellectual ability 
factor interacting with question type, the interaction of con-
cept-building approach with question type remained robust, 
F(1, 53) = 8.71, MSE = 0.004, p = 0.005, ηp

2 = 0.14, showing 
a pattern nearly identical to that described earlier for simple 
contrasts, confirming that the advantage of abstraction learners 
was significant for transfer items t(81) = 4.46, p <0.001; but not 
retention items, t(81) = 1.66, p = 0.10 (see Figure 4).

FIGURE 3.  Transfer and retention performance as a function of 
concept-building approach with ACT accounted for. Estimated 
marginal means are from a model including the main effect of ACT 
and ACT by question type interaction. Error bars represent the 
standard error of the mean. Labels inside bars represent the sample 
size for the condition.

2These analyses included those students whose learning approach could not be 
determined, because they did not meet the learning criterion on the func-
tion-learning task. Accordingly, the degrees of freedom reflect the total sample of 
students who completed the function-learning task and for whom ACT scores (or 
converted SAT scores) were available or completed both the function-learning and 
RAPM tasks. The p values are Tukey adjusted.
3We conducted a model that included all 67 participants with a concept-building 
classification (reflected in Figure 2) and removed the ACT fixed-effects terms. This 
model produced results identical to that when the ACT terms were included: 
abstraction learners outperformed exemplar learners, F(1, 65) = 9.02, MSE = 
0.004, p = 0.004, ηp

2 = 0.12; but this effect was limited to transfer questions, 
F(1, 65) = 20.22, MSE = 0.004, p < 0.001, ηp

2 = 0.24; performance on retention 
questions was better than that on transfer questions, F(1, 65) = 78.00, MSE = 
0.004, p < 0.001, ηp

2 = 0.55.
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In a final set of comparisons we examined whether the pat-
terns on the individual exams were fairly stable in terms of 
reflecting the overall differences in transfer items (and no dif-
ferences in retention items) across exemplar and abstraction 
learners. As can be seen in Figure 5,4 exemplar and abstraction 
learners performed equivalently on retention items on every 
exam. Pairwise contrasts confirmed that, for each exam, there 
was no significant difference on retention items between exem-
plar and abstraction learners (all t values < 1, all p values > 
0.35). For transfer items, Figure 5 shows that the advantage for 
abstraction learners (relative to exemplar learners) was gener-
ally stable across exams, though perhaps diminished on the first 
exam. Pairwise contrasts revealed that indeed exemplar and 
abstraction learners did not significantly differ on exam 1 (t = 
1.32, p = 0.19). The difference became significant by exam 2 
and remained robust for subsequent exams (t values varied 
from 3.41 to 3.60, all p values < 0.001). Thus, the differential 
group differences across retention and transfer items were 
largely stable over the duration of the course.

DISCUSSION
An overarching goal for many introductory biology courses is to 
assist students with developing a deep, conceptual understand-
ing of core concepts. One way to evaluate the degree to which 
this educational goal has been reached is to include transfer 
questions on summative assessments, an approach that has been 
increasingly emphasized by biology educators (e.g., Handelsman 
et  al., 2004; Bissell and Lemons, 2006; Crowe et  al., 2008; 

Pfund et al., 2009; American Association for the Advancement of 
Science, 2011; Ebert-May et  al., 2015; Laverty et  al., 2016). 
Moreover, many efforts to improve students’ conceptual under-
standing and, as a consequence, performance on transfer-based 
questions, have focused on a variety of instructional approaches 
(e.g., improving visual representations: Novick and Catley, 2007, 
2013; fostering productive failures: Kapur, 2014, 2016; guided 
inquiry: Hmelo-Silver et  al., 2007; and more active-learning 
techniques in general: Freeman et al., 2014; Halmo et al., 2020). 
In this article, we focused on another potentially critical factor in 
determining the degree to which biology students will display 
transfer of instructed concepts (i.e., good performance on assess-
ment questions targeting transfer): individual differences in how 
learners in introductory biology classes acquire and represent 
concepts.

Appealing to recent basic cognitive science research (Juslin 
et  al., 2003; Bourne et  al., 2010; Hoffmann et  al., 2014; 
McDaniel et al., 2014; Little and McDaniel, 2015), as devel-
oped in the Introduction, our central idea is that some learners 
tend to focus on exemplar-based representations of the 
instructed concepts, whereas other learners tend to focus on 
more abstract underpinnings. These qualitatively different rep-
resentations would theoretically be expected to impact the 
degree to which the concepts can be transferred (e.g., McDaniel 
et  al., 2014; see also Gick and Holyoak, 1980; Frey et  al., 
2020). Exemplar-based representations would be expected to 
be based on surface features of problems and instructional 
examples, and to be rich in characteristics that are idiosyn-
cratic to the particular study examples (cf. Regehr and Brooks, 
1993). Such representations tend to limit transfer to novel 
questions and problems (Gick and Holyoak, 1980; McDaniel 
et  al., 2014). In contrast, abstract representations reflect 
deep-structure characteristics of problems, characteristics that 
support transfer (Gick and Holyoak, 1983).

The foregoing theoretical analysis directly anticipates and 
aligns with the central results of the present study. Those biol-
ogy students who displayed abstraction-based learning tenden-
cies (as indexed independently by a laboratory learning task 
unrelated to the biology course or to biology content in general) 
showed substantially better performance on the transfer exam 
questions than the biology students who displayed exem-
plar-based learning tendencies. In sharp contrast, on retention 
exam questions—questions that echoed the particular instanti-
ations of the concepts reflected in the instruction (class, text-
book, or homework)—the abstraction- and exemplar-based 
learners performed identically. Moreover, students with abstrac-
tion-learning tendencies maintained good performance across 
retention (83%) and transfer (82%) questions, whereas those 
with exemplar-learning tendencies showed a notable decline 
from their relatively good performance on retention questions 
(81%) to their performance on transfer questions (68%). This 
pattern further converges with the theoretical interpretation 
that the students identified as abstraction learners tended to 
construct a deep understanding of the concepts (presumably 
based on abstract underpinnings), thereby enabling them to 
apply and generalize the concepts to scenarios and instantia-
tions not seen during instruction. The exemplar learners were 
less able to generalize the target concepts, consistent with the 
idea that their representations were presumably based on the 
instructed examples; that is, these students were apparently 

FIGURE 4.  Transfer and retention performance as a function of 
concept-building approach with ACT and RAPM accounted for. 
estimated marginal means are from a model including the main 
effects of ACT and RAPM and ACT by question type and RAPM by 
question type interactions. Error bars represent the standard error 
of the mean. Labels inside bars represent the sample size for the 
condition.

4Note that averaging across the individual exam scores does not produce grand 
means that are identical to those displayed in Figure 3 and reported in the text. 
This is because the numbers of retention and transfer items varied for each indi-
vidual exam, so a direct average of the four exams produces an unweighted (by 
number of items) index. By contrast, the primary analyses computed overall 
semester performances by totaling the number of exam items of a given type 
(retention, transfer) across the semester (rather than averaging performance 
across each exam score).
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memorizing the instructed examples as the basis for their learn-
ing (e.g., see Frey et al., 2020).

Our interpretation of the differences in transfer-question 
performance emphasizes individual differences across students 
in the conceptual representations that they construct. Another 
possible interpretation of the pattern is that these students’ con-
ceptual representations were not substantially different; instead, 
it may be that the students differed in their general ability to 
figure out how the examples highlighted during instruction 
(classroom, textbook, or homework) related to and aligned 
with the transfer exam questions. To explore this possibility, we 
collected two indices of general intellectual ability for the par-
ticipants that typically are assumed to capture reasoning and 
thinking skills (ACT and RAPM, an index of fluid intelligence). 
Several suggestive patterns emerged. Though both ACT and 
RAPM significantly interacted with type of exam question, the 
interaction patterns were not consistent. Only the ACT index 
was associated with performance on transfer questions (a posi-
tive association). Thus, the idea that general intellectual ability 
may be related to transfer performance could be too broad; per-
haps a relation between general intelligence and transfer in 
STEM learning is restricted to crystallized intelligence (in part, 
accrued knowledge).

Critically, however, this dynamic associated with the ACT 
index very likely did not account for the superior transfer per-
formance of abstraction relative to exemplar learners. One clear 
reason is that concept-building tendency significantly inter-
acted with type of exam question when the variance accounted 
for by ACT (and RAPM) was taken into account. Indeed, the 
interaction between concept-building tendency and exam ques-
tion type remained a large-size effect in the presence of the ACT 
(and RAPM) covariate (and the interaction between ACT and 
exam question type was only a medium-size effect). A second 
reason is exemplar learners did not differ significantly from 
abstraction learners on ACT and RAPM scores. That is, exem-
plar learners did not display lower general ability than abstrac-
tion learners; in fact, exemplar learners as a group were not at 

FIGURE 5.  Transfer and retention performance as a function of exam and concept-build-
ing approach. Points represent the descriptive mean of proportion correct for the given 
level concept-building approach, exam, and question type. These means are from the 21 
exemplar learners and 44 abstraction learners with complete exam and ACT data. Points 
are offset horizontally to avoid overlapping between exemplar and abstraction points for 
a given exam. Error bars represent standard error of the mean.

the lower end of the ACT and RAPM spec-
trum relative to the rest of the students in 
the class (students who were not able to be 
classified as exemplar/abstractor learners 
on the laboratory learning task).

The idea that students differ in their 
tendency toward constructing conceptual 
representations that are more exemplar or 
abstraction based and that these differ-
ences play a key role in STEM learning, 
exam performance, and problem solving is 
reinforced by similar results with general 
chemistry students’ exam performances on 
retention and transfer questions (McDan-
iel et  al., 2018), general chemistry stu-
dents’ problem-solving performance (Frey 
et al., 2020), and superior performance in 
organic chemistry (where abstract concep-
tual representations should advantage per-
formance; Frey et al., 2017). The current 
results in introductory biology reflect an 
important extension for a number of rea-
sons. First, in the general chemistry study 

(McDaniel et  al., 2018), exam questions and problems were 
typically quantitative in nature, and the laboratory learning 
task was a function-learning task based on quantitative rela-
tions. Thus, it is possible that these individual differences were 
restricted to quantitative-type concepts (though laboratory 
work has not indicated this to be the case; McDaniel et  al., 
2014). The biology exam questions were not quantitative in 
nature, though a subset of eight questions required interpreting 
graphs and tables and noticing data patterns. Thus, the present 
finding in concert with recent case study findings on qualitative 
general chemistry problems (Lewis structure problems; Frey 
et al., 2020) establishes that the differences in abstraction and 
exemplar building tendencies indexed by the laboratory learn-
ing task are not limited to quantitatively based problems.

Second, the present study sampled from a more diverse stu-
dent population than previous studies conducted at selective 
private institutions (McDaniel et al., 2018; Frey et al., 2020). 
Third, we reinforced that variations in crystallized intelligence 
(ACT) do not underlie the influence of concept-building 
approach on exam performances (see also Frey et  al., 2017; 
McDaniel et al., 2018) and showed that fluid intelligence (as 
indexed by RAPM) also does not underlie the relation between 
concept-building approach and exam performance.

A fourth important extension of the current study is that both 
biology instructors employed an array of active-learning 
methods. As outlined in the Introduction, a general objective for 
these courses was to foster deep learning of the concepts as 
opposed to memorization of the instructional examples. Indeed, 
one of the instructors (coauthor L.B.L.) explicitly told her stu-
dents that she would not test them on the details of cases dis-
cussed in class, because the purpose of class was to practice 
applying concepts, not to memorize the details of examples. Nev-
ertheless, individual differences in concept-building tendencies 
appeared to override the class’s emphasis on understanding and 
applying concepts: Those with exemplar-learning tendencies per-
formed well on retention exam questions (which echoed the 
class presentations, class activities, or homework) but less well 
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on transfer exam questions—for which memorization of class 
content (without deeper understanding/abstraction) would be 
less helpful.

Finally, it is intriguing to reconsider existing findings on 
learner sensitivity to item context in light of the current study. 
A substantial body of research on science learning shows that 
student performance on science assessments is influenced by 
contextual features of the items (e.g., Chi et al., 1981; Clough 
and Driver, 1986; Clark, 2006; Sabella and Redish, 2007; 
Bryce and MacMillan 2009). This pattern was reinforced in a 
controlled study of item context features in the assessment of 
natural selection (Nehm and Ha, 2011). Undergraduates 
enrolled in an introductory biology course completed an 
assessment of natural selection in which the item contexts var-
ied. Items asked about evolutionary trait loss or gain and 
required comparisons between species or within species. Stu-
dents provided a significantly greater number of naïve biologi-
cal ideas on items involving evolutionary trait loss compared 
with items involving evolutionary trait gain. Similarly, students 
provided a significantly greater number of naïve biological 
ideas for items involving between-species comparisons than 
within-species comparisons. A possible extension of the pres-
ent results is that abstraction learners might be more likely to 
respond equivalently across item contexts, because they search 
for and apply the underlying principles of science phenomena. 
In contrast, exemplar learners might be more likely to respond 
differentially to items based on context, because they attend to 
the specifics of learned examples. Further research could test 
this hypothesis.

Limitations
There are also several limitations to the study that bear not-
ing. The data were collected at one large public university; it 
would be informative to replicate the present patterns at other 
universities with varying student characteristics, enrollment 
sizes, funding (public, private), and approaches to introduc-
tory biology. Further, even within the present sample, slightly 
more than 50% of the students who completed the assessment 
could not be classified in terms of their concept-building 
approach, because they did not meet the learning criterion 
(MAE ≥ 10) on the training portion of the assessment. We 
suspect that the primary reason students did not meet the 
learning criterion was a lack of sufficient effort, likely in part 
because the assessment was delivered online. To examine this 
possibility, we developed three markers of low effort: 1) aver-
aging < 2.5 seconds per trial, 2) using fewer than five unique 
prediction values across training blocks 6–10 (the last five 
training blocks), and 3) showing a large (≥5) block-wise MAE 
increase in at least one of blocks 6–10. We then tabulated the 
percentage of non-learners and learners who displayed at 
least one of these markers of low effort. Sixty-seven percent of 
non-learners but only 7.5% of learners displayed markers of 
low effort, suggesting that low effort was a primary factor in 
students not reaching the learning criterion. Further, their low 
effort appeared to be limited to this assessment; average per-
formances for the non-learners on course exams were compa-
rable to those of exemplar and abstraction learners on reten-
tion items (except for exam 1, where non-learners performed 
less well) and to those of exemplar learners on transfer items 
(see Supplemental Figure S2).

In previous studies, when students have been given the task 
in person, the proportions of students who do not meet the 
learning criterion (and thus could not be classified) have been 
much lower (ranging from 8% to 21% in three research lab 
studies, McDaniel et al., 2014; and 23% in a classroom setting, 
Frey et al., 2020). These in-person patterns suggest that, if the 
students in the biology classes had been administered the task 
under supervision, a large majority would likely have been 
characterized in terms of the two concept-building approaches 
identified herein. In the present study, students could elect to 
not take the task seriously without feeling social pressure or 
being penalized. The assessment is challenging, and it requires 
that students work sufficiently hard to meet the learning crite-
rion. This requirement may limit the extent to which the assess-
ment can classify all or nearly all students’ concept-building 
approach in classroom research where students complete the 
assessment online. It thus remains possible that the present pat-
terns could change if students who do not complete the assess-
ment could somehow be classified in terms of concept-building 
approach.

Another outstanding issue is whether exemplar and abstrac-
tion learners differed in biology background knowledge at the 
outset of the course. For instance, if abstraction learners had 
more prior biology knowledge, this could have advantaged 
their exam performances relative to exemplar learners. We did 
not assess background knowledge; thus, the present findings 
do not directly inform this possibility. Several observations, 
however, are not entirely consistent with the possibility that 
differential background knowledge mediated the current pat-
terns. First, exemplar and abstraction learners showed equiva-
lent performance on retention items in the present study. This 
pattern does not align with a differential background knowl-
edge interpretation inasmuch as differential background 
knowledge could impact performance across a range of exam 
item types. Second, on the initial exam in the course, when 
background might be expected to exert influence, transfer per-
formance did not significantly differ across exemplar and 
abstraction learners.

Instructional Implications
An outstanding question is what instructional techniques might 
be implemented to assist students with exemplar concept-build-
ing tendencies to develop a more abstract, generalizable repre-
sentation of the instructed concepts.5 As far as we are aware, no 
published work has directly targeted this question. Neverthe-
less, in this final section, we appeal to the educational and cog-
nitive science literatures to offer some tentative suggestions to 
guide further research and instructional efforts.

5The (untested) assumption here is that, with appropriate instruction, at least 
some exemplar learners might be able to develop effective abstractions for much 
(or all) of the instructed concepts. The assumption seems plausible, given that the 
exemplar learners in the current courses showed sufficient abstraction to support 
average correct responses of 68% for the transfer items. However, this is not to 
imply that such instruction would necessarily alter the learner’s concept-building 
tendency in general (e.g., for other courses). Frey et al. (2017) administered the 
concept-building task to students in introductory chemistry 1 (in Fall 2012) and 
to students in organic chemistry 2 (Spring 2014). Forty-one students completed 
both assessments, and 85% of those students displayed the same concept-building 
approach across the 1.5 year interval. Thus, even after taking three semesters of 
various classes between the two assessment time points, these students’ con-
cept-building approach appeared to be stable.
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Productive Failure.  One idea is to design exercises or assign-
ments that lead to “productive failure” (Kapur, 2014, 2016; 
Halmo et  al., 2020). Such assignments require students to 
explore and generate possible solutions to problems on their 
own before receiving direct instruction on the concepts and 
procedures (Schwartz et  al., 2011; Kapur, 2014). Problems 
are designed so that students fail to generate correct solutions 
on their own, but the failure is purposeful, enabling students 
to activate and differentiate prior knowledge, recognize 
knowledge gaps, and focus attention on the problems’ underly-
ing conceptual structure (Kapur, 2016; Loibl et al., 2017). This 
approach is intended to avoid a possible drawback of instruct-
ing with worked examples: Students may merely apply pro-
vided procedures to problems without understanding the 
concepts in a way that allows them to transfer their knowl-
edge to new situations (Schwartz et al., 2011). Initial research 
shows a promising advantage of the productive failure 
approach over more conventional approaches for stimulating 
acquisition of conceptual knowledge (underlying abstrac-
tions) and supporting transfer (Schwartz et al., 2011; Kapur, 
2014; Loibl et al., 2017). Whether this advantage extends to 
students with exemplar-learning tendencies awaits future 
work.

Problem Homework.  Problem homework could be designed 
to stimulate students to consider and focus on the conceptual 
underpinnings of practice problems. One technique would be to 
pose deep-level questions such as “Why?” and “How?” concern-
ing aspects of the problem. For instance, students might be 
asked “Why is this a key problem?” or “How does the problem 
relate to concepts covered in the course?” An array of evidence 
suggests that the construction of explanations by the students 
produces learning gains in science learning on assessments that 
tap deep knowledge (for a review, see Pashler et al., 2007). A 
related technique could be to focus on the reasoning for the 
particular solutions that the students try. That is, the students 
are prompted to generate self-explanations—to answer why 
particular steps are used to solve a problem (Chi et al., 1989; 
Wylie and Chi, 2014; for a laboratory experiment supporting 
the potential effectiveness of this technique, see deBruin et al, 
2007).

Conceptual Questions.  Much of the content in biology 
focuses on problems that do not require computational opera-
tions (unlike some general chemistry courses) and instead rely 
predominately on prediction, explanation, and conceptual 
reasoning. For this content, instructors might guide students 
to generate and answer conceptual questions—questions that 
focus on knowledge about a target concept or require integra-
tion across various concepts and principles. Findings show 
that college learners can successfully pose such questions 
when instructed to do so (e.g., Bugg and McDaniel, 2012; Lin 
et al., 2018). Moreover, in a laboratory experiment, learners 
instructed to generate and answer the conceptual questions 
performed substantially better on a final concept-oriented test 
than did learners who studied (without question generation) 
or who generated and answered detail questions (Bugg and 
McDaniel, 2012). Again, it remains to investigate this tech-
nique for students with exemplar-learning concept-building 
tendencies in particular.
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